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Abstract

In the first part of this thesis, building on ideas of R. Pollack and

G. Stevens, we present an efficient algorithm for integrating certain

rigid analytic functions attached to automorphic forms on definite

quaternion algebras. We then apply these methods, in conjunction

with the Jacquet-Langlands correspondence and the uniformization

theorem of Cerednik-Drinfeld, to the computation p-adic periods of

and Heegner points on elliptic curves defined over Q and Q(
√

5)

which are uniformized by Shimura curves. In part two, we give a

new proof of the result, originally proved in unpublished work of

Glenn Stevens [27], that every modular eigensymbol of non-critical

slope lifts uniquely to a rigid-analytic distribution-valued eigensym-

bol. The proof is algorithmic and facilitates the efficient calculation

of certain p-adic integrals. This has applications to the calculation

of Stark-Heegner points on elliptic curves defined over Q as well as

over certain imaginary quadratic fields.
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Resumé

Dans la première partie de cette thèse, nous donnons un algo-

rithme pour intégrer certaines fonctions rigide-analytiques attachées

à une forme automorphe sur une algèbre definie de quaternions.

En utilisant la correspondence de Jacquet-Langlands et le théorème

de Cerednik et Drinfeld, nous appliquons cet algorithme au calcul

des points de Heegner sur des courbes élliptiques définies sur Q et

sur Q(
√

5) qui sont parametrées par des courbes de Shimura. En

deuxième lieu, nous présentons une nouvelle preuve d’un théorème

de G. Stevens ([27], non-publié) stipulant que chaque symbole mod-

ulaire, vecteur propre pour les opérateurs de Hecke, se relève unique-

ment en un symbole modulaire à valeurs dans un module de distrib-

utions. Notre démontsration est algorithmique et s’applique au cal-

cul des points de Stark-Heegner sur des courbes elliptiques définies

sur Q ainsi que sur certains corps quadratiques imaginaires.
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Introduction

This thesis is composed of two papers whose underlying theme is

the connection between Heegner points and rigid analytic modular

forms.

The goal of the first paper is the development of a polynomial-

time algorithm for computing Heegner points on elliptic curves over

Q, arising from certain Shimura curve parametrizations. Let E be an

elliptic curve over Q admitting a uniformization

(1) Φ : J → E

by the Jacobian variety J of a Shimura curve X . The Heegner points

under consideration are the images under Φ of CM divisors of degree

0 on X . (See Chapter 1 for a more detailed exposition.) Due to the

lack of cusps on X , or equivalently, to the fact that modular forms

for groups arising from indefinite quaternion algebras to not admit

q-expansions, we know of no explicit formula for the uniformization

Φ in terms of classical (i.e. archimedian) analysis. This is in stark con-

trast to the case of parametrizations by the classical modular curves

X0(N).

However, the lack of q-expansions in the Shimura curve case is in

some sense compensated for by a p-adic uniformization

π : Hp → X(Cp)

ix



x INTRODUCTION

of X , where Hp = P1(Cp) − P1(Qp) is the so-called p-adic upper half

plane. The existence of this uniformization was proved (indepen-

dently, using different methods) by Cerednik [4] and Drinfeld [14].

In [1], Bertolini and Darmon (developing work of Gross [19]) use

Drinfeld’s moduli theoretic construction of π to identify the preim-

ages in Hp of the CM points on X(Cp) with fixed points of the action

of an algebraic torus in GL2(Qp) arising from a quadratic order in a

definite quaternion algebra; see Chapter 1, § 7. Using ideas developed

independently by Iovita and Spiess, the above work is reinterpreted

in [3] to give a formula for the Heegner points onE in terms of p-adic

integration.

We are able to give an algorithm, running in polynomial time,

for evaluating this p-adic integral formula. The key to this algorithm

is a method devised by Pollack and Stevens [22] for explicitly lifting

standard modular symbols to overconvergent ones; see Chapter 2,§3.

We successfully adapt their method to our situation, where the role

of the modular symbols is played by automorphic forms on definite

quaternion algebras; see Chapter 1, § 7.

The crucial step in the algorithm of Pollack and Stevens for lifting

a modular eigensymbolsymbol ψ to an overconvergent eigensymbol

Ψ is the explicit construction of an initial lift of ψ to an overconvergent

not-necessarily-eigen-symbol Ψ0. This is a nontrivial process involv-

ing a careful analysis of the geometry of the modular curve X0(pN)

which is necessary in order to ensure that certain relations (mirroring

the phenomenon of certain unimodular paths on H collapsing to 0 in

H1(X0(pN),Z)) are satisfied by Ψ0. In our Shimura curve situation,

however, the automorphic forms in question are really just functions

on the finite set of right ideal classes of a certain quaternion order.
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Consequently, the difficulties arising in producing an initial lift do

not arise for us. More conceptually, ideas of Gross [19] lead to the

identification of the above mentioned set of right ideal classes with

the set of connected components of a certain conic, i.e. with an H0.

Therefore, there are no nontrivial coboundary relations to be satis-

fied.

When coding and testing our algorithm, we realized that it was

not necessary to compute the initial lift Ψ0 at all. This led us to ex-

amine the work of Pollack and Stevens more closely to determine

whether this involved computation could be dispensed with in the

modular symbol situation as well. (Our interest in such a possibility

was mainly due to potential applications to the calculation of Stark-

Heegner points – see below.)

We realized that the necessity of computing the initial lift Ψ0 as

Pollack and Stevens did was an artifact of their initial purpose in de-

signing their method – the investigation of the p-adic L-function(s)

associated to a modular form of critical slope at p, i.e. a modular

eigenform f ∈ Sk+2(Γ0(pN)) such that the ordp ap(f) = k + 1, where

f |Up = ap(f)f . For our applications of interest, however, the modu-

lar forms f which arise all have weight 2 and satisfy ap(f) = ±1.

In the second paper, we give an algorithm for lifting a modular

symbol Ψ, of arbitrary weight and non-critical slope, to a rigid ana-

lytic (and therefore overconvergent) modular symbol Ψ which does

not necessitate the construction of an initial lift Ψ0. This algorithm

is based on a new proof of the result, originally due to Stevens [27],

that a modular symbol of noncritical slope lifts uniquely to a rigid

analytic modular symbol.
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As mentioned above, our motivation for pursuing the work of

this second paper was to facilite of the computation of algebraic

points on elliptic curves, in particular, Stark-Heegner points. These

points, first constructed by Darmon in [6], are local points on el-

liptic curves which are conjecturally defined over global class fields

of real quadratic fields. Otherwise, though, they are believed to be-

have like classical Heegner points. In [10], Darmon and Pollack give

an efficient algorithm, based on [22], for computing Stark-Heegner

points, thereby presenting convincing evidence for the conjectures

of [7]. The results of our second paper serve to simplify the approach

of [10], both technically and conceptually.

Moreover, since the method described in Chapter 2 is “geometry

free”, it to generalizes to situations where the geometry involved is

more complicated. In [28], Trifković has adapted these ideas to work

with modular symbols constructed from certain automorphic forms

on GL2 of an imaginary quadratic field F , and has implemented his

generalization in PARI to compute certain Stark-Heegner points on

elliptic curves defined over F . In his situation, the automorphic

forms in question manifest themselves geometrically as harmonic

forms on certain real-analytic threefolds. As the geometry of these

threefolds is quite complicated compared to that of modular curves,

our “geometry free” method proves quite helpful.

This thesis is organized as follows. Chapter 1 contains the text

of the first, with several complements following as appendices. The

second paper is presented in Chapter 2. Chapter 3 consists of a dis-

cussion of the results of the first two chapters and raises several nat-

ural questions for further investigation.



CHAPTER 1

Heegner point computations via

numerical p-adic integration

1. Heegner points on elliptic curves

Let E/Q be an elliptic curve of conductor N . Then by the work

of Wiles and his school, there exists a dominant morphism defined

over Q,

ΦN : X0(N)→ E,

arising from the modularity of E. Let A → A′ be an isogeny of el-

liptic curves with complex multiplication (henceforth, CM) by the

same imaginary quadratic order o ⊂ K. Then by the classical theory

of complex multiplication, the point P = (A → A′) represents an el-

ement of X0(N)(Ho), where Ho is the ring class field attached to the

order o. As ΦN is defined over Q, the point ΦN(P ) belongs to E(Ho).

Such a point on E is called a (classical) Heegner point. These points

are of significant interest. In particular, the proof of the conjecture

of Birch and Swinnerton-Dyer for elliptic curves over Q of analytic

rank at most one (due to Gross-Zagier and Kolyvagin) depends es-

sentially on their properties.

These classical Heegner points may be efficiently computed in

practice. Let fE ∈ S2(N) be the normalized newform attached to E

and let τ ∈ H represent the point P , where H is the complex upper
1
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half plane. Then

(2) ΦN(P ) = W

(∫ τ

∞
fE(z)dz

)
= W

(∑
n≥1

an(fE)

n
e2πinτ

)

where

• W : C → C/Λ ∼= E(C) is the Weierstrass uniformization of

E(C), and

• an(fE) is the n-th Fourier coefficient of fE .

The quantities ap(E) may be computed by counting points on E

modulo p. The existence of a point P = (A → A′) on X0(N) where

both A and A′ have CM by an order in K implies the validity of the

classical Heegner hypothesis: that all primes ` dividing N are split in

K. Due to the theoretical importance of classical Heegner points, it

is natural to desire an analogous systematic construction of algebraic

points defined over class fields of imaginary quadratic fields which

do not necessarily satisfy this stringent hypothesis, as well as meth-

ods to effectively compute these points in practice. Such a general-

ization requires admitting uniformizations of E by certain Shimura

curves.

Assume that N is squarefree and N = N+N− is factorization of

N such that N− has an even number of prime factors. Let C be the

indefinite quaternion Q-algebra ramified precisely at the primes di-

viding N− and let S be an Eichler Z-order in C of level N+. (For

basic definitions and terminology concerning quaternion algebras,

see [31].) Fix in identification ι∞ of C ⊗R with M2(R) and let ΓN+,N−

denote the image under ι∞ of the group of units in S of reduced

norm 1. Then ΓN+,N− acts discontinuously on H with compact quo-

tient XN+,N−(C).
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By Shimura’s theory [24], the Riemann surface XN+,N−(C) has

a canonical model XN+,N− over Q. This is proved by interpreting

XN+,N− as a moduli space for certain abelian surfaces. Consequently,

there is a natural notion of a “CM-point” on XN+,N− . Let H(o) ⊂ H

be those points whose images on XN+,N− have CM by o. Then H(o)

is ΓN+,N−-stable and the quotient CM(o) := ΓN+,N−\H(o) is a finite

subset of XN+,N−(Ho). The set CM(o) is nonempty if and only if all

rational primes ` dividing N+ (resp. N−) are split (resp. inert) in

the fraction field K of o. We dub this condition the Shimura-Heegner

hypothesis.

Let JN+,N− denote the Jacobian variety of XN+,N− . By the mod-

ularity theorem for elliptic curves over Q together with the Jacquet-

Langlands correspondence, there exists a dominant morphism

(3) ΦN+,N− : JN+,N− −→ E

defined over Q. (See [7, Ch. 4] for a discussion of this point.) The uni-

formization, ΦN+,N− maps the set CM(o) into E(Ho). To emphasize

their origin, we shall refer to such points on E as Shimura-Heegner

points.

Shimura formulated a reciprocity law which gives an alternate

description of the Galois action on Shimura-Heegner points. Sup-

pose that K satisfies the Shimura-Heegner hypothesis. He showed

that there is a natural free action of Pic o on CM(o) with 2ω(N) orbits

(ω(N) = number of prime factors of N ) such that for

P ′ − P ∈ Div0 CM(o) ⊂ Div0XN+,N−(Ho),

we have

(4) ΦN+,N−((P ′ − P )[a]) = ΦN+,N−(P ′ − P )(a,Ho/K),
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where (−, Ho/K) : Pic o → GalHo/K is the reciprocity map of class

field theory.

The phenomenon of Shimura curves uniformizing elliptic curves

generalizes to certain elliptic curves defined over totally real fields.

For simplicity, let F/Q be a real quadratic field with infinite places

σ1 and σ2 and let p be a finite prime of F . Let C be the quaternion

F -algebra ramified at p and σ1 and let S be a maximal order of C.

Fix an isomorphism ισ2 : C ⊗σ2 R → M2(R) and let Γ be the image

under ισ2 of the group of units in S with reduced norm 1. Then as

above, the quotient Γ\H is a compact Riemann surface which admits

a description as the complex points of a Shimura curve X , as well as

a corresponding CM theory.

Let f ∈ S2(p) be a Hilbert modular form. Then the Jacquet-

Langlands correspondence together with the appropriate analog of

the Eichler-Shimura construction asserts the existence of an elliptic

curve E/F of conductor p and a uniformization J → E, where J

is the Jacobian of X , such that the L-functions of E and f match.

The images of CM divisors on X in E, also called Shimura-Heegner

points, satisfy a reciprocity law analogous to (4). Zhang [32], gen-

eralizing the work of Gross-Zagier, has derived formulas relating

heights of these Shimura-Heegner points to special values of deriv-

atives of L-functions.

Unfortunately, since modular forms on non-split quaternion al-

gebras do not admit q-expansions, there is no known explicit for-

mula for the map (3) analogous to (2) which may be exploited to

compute these important Shimura-Heegner points in practice. Our

goal in this work is to describe and implement a p-adic analytic algo-

rithm for performing such computations. The existence of a general
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algorithm for performing such Heegner point computations using

only classical (i.e. archimedian) analysis remains an open problem,

although some progress has been made by N. Elkies [15].

This paper is organized as follows: In §§2-5 we introduce p-adic

automorphic forms on definite quaternion algebras and adapt ideas

of Pollack and Stevens to develop an algorithm for lifting such forms

to rigid analytic automorphic ones (see §4 for definitions). In §§6-7,

we discuss (following [1]) how one may use the Cerednik-Drinfeld

theorem on p-adic uniformization of Shimura curves to give a p-adic

integral formula for the Shimura-Heegner points introduced above.

In §8 we show that the lifting algorithm of §5 may be exploited to

evaluate this formula efficiently and to high precision. For simplicity,

we will develop the above mentioned theory in the situation where

the base field is Q, although an analogous theory exists for totally

real base fields. We have implemented these methods in Magma to

compute Shimura-Heegner points on

(1) elliptic curves defined over Q with conductor 2p, where p is

an odd prime,

(2) elliptic curves defined over Q(
√

5) with degree one prime

conductor.

Sample computations are given in §9.

This work owes much to the ideas of Pollack and Stevens, and the

author wishes to thank them for providing him with a draft of [22].

This paper is part of the author’s PhD thesis [18], written at McGill

University under the supervision of Prof. Henri Darmon, whom the

author would like to gratefully acknowledge for his expert guidance,

advice, and encouragement.
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2. p-adic integration

Let p be a prime, let T be a complete subring of Cp and let X be a

compact, totally disconnected topological space.

DEFINITION 1. A T -valued distribution on X is a finitely additive

T -valued function on the compact-open subsets of X . If the values

of a distribution are p-adically bounded, then we call it a measure.

Let D(X,T ) denote the set of T -valued measures on X and let

D0(X,T ) denote the subspace of measures µ of total measure zero.

If µ is in D(X,T ) and f : X → T is locally constant, the symbol∫
X
f(x)dµ(x) can be defined in the obvious way. To ease notation,

we will sometimes write µ(f) instead. If µ is a measure, then we may

extend µ to a linear functional on the space C(X,T ) of continuous T -

valued functions on X . (For details, see [17, §1.2].)

Suppose now that the distribution µ on X takes actually values

in Z (implying, in particular, that µ is a measure). If f =
∑

i ai1Ei

is a locally constant function on X , we may define the multiplicative

integral of f against µ by the formula

×
∫
X

f(x)dµ(x) =
∏
i

a
µ(Ei)
i .

By the boundedness of µ, the multiplicative integral extends to a

group homomorphism from C(X,T ∗) into the group of units T ∗ of

T .

Let Hp = P1(Cp) − P1(Qp) be the p-adic upper half-plane, let µ be

a Cp-valued measure on P1(Qp) and choose points τ, τ ′ ∈ Hp. We

define a p-adic line integral by the formula

(5)
∫ τ ′

τ

ωµ =

∫
P1(Qp)

log

(
x− τ ′

x− τ

)
dµ(x),
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where “log” denote the branch of the p-adic logarithm satistying

log p = 0. If µ takes values in Z, we may define a multiplicative

analog of (5) above by posing

(6) ×
∫ τ ′

τ

ωµ = ×
∫

P1(Qp)

(
x− τ ′

x− τ

)
dµ(x).

Noting the relation ∫ τ ′

τ

ωµ = log×
∫ τ ′

τ

ωµ,

we see that (6) is actually a refinement of (5) as we avoid the choice

of a branch of the p-adic logarithm. For motivation behind the for-

malism of p-adic line integration, see [7, Ch. 6].

3. Rigid analytic distributions

In this section, we consider p-adic integration over Zp. The prob-

lem of computing an integral of the form

(7)
∫

Zp

v(x)dµ(x)

to an accuracy of p−M is of exponential complexity, where the size

of the problem is defined to be M (cf. [9]). Fortunately, many of the

functions v(x) which arise in practice are of a special type. Let

(8) Arig =
{
v(x) =

∑
n≥0

anx
n : an ∈ Qp, an → 0 as n→∞

}
.

Elements of Arig are rigid analytic functions on the closed unit disk

in Cp which are defined over Qp.

DEFINITION 2. Let Drig be the continuous dual of A. Elements of

Drig are called rigid analytic distributions.
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Let µ ∈ Drig. Then by the continuity of µ, the problem of comput-

ing (7) for v ∈ Arig is reduced to the calculation of the moments

µ(xn) =

∫
Zp

xndµ(x), n ≥ 0.

A polynomial time algorithm for calculating such moments was re-

cently discovered by R. Pollack and G. Stevens [22] in the situa-

tion where the measure µ is that attached to a cuspidal eigenform

form on Γ0(N) as in [20]. Although the main goal of their theory

was the study of normalized eigenforms g of weight k + 2 satis-

fying ordp ap(g) = k + 1 (a so-called critical slope eigenform) and

their p-adic L-functions, we are interested case ordp ap(g) = 0, the so-

called ordinary case. The main objects of study in [22] are modular

symbols. We will develop analogs of their results where the role of

the modular symbols are played by automorphic forms on definite

quaternion algebras (see §4).

Let D◦
rig be the subset of Drig consisting of those distributions with

moments in Zp. The space D◦
rig admits a useful filtration, first intro-

duced by Pollack and Stevens in [22]. Define

F 0Drig = D◦
rig,

FND◦
rig = {µ ∈ D◦

rig : µ(xj) ∈ pN−jZp, j = 0, . . . , N − 1}, N ≥ 1.

Now let

AND◦
rig = D◦

rig/F
ND◦

rig, N ≥ 1.

We callAND◦
rig theN -th approximation to the module D◦

rig, following

the terminology of [22].
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4. Automorphic forms on definite quaternion algebras

Let N , N+, and N− be as in § 1 and assume the existence of a

prime p dividing N−. Let B be the definite quaternion algebra ram-

ified precisely at the infinite place of Q together with the primes

dividing N−/p, and let R be an Eichler Z-order in B of level pN+.

Fix an identification ιp of Bp := B ⊗ Qp with M2(Qp) under which

Rp := R⊗ Zp corresponds to

(9) M0(pZp) =


a b

c d

 ∈M2(Zp) : c ≡ 0 (mod p)

 .

Let Q̂ be the finite adèles of Q and let Ẑ =
∏

` Z` be the profinite

completion of Z. Let B̂ = B⊗Q Q̂ and R̂ = R⊗Z Ẑ be the adelizations

of B and R, respectively.

Define the semigroup

Σ0(p) =


a b

c d

 ∈M2(Zp) : p | c, d ∈ Z∗
p, and ad− bc 6= 0

 .

Let A be a left Σ0(p)-module.

DEFINITION 3. An automorphic form on B of level R taking val-

ues in A is a map f : B∗\B̂∗ → A such that upf(zbu) = f(b) for all

u ∈ R̂∗ and z ∈ Q̂∗, where up denotes the p-component of u.

We denote the set of such automorphic forms by S(B,R;A).

The double coset space B∗\B̂∗/R̂∗ is in bijection with the set of

right ideal classes of the order R, which is finite of cardinality h, say.

Writing

(10) B̂∗ =
h∐
k=1

B∗biR̂
∗,
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we see that an automorphic form f ∈ S(B,R;A) is completely deter-

mined by the finite sequence (f(b1), . . . , f(bh)).

View Bp as a subring of B̂ via the natural inclusion jp. By the

strong approximation theorem, B̂∗ = B∗B∗
pR̂

∗, so jp induces a bijection

R[1/p]∗\Bp/R
∗
p → B∗\B̂∗/R̂∗.

Letting S(Bp, Rp;A) be the collection of functions ϕ : R[1/p]∗\Bp → A

such that uϕ(zbu) = f(b) for all u ∈ R∗
p and z ∈ Q∗

p, it is easy to see

that jp induces an isomorphism of S(B,R;A) with S(Bp, Rp;A). Since

it shall be easier for us to work locally at p rather that adelically, we

will work mostly with S(Bp, Rp;A).

The group S(Bp, Rp;A) is endowed with the action of a Hecke

operator Up given by

(11) (Upϕ)(b) =

p−1∑
a=0

(

p a

0 1

ϕ)(b) =

p−1∑
a=0

ϕ(b

p a

0 1

).

When the action of Σ0(p) is trivial, an Atkin-Lehner involution Wp

also acts on S(Bp, Rp;A) by the rule

Wpϕ(b) =

p−1∑
a=0

ϕ(b

0 1

p 0

).

Other Hecke operators T` for ` - N may also be defined using stan-

dard adelic formluas (see [19], for instance).

Automorphic forms whose coefficient module is equipped with

the trivial Σ0(p)-action “are” measures on P1(Qp): Let B be the set

of balls in P1(Qp), on which GL2(Qp) acts transitively from the left

inducing an identification of GL2(Qp)/Γ0(pZp)Q∗
p with B. Therefore,

a form ϕ ∈ S(Bp, Rp; Cp) may be viewed as a R[1/p]∗-invariant func-

tion on the balls in P1(Qp). With this interpretation, the value of
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Upϕ on a ball b is the sum of the values ϕ(b(i)) where the balls b(i),

i = 1, . . . , p, form the standard subdivision of the ball b. The value

of Wpϕ on b is simply the value of ϕ on its complement P1(Qp) − b.

Suppose that Upϕ = −Wpϕ = ap = ±1. Define a function µϕ on B by

µϕ(γZp) = signpγ · ϕ(γ), γ ∈ B∗
p

where

(12) signpγ = aordp det γ
p .

Then µϕ is a G-invariant measure on P1(Qp) of total measure zero,

where G := ker(signp : R[1/p]∗ → {±1}). Note that if ap = 1, then

µϕ = ϕ and G = R[1/p]∗.

The left action of Σ0(p) on P1(Qp) induces a right action of Σ0(p)

on Arig. The space Drig inherits a left action of Σ0(p) by duality. The

spaces D◦
rig and FND◦

rig, N ≥ 1 are all easily seen to be Σ0(p)-stable.

Therefore, the approximation modulesANDrig inherit a Σ0(p)-action.

Consequently, these modules are all valid coefficient groups for p-

adic automorphic forms. We shall refer to elements of S(Bp, Rp;Drig)

as rigid analytic automorphic forms.

5. Lifting Up-eigenforms

5.1. Existence and uniqueness of lifts. Define the specialization

map

ρ : S(Bp, Rp;Drig)→ S(Bp, Rp; Qp)

by the rule ρ(Φ)(b) = Φ(b)(1Zp). It is easily verified that ρ is Up-

equivariant. Let ϕ ∈ S(Bp, Rp; Qp) be a Up-eigenform with eigen-

value ap = ±1 and let µϕ be the associated measure on P1(Qp) as

constructed in §4. The following proposition should be viewed as an
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analog of the containment of classical modular forms in the space of

p-adic modular forms.

PROPOSITION 4. The form ϕ lifts canonically with respect to ρ to a

Up-eigenform Φ satisfying Φ(1) = µϕ.

PROOF. Define Ψ : Bp → D(P1(Qp),Qp) by Ψ(b) = (signpb)b
−1ϕ

where signpb is as defined in (12), and let Φ : B∗
p → Drig be given

by Φ(b) = Ψ(b)|Zp . The conclusions of the proposition are now easily

verified. �

The next proposition forms the basis of our algorithm.

PROPOSITION 5. Let Ψ belong to ker ρ ∩ S(Bp, Rp;F
ND◦

rig). Then

UpΨ ∈ ker ρ ∩ S(Bp, Rp;F
N+1D◦

rig).

PROOF. By the Up-equivariance of ρ, its kernel is certainly Up-

stable. For 1 ≤ n ≤ N , we have

UpΨ(b)(xn) =

p−1∑
a=0

p a

0 1

Ψ

b
p a

0 1

 (xn)

=

p−1∑
a=0

Ψ

b
p a

0 1

 ((px+ a)n)

=
n∑
k=0

p−1∑
a=0

(
n

k

)
pkan−kΨ

b
p a

0 1

 (xk).

Note that the k = 0 term in the above sum vanishes as Ψ ∈ ker ρ. If

1 ≤ k ≤ n and 0 ≤ a ≤ p− 1, then(
n

k

)
pkan−kΨ

b
p a

0 1

 (xk) ∈ pkpN−kZp = pNZp ⊂ pN+1−nZp.

The result follows. �
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Let Φ ∈ S(Bp, Rp;Drig) be the lift of ϕ constructed in Proposi-

tion 4. Since the double-coset space R[1/p]∗\Bp/Rp is finite, we may

assume without loss of generality that all moments involved are ac-

tually in Zp (just multiply ϕ, Φ, and Φ0 by an suitably chosen scalar

c ∈ Qp). Let ΦN be the natural image of Φ in S(Bp, Rp;A
ND◦

rig).

COROLLARY 6.

(1) (a) ΦN is the unique Up-eigenform in S(Bp, Rp;A
ND◦

rig) lifting

ϕ.

(b) If ΦN
0 is any element of S(Bp, Rp;A

ND◦
rig) lifting ϕ, then

(apUp)
NΦN

0 = Φ.

(2) (a) Φ is the unique Up-eigenform in S(Bp, Rp;Drig) satisfying

ρ(Φ) = ϕ.

(b) If Φ0 is any element of S(Bp, Rp;Drig) satisfying ρ(Φ0) = ϕ,

then the sequence {(apUp)nΦ0} converges to Φ.

PROOF. Statement (2) follows from statement (1) and the relation

S(Bp, Rp;Drig) =
(

lim←−
N

S(Bp, Rp;A
ND◦

rig)
)
⊗Zp Qp.

By the above proposition, we have

(apUp)
N(Φ− Φ0) ∈ S(Bp, Rp;F

ND◦
rig).

Statement (1) now follows easily. �

The unicity result 2(a) of the corollary may viewed as an analog of

the assertion that ordinary p-adic modular eigenforms are classical.

By Corollary 6, in order to approximate the moments of Φ(b)

for b ∈ B∗
p , it suffices to produce an initial approximation Φ0 to

Φ and then to apply the Up-operator repeatedly until the desired
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accuracy is achieved. Such an initial approximation may be con-

structed explicitly as follows: Using the decomposition (10), let Sk =

R∗
p ∩ b−1

k R[1/p]∗bk, which is finite as it is contained in b−1
k R∗bk (the

group of units of a Z-order in a definite quaternion algebra over Q is

finite). For z ∈ Zp, let δz ∈ Drig is the Dirac distribution centered at

z, i.e. δz(f) = f(z).

PROPOSITION 7. There is a unique element Φ0 of S(Bp, Rp;Drig) sat-

isfying

Φ0(bk) =
ϕ(bk)

#Sk

∑
v∈Sk

v−1δ0, 1 ≤ k ≤ h.(13)

Its moments are given by

Φ(bk)(x
n) =

ϕ(bk)

#Sk

∑
v∈Sk

znv , where zv = v · 0.

(By v · 0 we mean the image of v in GL2(Qp) acting as a fractional

linear transformation on 0 ∈ P1(Qp).)

PROOF. To see that the formula (13) gives a well defined element

of S(Bp, Rp;Drig), notice that if γbku = bk, then v varies over Sk if and

only if vu does. The uniqueness is clear. �

5.2. Computing the lifts in practice. We now turn to the prob-

lem of computing ΦN in practice. Representing an element of the

space S(Bp, Rp;A
ND◦

rig) is straight-forward. First observe that the

correspondence

µ 7→ (µ(x0)
(
mod pN), µ(x1) (mod pN−1), . . . , µ(xN−1) (mod p)

)
for µ ∈ D◦

rig descends to an isomorphism

ANDrig
∼= Z/pNZ× Z/pN−1Z× · · · × Z/pZ.
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Therefore, an element of AND◦
rig may be stored simply as an N -tuple

of integers.

The Σ0(p)-action on AND◦
rig may be computed as follows: Let µ ∈

Drig and let ν be any lift of µ to D◦
rig. For any u = ( a bc d ) ∈ Σ0 and n ≥

0, the rational function (ax+b
cx+d

)n may be expanded in a Taylor series∑
αmx

m, and the moments of uν may be computed by “integrating

term by term”:

(uν)(xn) = ν(
(ax+ b

cx+ d

)n
) =

∑
m≥0

αmν(x
m).

Moreover, by the stability of FND◦
rig under Σ0(p), the image of uν is

uµ. Therefore, the N -tuple representing uµ may be computed from

that representing µ.

Recall the double-coset decomposition (10). Then since an auto-

morphic form Ψ ∈ S(Bp, Rp;A
ND◦

rig) is completely determined by

Ψ(b1), . . . ,Ψ(bh), it may be stored simply as a sequence of h N -tuples

of integers. Assuming knowledge of the values of ϕ, the moments of

the initial lift ΦN
0 of ϕ constructed explicitly in Proposition 7 may be

computed and thus ΦN
0 may be stored as a sequence of N -tuples as

described above.

It remains to describe how to obtain, for a form Ψ as above, the

data

((UpΨ)(bk)(x
0)
(
mod pN), . . . , (UpΨ)(bk)(x

N−1) (mod p)
)
, 1 ≤ k ≤ h

from the corresponding data for Ψ. For 1 ≤ k ≤ h and 0 ≤ a ≤ p− 1,

find elements γ(k, a) ∈ R[1/p]∗, u(k, a) ∈ R∗
p, and j(k, a) ∈ {0, . . . , p−

1} such that

(14) bk

p a

0 1

 = γ(k, a)bj(k,a)u(k, a),
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and let ξ(k, a) = ( p a0 1 )u(k, a)−1. Then UpΨ is given by the formula

(15) (UpΨ)(bk) =

p−1∑
a=0

ξ(k, a)Ψ(bj(k,a)).

The measures Ψ(bj(k,a)) are assumed to be known and the action of

the ξ(k, a) on them may be computed as described above. Thus, an

algorithm for computing ΦN from ϕ may proceed as follows:

(1) Compute the elements γ(k, a), j(k, a), and u(k, a) as in (14).

(2) Compute an initial lift ΦN
0 of ϕ to S(Bp, Rp;A

ND◦
rig) as in

Proposition 7.

(3) Compute (apUp)
NΦN

0 . By Corollary 6, the result is ΦN .

6. p-adic uniformization

Let Γ
(p)

N+,N− denote the image under ιp of the elements of R[1/p] of

reduced norm 1. The group Γ
(p)

N+,N− acts discontinuously on Hp and

the quotient Γ
(p)

N+,N−\Hp, has the structure of a rigid analytic curve

X
(p)

N+,N− . The following result, due to Cerednik and Drinfeld, con-

nects this rigid variety with the Shimura curves introduced in § 1.

THEOREM 8 ([4, 14]). There is a canonical rigid analytic isomorphism

CD : X
(p)

N+,N−(Cp)→ XN+,N−(Cp).

Let Ω denote the global sections of the sheaf of rigid analytic dif-

ferential 1-forms on X(p)

N+,N− .

PROPOSITION 9. The spaces Ω and S(Bp, Rp; Cp) are naturally iso-

morphic as Hecke-modules.
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(A p-adic residue map and Teitelbaum’s p-adic Poisson integral give

the mutually inverse isomorphisms proving the theorem. For de-

tails, see [7, Ch. 5].) This proposition, together with the Jacquet-

Langlands correspondence as invoked in §1, give the following corol-

lary:

COROLLARY 10. Choosing an isomorphism of C with Cp, there is an

isomorphism of Hecke-modules

S2(Γ0(N))new-N− ∼= S(Bp, Rp; Cp).

REMARK 11. This result was originally proved by Eichler using

his trace formula.

LetE/Q be an elliptic curve of conductorN and fE the associated

newform. Then by Corollary 10, there is a corresponding form ϕE ∈

S(Bp, Rp; Cp) with the same Hecke-eigenvalues as fE . In fact, we

may (and do) assume that ϕ takes values in Z. Let µE = µϕE
be the

associated measure on P1(Qp) as constructed in §4.

Consider the map Ψ : Div0 Hp → Cp given by

Ψ(τ ′ − τ) = ×
∫ τ ′

τ

ωµE
.

Let Tate : C∗
p → E(Cp) be the Tate parametrization of E and recall

the map ΦN+,N− of (3). Assume that E is the strong Weil curve for (3)

at the cost of replacing it by an isogenous curve.

PROPOSITION 12. The following diagram is commutative:

Div0 Hp
Ψ−−−→ C∗

p

CD

y yTate

JN+,N−(Cp) −−−−−→
ΦN+,N−

E(Cp)

For a discussion of this result, see [1].
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7. A p-adic integral formula for Heegner points

Let K be an imaginary quadratic field satisfying the Shimura-

Heegner hypothesis and o be an order in K of conductor prime to

N . Let us call an embedding ψ of o[1/p] into R[1/p] optimal if it does

not extend to an embedding of a larger Z[1/p]-order of K. Denote

by Ep(o) the set of all such. The Shimura-Heegner hypothesis guar-

antees that Ep(o) is nonempty. For each ψ ∈ Ep(o), the order o[1/p]

acts on Hp via the composite ιp ◦ ψ with a unique fixed point τψ ∈ Hp

satisfying

α

τψ
1

 = ψ(α)

τψ
1


for all α ∈ o[1/p]. Let Hp(o) be the set of all such τψ, and let CMp(o)

be its image in X
(p)

N+,N− . The set CMp(o) is endowed with a natural

action of Pic o = Pic o[1/p] (see [19]). The sets CM(o) and CMp(o) are

related through Theorem 8:

THEOREM 13 ([1, Proposition 4.15]). The map CD restricts to a Pic o-

equivariant bijection from CMp(o) onto CM(o).

Combining this theorem with Proposition 12, we see that module

of Shimura-Heegner points on E defined over the ring class field

attached to o is generated by points of the form Tate(J(τ, τ ′)), τ, τ ′ ∈

Hp(o), where

(16) J(τ, τ ′) = ×
∫

P1(Qp)

(
x− τ ′

x− τ

)
dµE(x)

8. Computing the integrals

Let ΦE be the eigenlift to S(Bp, Rp;Drig) of the Cp-valued auto-

morphic form ϕE attached to E, as in §6. The computation of the
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integral (16) to precision p−M may be reduced to that of a certain

approximation ΦM ′′
E ∈ S(Bp, Rp;A

ND◦
rig) to ΦE .

It is easy to see that the points of Hp(o) actually lie in the subset

P1(Qp2) − P1(Qp) of Hp, where Qp2 is the quadratic unramified ex-

tension of Qp. Let H0
p be the set of elements τ in Hp whose image

under the natural reduction map P1(Cp) → P1(F̄p) does not belong

to P1(Fp). We assume, without loss of generality, that:

(1) τ and τ ′ reduce to elements of H0
p.

(2) there exists an element i ∈ R[1/p] such that i2 = −1.

By assumption 2., we may choose the isomorphism ιp in such a way

that ιp(i) = ( 0 −1
1 0 ). (Instead of assuming the existence of such an i,

one could work with the two measures µE and ( 0 −1
1 0 )µE , and thus

no generality is lost.)

By the first assumption, J(τ, τ ′) lies in Z∗
p2 and its Teichmüller

representative is the same as that of

p−1∏
a=0

(a− τ ′
a− τ

)µE(a+pZp)

,

an easily computed quantity (actually, we need only compute it mod-

ulo p). Therefore, it suffices to compute log J(τ, τ ′).

Write

log J(τ, τ ′) =
∑

a∈P1(Fp)

log Ja(τ, τ
′), where

Ja(τ, τ
′) = ×

∫
ba

x− τ
x− τ ′

dµE(x),
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and ba is the standard residue disk around a. Let

J∞(τ) = ×
∫

b0

(1 + τx)dµE(x),

Ja(τ) = ×
∫

ba

(x− τ)dµE(x), 0 ≤ a ≤ p− 1.

Then for each a ∈ P1(Fp), we have

Ja(τ, τ
′) = Ja(τ

′)/J(τ).

(To prove the above for a =∞, we use assumption 2.)

Straightforward manipulations (see [10, §1.3]) show that the ex-

pansions

log J∞(τ) =
∑
n≥1

(−1)n

n
τnω(0, n),(17)

log Ja(τ) =
∑
n≥1

1

n(a− τ)n
ω(a, n), 0 ≤ a ≤ p− 1(18)

are valid, where (following the notation of [10]),

ω(a, n) =

∫
ba

(x− a)ndµE(x), 0 ≤ a ≤ p− 1.

Let

(19) M ′ = max{n : ordp(p
n/n) < M}, M ′′ = M +

⌊ logM ′

log p

⌋
.

An examination of formulas (17) and (18) shows that they may be

computed to a precision of p−M given the data

(20) ω(a, n) (mod pM
′′
), 0 ≤ a ≤ p− 1, 0 ≤ n ≤M ′.

PROPOSITION 14. Let Ψ ∈ S(Bp, Rp;Drig) be a Up-eigenform with

eigenvalue ap = ±1. Then we have the formula∫
a+pZp

(x− a)ndΨ(b)(x) = app
n

∫
Zp

xndΨ(b

p a

0 1

)(x).
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holds for 1 ≤ a ≤ p−1. Consequently, the data (20) may be extracted from

ΦM ′′
E .

PROOF. ∫
a+pZp

(x− a)ndΨ(b)(x) =

= (apUpΨ)(b)((x− a)n1a+pZp(x))

= ap

p−1∑
d=0

Ψ

b
p d

0 1

 ((d+ px− a)n1a+pZp(d+ px)

= app
nΨ

b
p a

0 1

 (xn)

= app
n

∫
Zp

xndΨ

b
p a

0 1

 ,

as desired.

To prove the second statement, take Ψ = ΦE and b = 1. By the

definition of ΦM ′′
E ,

ΦE

p a

0 1

 (xn) (mod pM
′′−n) = ΦM ′′

E

p a

0 1

 (xn)

for 0 ≤ a ≤ p − 1 and 0 ≤ n ≤ M ′′. Now multiply the above

by pn and apply the first statement of the proposition, noting that

M ′′ ≥M ′. �

9. Examples

EXAMPLE 15. Consider the elliptic curve

E : y2 + xy + y = x3 + x2 − 70x− 279 (38B2),

and setN+ = 2,N− = p = 19. ThenB is algebra of rational Hamilton

quaternions. The field K = Q(ξ), where ξ = (1 +
√
−195)/2, satisfies
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the Shimura-Heegner hypothesis. Let o = Z[ξ] be its maximal order.

The class number of K is 4 and Pic o ∼= (Z/2Z)2. In fact, the Hilbert

class field H of K is K(
√
−3,
√

5). Therefore, Pic o has three charac-

ters χ1, χ2, χ3 of exact order 2, corresponding to the three quadratic

subfields K(
√
−15), K(

√
5), and K(

√
65) of H . Let τ ∈ Hp(o) be a

base point and define divisors

di =
∑

α∈Pic o

χi(α)τα ∈ Div0 Hp(o), i = 1, 2, 3.

Define a divisor d0 (corresponding to the trivial character) by

d0 =
∑

α∈Pic o

((3 + 1− T3)τ)
α

where T3 is the standard Hecke operator. Let

Pi = Tate
(
×
∫

di

ωµE

)
, , i = 0, 1, 2, 3.

be the corresponding Heegner points. We computed the points Pi as

described above and these points were recognized as

P0 = (−4610/39, 1/1521(−277799ξ + 228034)),

P1 = (25/12,−94/9u+ 265/72),

P2 = (10,−11v),

P3 = (1928695/2548, 1/463736(−2397574904w + 1023044339)),

where u =
1 +
√
−15

2
v =

1 +
√

5

2
, w =

1 +
√

65

2
.

EXAMPLE 16. Let ω = (1 +
√

5)/2 and let F = Q(ω). Consider the

elliptic curve

E : y2 + xy + ωy = x3 − (ω + 1)x2 − (30ω + 45)x− (11ω + 117)
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defined over F . The conductor of E is 3 − 5ω, a degree one prime

of F dividing 31. Here, N = N− = p, N+ = 1, and B is the base

change to F of the Q-algebra of Hamilton’s quaternions. Let ξ =
√

2ω − 15. Then K = F (ξ) is a CM field satisfying the Shimura-

Heegner hypothesis in this context. The class group of K is cyclic

of order 8 and thus has a unique character χ of exact order 2 whose

kernel has fixed field K(
√

2− 13ω). Let τ ∈ Hp(o) be a base point,

define a divisor dχ attached to χ as in Example 15, and let Pχ be the

corresponding Heegner point. Then our computations, performed

to an accuracy of 31−60, yielded a point recognizable as the point

(x, y) ∈ E(F (
√

2− 13ω)), where

x = 1/501689727224078580× (−20489329712955302181ω+

1590697243182535465)

y = 1/794580338951539798133856600×

(−24307562136394751979713438023ω−

52244062542753980406680036861)
√
−13ω + 2+

1/1003379454448157160× (19987639985731223601ω

− 1590697243182535465).

Appendix A. Remarks on the computations

A.1. Two special cases. In this section we discuss the implemen-

tation of the above methods on a computer. We have written code to

compute p-adic periods of and Heegner points on elliptic curves E

in the following two cases:

(1) E is defined over Q and has conductor N = 2p, where p is

an odd prime.
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(2) E is an elliptic curve over F = Q(
√

5) with prime conductor.

As we shall see below, the consideration of these particular cases al-

lows for certain simplifications which prove extremely convenient

for the implementation. In addition, we feel these cases serve to

illustrate effectively the utility and scope of the theory presented

above. In what follows, we draw freely from the notation of pre-

vious sections

In Case 1, we consider the factorization N− = 2, N+ = p. Thus,

the quaternion algebra B which comes into play is the algebra of

Hamilton’s quaternions. We insist our Eichler Z-order R ⊂ B of

level p to be contained in the maximal order

S =
〈
1, i, j,

1 + i+ j + k

2

〉
,

the so-called “Hurwitz integral quaternions”. Further, we choose

our isomorphism ιp : Bp → M2(Qp) in such a way that ιp(Sp) =

M2(Zp) and ιp(Rp) = M0(pZp).

In Case 2, let p denote the conductor of E. For simplicity, assume

that p has degree one, so that the completion Fp is just Qp, where p

is the absolute norm of p. Here, we choose B to be the quaternion

F -algebra ramified at the two infinite places of F . Since 2 is inert

if F , it follows that B is simply the base change of the Q-algebra of

Hamilton’s quaternions to F . We consider the maximal oF -order S

in B with basis

e1 = (1− ωi+ ω̄j)/2 e2 = (−ωi+ j + ω̄k)/2

e1 = (ω̄i− ωj + k)/2 e2 = (i+ ω̄j − ωk)/2,
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where ω = (1 +
√

5)/2, and choose R to be an Eichler oF -order

contained in S of level p. As above, we choose our isomorphism

ιp : Bp →M2(Qp) in so that ιp(Sp) = M2(Zp) and ιp(Rp) = M0(pZp).

It will be extremely useful for us that in both cases considered

above, the maximal quaternion order S has class number one, i.e.

there is a single equivalence class of left or right S-ideals in B.

Since, in both cases, much of the computation takes place in Qp

(thanks to our assumption that p is of degree one), the details of the

implementation are quite similar for the two cases. Therefore, in

what follows, we will describe the highlights of the implementation

in Case 1, remarking appropriately when features of the implemen-

tation of Case 2 differ.

A.2. Enumeration of quaternions of a given norm. The compu-

tation of the measure attached to an elliptic curve, the Hecke-action,

and the action of Pic o (Shimura reciprocity) all reduce to the prob-

lem of enumerating elements of a given norm in the maximal order

S.

We first consider Case 1. The problem of enumerating elements

of S of norm n is just the problem of representing an integer as a

sum of four squares, or equivalently, of finding vectors of length n in

the standard 4-dimensional lattice. Efficient methods for enumerat-

ing such vectors, based of the LLL-algorithm, are included with the

standard Magma distribution.

Case 2 is more complicated. If λ ∈ S, then we may write

λ = (x1 + y1ω)e1 + (x2 + y2ω)e2 + (x3 + y3ω)e3 + (x4 + y4ω)e4,
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where xi, yi ∈ Z. One computes that

Normλ =
4∑
i=1

(x2
i + y2

i ) + ω

4∑
i=1

(y2
i + 2xiyi) =: f(x, y) + ωg(x, y).

Note that the quadratic form f(x, y) is positive definite. To solve

Normα = u+ vω, we continue generating new solutions of f(x, y) =

u using the above mentioned techniques (but in an 8-dimensional

lattice), each time testing whether g(x, y) = v holds. This method is

likely far from optimal, but serves well enough for our purposes.

A.2.1. Computing the Hecke-action. Because of its central role in

our algorithm, we discuss in detail the computation of the action of

the Up-operator on automorphich forms on B. In §5.2, we showed

that in order to compute the Up-action, it suffices to determine the

data (14). As the double-coset space S[1/p]∗\B∗
p/S

∗
p parametrizes left

ideal classes of S, it follows that

B∗
p = S[1/p]∗S∗p .

Therefore, choosing bk ∈ B∗
p such that

ιp(bk) =

k −1

1 0

 , 0 ≤ k ≤ p, ιp(bp) =

1 0

0 1

 ,

we have

Bp = S[1/p]∗S∗p =

p∐
i=0

R[1/p]∗bkR
∗
p.

Let

$a =

p a

0 1

 , 0 ≤ k ≤ p− 1, $p

1 0

0 p

 .

For k and a between 0 and p, let j(k, a) be such that

R[1/p]∗bj(k,a)R
∗
p = R[1/p]∗bk$aRp.
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Then there exist γ(k, a) ∈ R[1/p]∗ and u(k, a) ∈ R∗
p such that bk$a =

γ(k, a)bj(k,a)u(k, a). Solving for γ(k, a), we have

γ(k, a) = bk$au(k, a)
−1b−1

j(k,a),

implying that γ(a, k) ∈ R[1/p] ∩ Rp = R and that det γ(a, k) = ±p.

Since B is definite, there are only finitely many elements in R of

norm p. Therefore, by enumerating these, the elements γ(k, a) ∈ R

and the indices j(k, a) may be determined in practice. This is how

we computed the data (14) in our Magma implementation.

A.2.2. Computing the action of Pic o. Let K = Q(ξ) be an imagi-

nary quadratic field such that the pair (E,K) satisfies the Shimura-

Heegner hypothesis with respect to the factorization N− = 2, N+ =

p. Let o be the maximal order of K. Let f be an optimal embedding

of o[1/p] into R[1/p] = S[1/p]. Note that f is completely determined

by the image of ξ, and thus is easily represented on a computer.

Let α1, . . . , αh be a list of generators of Pic o. Find ideals a1, . . . , ah

of norms n1, . . . , nh (the smaller the better) generating the respective

ideal classes. Since S has class number one, the ideals Sf(αi) are all

principal. Therefore, there exist quaternions λ1, . . . , λh ∈ S of norms

n1 . . . , nh such that

Sf(ai) = Sλi, 1 ≤ i ≤ h.

Such elements may be found using the above enumeration tech-

niques. The optimal embedding αi ∗ f is given by λifλ−1
i (cf. [19]).
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Appendix B. p-adic periods of Shimura curves

Let µ be the Z-valued measure on P1(Qp) attached toE. The mea-

sure µ is invariant under the group

Γ =

{ιp(λ) : λ ∈ R[1/p]∗, ordp Normλ is even}. ap = −1,

ιp(R[1/p]), ap = 1.

Let τ ∈ Hp. By the theory outlined in §6, the group of p-adic

periods

Λµ =
{
×
∫ γτ

τ

ωµ : γ ∈ Γ
}
⊂ C∗

p

has the form qZ × T , where T is a finite (cyclic) subgroup of Cp and

|q| < 1.

Since S has class number one, it is easy to find generators for the

group Γ = Γ
(p)

N+,N−/p:

Γ =

〈p, {ip($1/$2) : $i ∈ S, Norm$i = p}〉, ap = −1

〈{$ : $ ∈ S, Norm$ = p}〉, ap = 1.

Therefore,

Λµ =


〈
×
∫ $1τ

τ

ωµ

/
×
∫ $2τ

τ

ωµ : $i ∈ S, Norm$i = p
〉
, ap = −1,〈

×
∫ $τ

τ

ωµ : $ ∈ S, Norm$ = p
〉

ap = 1.

In either case, it is clear that an enumeration of the elements in R of

norm p should facilitate the calculation of Λµ via p-adic integration.

For each P ∈ P1(Qp2) and n ≥ 0, let rednP be the natural image

of P in P1(Zp2/p
n+1Zp2). Inductively define the sets

H0
p = {P ∈ P1(Qp2) : red0P /∈ P1(Zp/pZp)},

Hn
p = {P ∈ P1(Qp2) : rednP /∈ P1(Zp/p

n+1Zp)} − Hn−1
p , n ≥ 1.

It is clear that Hp =
⋃
n≥0 Hn

p .
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LEMMA 17. Let τ ∈ H0
p and let γ ∈M2(Qp) such that ordp det γ = 1.

Then γτ ∈ H1
p.

PROOF. Write Qp2 = Qp(ξ) where ξ2 ∈ Qp, write τ = u + vξ, and

let γ = ( a bc d ). Then

(21) γτ =
acN(τ) + (ad+ bc)u

N(cτ + d)
+

(ad− bc)v
N(cτ + d)

ξ,

whereN denotes the norm from Qp2 to Qp. We now note that cτ+d is

divisible by p if and only c and d both are. In this case ordpN(cτ + d)

is exactly 2 and the valuation of the coefficient of ξ in (21) is −1. If

neither c nor d is divisible by p, then the valuation of this coefficient

is +1. The lemma follows easily from these observations. �

By the above lemma, the theory of §8 does not suffice for the com-

putation of p-adic periods, since assumption (1) of that section can

no longer be valid (although we continue to assume, without loss of

generality, that assumption (2) is). This can be remedied, however,

by considering moments of measures over certain balls of radius p−2.

For 0 ≤ a, b ≤ p− 1, let

ba,b = {x ∈ Qp : |x− (a+ bp)| ≤ p−2}, b∞,b =

0 1

1 0

b0,b

be the standard partition of P1(Qp) into p2+p balls of radius p−2. Sup-

pose that τ is in H0
p and that τ ′ is in H1

p. We generalize the analysis

of §8, drawing freely from the notation of that section. The evalua-

tion of the integrals Ja(τ) remains unchanged. In evaluating J∞(τ ′),

we have two cases to consider:

Case 1: |τ ′| ≤ 1. In this case, J∞(τ ′) ∈ 1 + p2Zp. Therefore, J∞(τ ′) =

exp log J(τ ′). Expanding in a Taylor series, convergent as x ∈ pZp
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and τ ′ ∈ Zp2 , we see that

(22) log J∞(τ ′) =
∑
n≥1

(−1)n

n
τ ′n
∫

b0

xndµ(x).

Case 2: |τ ′| > 1. In this case, we have |τ ′| = p and

J∞(τ ′) = ω
∏

b∈P1(Fp)

J∞,b(τ
′)

where

ω =
∏

b∈P1(Fp)

(1 + bpτ ′)µ(b0,b) and

J∞,b(τ
′) = ×

∫
b0,b

(
1 +

(x− bp)τ ′

1 + bpτ ′

)
dµ(x).

Notice that 1 + bpτ ′ ∈ Z∗
p2 for all b and that (x − bp)τ ′ ∈ pZp2 for

all x ∈ b0,b and all b. Therefore, we have J∞,b(τ
′) = exp log J∞(τ ′).

Expanding log J∞(τ ′) in a Taylor series, we have

(23) log J∞(τ ′) =
∑
n≥1

(−1)n

n

( τ ′

1 + bpτ ′

)n ∫
b0,b

(x− bp)ndµ(x).

We now turn to the evaluation of the terms Ja(τ ′) for 0 ≤ a ≤ p − 1.

Again, we consider two cases:

Case 1: |τ ′ − a| ≥ 1. In this case,

Ja(τ
′) = (a− τ ′)µ(ba) ×

∫
ba

(
1− x− a

τ ′ − a

)
dµ(x).

Observing that |τ ′ − a| ≥ 1, it follows that the above multiplicative

integral is simply the p-adic exponential of the logarithmic series

(24)
∑
n≥1

1

n(a− τ ′)n

∫
ba

(x− a)ndµ(x).
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Case 2: |τ ′ − a| < 1. In this case, τ ′ ∈ H1
p and |τ ′ − a| = p−1. Write

Ja(τ
′) = ω ·

∏
b∈P1(Fp)

Ja,b(τ
′),

where

ω =
∏

b∈P1(Fp)

((a+ bp)− τ ′)µ(ba,b) and

Ja,b(τ
′) = ×

∫
ba,b

(
1− x− (a+ bp)

τ ′ − (a+ bp)

)
dµ(x).

Noticing that the integrand in the expression for Ja,b(τ ′) is in 1 +

p2Zp2 , for all x ∈ ba,b, if follows as above that Ja,b(τ ′) is the p-adic

exponential of the series

(25) log Ja,b(τ) =
∑
n≥1

1

n(τ ′ − (a+ bp))n

∫
ba,b

(x− (a+ bp))ndµ(x).

We introduce the notation

(26) ω(c, p−ν ;n) =

∫
c+pνZp

(x− c)ndµ(x)

for the various moments of the measure µ, generalizing that intro-

duced in §8.

To compute (22) and (24) to an accuracy of p−M , it suffices to com-

pute

ω(a, p−1;n) (mod pM
′′
), 0 ≤ a ≤ p− 1, 0 ≤ n ≤M ′,

where M ′ and M ′′ are as in (19).

Turning to (23), we see that

log J∞(τ ′) ≡
M ′∑
n=1

(−1)n

n

( τ ′

1 + bpτ ′

)n
momµ(bp, p

−2;n) (mod pM),
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where M ′ is as above. This time though, to evaluate the n-th sum-

mand to an accuracy of p−M , we must compute

ω(bp, p−2;n) (mod pM+n+ordp n).

Therefore, it certainly suffices to compute each of the above moments

to an accuracy of p−M ′′′ where

M ′′′ = M +M ′ +

⌊
logM ′

log p

⌋
= M +M ′′.

Observe M ′′ ≈ M and M ′′′ ≈ 2M ′′ when M is large. Therefore, it is

enough (and convenient) to evaluate the data

ω(bp, p−ν ;n) (mod p2M ′′
)

n = 0, . . . , 2M ′′, b = 0, . . . , pν − 1.

The analysis of (25) is analogous.

EXAMPLE 18. There are two isogeny classes of elliptic curves over

Q of conductor 2 · 19 = 38, namely 38A and 38B. Let µA and µB be

the corresponding Z-valued measures on P1(Qp). Using the p-adic

integration techniques outlined above, we compute that the lattices

ΛA = ΛµA
and ΛB = ΛµB

are generated by periods qA and qB, respec-

tively, where

qA ≡ 19 · 264507652379 (mod 1910),

qB ≡ 195 · 1545123 (mod 1910).

Modulo 1910, the periods qA and qB are congruent to the Tate periods

of the elliptic curves

EA : y2 + xy + y = x3 − 86x− 2456 (38A3)

EB : y2 + xy + y = x3 + x2 − 70x− 279 (38B2).
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This suggests the rigid analytic isomorphisms

EA(Cp) ∼= C∗
p/ΛA, EB(Cp) ∼= C∗

p/ΛB,

and that we should attempt to locate Heegner points on the repre-

sentatives EA and EB of the two isogeny classes of elliptic curves

over Q of conductor 38. It is interesting to note that these are not

strong Weil curves for X0(38).

EXAMPLE 19. Let F = Q(ω), where ω = (1 +
√

5)/2. According

to the tables compiled by Dembélé [12], there is a unique Hilbert

modular newform f on Γ0(3−5ω), where 3−5ω is a degree one prime

lying over 31. It has the property that a3−5ω = −1. The approximate

period computed from the measure attached to the system of Hecke-

eigenvalues of f is given by

q = 318 · 747626750421999505 (mod 3120)

this agrees with the Tate period of the elliptic curve

E3+5ω : y2 + xy + ωy = x3 − (ω + 1)x2 − (30ω + 45)x− (11ω + 117)

of Example 16. In the next section, we present a sampling of the

Heegner points on this curve.

Appendix C. Tables

In this section, we further demonstrate the utility of our algo-

rithm by presenting more examples of Shimura-Heegner points de-

fined over class fields of imaginary quadratic fields.

Recall the curve EB of conductor 38 of the previous section. Let

K be an imaginary quadratic field such that the pair (EB, K) satis-

fies the Shimura-Heegner hypothesis with respect to the factoriza-

tion N− = 2, N+ = 38, and let GK be its genus field, of degree 2n
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over K, say. As in §9, we compute points corresponding to the 2n−1

characters of ClK of exact order 2, as well as a point P0 correspond-

ing to the trivial character. Sometimes, the point P0 = Tate(J0) was

of very large height and inconvenient to recognize as an algebraic

point. We noted empirically, however, that P0 is often divisible by

factors of 5 = 3 + 1− a3. Thus, if we were unsuccessful in recogniz-

ing the point P0, we attempted to recognize the points

Qi,j = Tate(ζ i5q
j/5J

1/5
0 ), 0 ≤ i, j ≤ 4

where ζ5 is a primitive 5-th root of units and q is the tate period ofEB.

This approach was often successful. We computed these points for

imaginary quadratic fields K of even class number and discriminant

DK ≤ 500. The results are displayed below in Table 1. For each field

K, the first point listed is that corresponding to the trivial character

(such points obtained by “dividing by 5” as above are denoted “5×

Qi,j” in the table).

In Table 2, we display the results of similar computations for the

curve E3−5ω of the previous section. We compute points for CM ex-

tensions K of F of the form F (
√
$), where $ is a prime element of

F of norm ≤ 200. Again, the first point listed in each row is that

corresponding to the trivial character.
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Table 1: Heegner points on 38B2

DK = −35, ClK = Z/2Z, GK = K(
√

5)

(30/7, 1/98(−361
√
−35− 259))

(10, 1/2(−11
√

5− 11))

DK = −115, ClK = Z/2Z, GK = K(
√

5)

(−895/92, 1/4232(−7942
√
−115 + 18469))

(10, 1/2(−11
√

5− 11))

DK = −123, ClK = Z/2Z, GK = K(
√

41)

(10/243, 1/13122(−19855
√
−123− 6831))

(55/41/8(−50
√

41− 59))

DK = −187, ClK = Z/2Z, GK = K(
√
−11)

5× (−330860/1377, 1/421362(−114395485
√
−187 + 50410899))

(−20/9, 1/54(−185
√
−11 + 33))

DK = −195, ClK = (Z/2Z)2, GK = K(
√
−15,

√
5)

5× (−4610/39, 1/3042(−277799
√
−195 + 178269))

(25/12, 1/72(−376
√
−15− 111))

(10, 1/2(−11
√

5− 11))

(1928695/2548, 1/463736(−1198787452
√

65− 175743113))

DK = −235, ClK = Z/2Z, GK = K(
√

5)

(904/235, 1/110450(−156313
√
−235− 267665))

(52424/605, 1/66550(−24063139
√

5− 2916595))

DK = −267, ClK = Z/2Z, GK = K(
√

89)

(−410/867, 1/88434(−84835
√
−267− 23307))

(52595/4356, 1/287496(−875080
√

89− 1879383))



36 1. p-ADIC HEEGNER POINT COMPUTATIONS

DK = −291, ClK = Z/2Z, GK = K(
√

97)

(2/3, 1/18(−19
√
−291− 15))

(8196823/864900, 1/804357000(−417006106
√

97− 4213701195))

DK = −339, ClK = Z/2Z, GK = K(
√

113)

(−479/108, 1/1944(−608
√
−339 + 3339))

(1774281903006895/39181665744676,

1/245258655452108783576(−6997901820985564777310
√

113

−5675711179326623107673))

DK = −403, ClK = Z/2Z, GK = K(
√
−31)

5× (−617060/122317, 1/308483474(−76393015
√
−403 + 623870923))

(−12395/784, 1/21952(−209345
√
−31 + 162554))

DK = −427, ClK = Z/2Z, GK = K(
√

61)

(−33589240/5632263, 1/70729958754

5× (−19338241135
√
−427 + 175541858583))

(280/9, 1/54(−1175
√

61− 867))

DK = −435, ClK = Z/2Z, GK = K(
√

145,
√
−15)

(−170/87, 1/15138(−8759
√
−435 + 7221))

(4118255/301716, 1/892475928(−2916529916
√

145− 6537137109))

(25/12, 1/72(−376
√
−15− 111))

(36063677855/2150547876,

1/99729507201624(−2684620739812946
√

5− 886073252024697))
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CHAPTER 2

Lifting modular symbols

of noncritical slope

1. Introduction

Let p be a prime and let M be a positive integer prime to p. Let

f ∈ S2(Γ0(pM)) be a normalized eigenform with rational (and hence

integral) Fourier coefficients. (We will consider higher weights in

later sections.) One associates to f a modular symbol

ϕf : P1(Q)× P1(Q)→ C

and a measure µf on Zp by the rules

ϕf{r → s} =
1

Ω+
Re

∫ s

r

2πif(z)dz,

µf (a+ pnZp) = ap(f)−nϕf{∞ → a/pn},(27)

where Ω+ is the canonical real period of f and ap(f) is its p-th Fourier

coefficient. Suppose now that ap(f) ∈ Z∗
p. Then one may show (using

Eichler-Shimura theory, for instance) that ϕf and thus µf take values

in Zp. Therefore, the integral

(28)
∫

Zp

v(x)dµf (x),

defined as a limit of Riemann sums over increasingly fine partitions

of Zp, is well defined for any continuous v : Zp → Cp.

Computing such integrals is an important problem in practice

with many applications. The application of principal interest to us
43
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is the calculation of algebraic points on elliptic curves via p-adic in-

tegration. Unfortunately, the naive method for computing integrals

of the form (28) is of exponential complexity in the sense of [9]. For-

tunately, many of the functions v(x) which arise in practice are of a

special type. Let

(29) A =
{
v(x) =

∑
n≥0

anx
n : an ∈ Qp, an → 0 as n→∞

}
.

Elements of A are rigid analytic functions on the closed unit disk

in Cp which are defined over Qp. As such series may be integrated

term-by-term, the problem of computing (28) is reduced to the cal-

culation of the moments

mom(n, µf ) =

∫
Zp

xndµf (x), n ≥ 0.

A polynomial time algorithm for calculating such moments was

recently discovered by R. Pollack and G. Stevens [22]. Although the

main goal of their theory was the study of normalized eigenforms g

of weight k+2 with ordp ap(g) = k+1 (a so-called critical slope eigen-

form) and their p-adic L-functions, we are particularly interested in

their results in the (we shall see, simpler) case ordp ap(g) < k + 1 (the

non-critical slope case). For simplicity of exposition, we remain for

the moment in the situation considered above where f has weight

two and ap(f) is a p-adic unit. In later sections, we will deal with

general weights and non-critical slopes.

Let D be the continuous dual of A. Elements of D are called

rigid-analytic distributions. Pollack and Stevens were able to produce

a Γ0(pM)-equivariant eigensymbol

Φf : P1(Q)× P1(Q)→ D
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satisfying

∫
Zp

v(x)dµf (x) = Φf{0→∞}(v).

Moreover, Φf is a lift of ϕf in the sense that ϕf{r → s} is the total

measure of Φf{r → s} for all r, s ∈ P1(Q), i.e.

∫
Zp

dΦf{r → s} = ϕf{r → s}

(cf. [10, Proposition 1.3]). Through a careful analysis of the geom-

etry of a fundamental domain of Γ0(pM) acting on the upper half-

plane H, a process they dub “solving the Manin relations”, Pollack

and Stevens are able to give an explicit presentation of the group

of Γ0(pM)-equivariant D-valued modular symbols. Using this pre-

sentation, they explicitly produce a lift Ψ of ϕf in such a way that

Ψ{r → s}(xn) can be easily computed for all r, s ∈ P1(Q) and n ≥ 0.

It can then be shown (see [10, Proposition 2.6]) that

Φf = lim
n→∞

ap(f)−nUn
p Ψ.

is a D-valued eigensymbol lifting ϕf . Moreover, and essential for

computational purposes, the moments of the symbols (Ψ|Un+1
p ){r →

s} can be explicitly computed from those of (Ψ|Un
p ){t→ u}. A theory

analogous to the above exists for all modular forms of noncritical

slope, i.e. forms f ∈ Sk+2(Γ0(pM)) with ordp ap(f) < k + 1.

In this note, we show that in this non-critical slope situation, one

may eliminate geometric considerations, i.e. the need to “solve the
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Manin relations”, from the Pollack-Stevens algorithm. The Pollack-

Stevens algorithm has been applied in [10] to the calculation of Stark-

Heegner points on elliptic curves defined over Q. The incorpora-

tion of our method would simplify this work conceptually, in addi-

tion to streamlining the implementation. Our method also general-

izes easily to the case of modular symbols constructed from certain

automorphic forms on GL2 over imaginary quadratic fields. These

forms manifest themselves geometrically as harmonic forms on cer-

tain real-analytic threefolds. M. Trifković has recently implemented

a version of our algorithm in PARI to compute certain Stark-Heegner

points on elliptic curves defined over imaginary quadratic fields.

As the geometry of the real-analytic threefolds arising in the work

of Trifković is quite complicated compared to that of the modular

curves, our “geometry free” method proves quite helpful. Suitably

adapted to certain automorphic forms on definite quaternion alge-

bras, our ideas can be used for the efficient calculation of Heegner

points arising from Shimura curve parametrizations via the theory

of Cerednik-Drinfeld; see [1], [19] and [18].

The author would like to sincerely thank his PhD supervisor Prof.

Henri Darmon as well as Mak Trifković for many useful discussions

regarding this work. Finally, the author is extremely grateful to the

anonymous referee for many valuable comments, observations and

suggestions which led to a significant reworking of this paper.

2. Coefficient modules

Let p ∈ Z be a rational prime, and define the semigroup

Σ0(pZp) =
{a b

c d

 ∈ M2(Zp) : c ∈ pZp, a ∈ Z∗
p, and ad− bc 6= 0

}
.
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For a Zp-module A and an integer k ≥ 0, let

Lk(A) = {f ∈ A[T ] : deg f(T ) ≤ k}.

The group Lk(A) is equipped with a right action of Σ0(pZp) defined

by

(f |kγ)(T ) = (d− cT )kf

(
−b+ aT

d− cT

)
.

Let K be a finite extension of Qp with ring of integers O, uni-

formizer π, ramification index e, and valuation v, normalized so that

v(π) = 1 (i.e. v(p) = e). Generalizing (29) slightly, we let

Ak(K) =
{
v(x) =

∑
n≥0

anx
n : an ∈ K, an → 0 as n→∞

}
.

equipped with the left weight k action of Σ0(pZp) given by the rule

(γ ·k f)(x) = (a+ cx)kf

(
b+ dx

a+ cx

)
for f ∈ Ak(K) and γ ∈ Σ0(pZp). The sup-norm equips Ak(K) with

the structure of a p-adic Banach space.

As in the introduction, we let Dk(K) denote the continuous dual

of Ak(K), the elements of which we refer to as rigid-analytic distri-

butions. As the polynomial functions are dense in Ak(K), a distri-

bution µ in Dk(K) is completely determined by its moments µ(xn),

n ≥ 0. By duality, Dk(K) has a weight k action of Σ0(pZp) from the

right written (µ, γ) 7→ µ|kγ, or simply µ|γ if the weight of the action

is clear from context.

Set

Dk(O) = {µ ∈ Dk(K) : µ(xn) ∈ O for all n ≥ 0}.

A simple computation (cf. proof of Lemma 21) shows that Dk(O) is

a Σ0(pZp)-stable subspace of Dk(K).
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LEMMA 20. Let µ ∈ Dk(K). Then moments µ(xn) of µ are uniformly

bounded. Consequently, Dk(K) ∼= Dk(O)⊗O K.

PROOF. Let ‖ · ‖A and ‖ · ‖D be the sup norm on Ak(K) and the

dual norm on Dk(K), respectively. By the continuity of µ, we have

|µ(xn)|p ≤ ‖µ‖D · ‖xn‖A = ‖µ‖D · 1 = ‖µ‖D

�

The space Dk(O) admits a useful filtration:

F 0Dk(O) = {µ ∈ Dk(O) : µ(x0) = µ(x1) = · · ·µ(xk) = 0}

FNDk(O) = {µ ∈ F 0Dk(O) : µ(xk+j) ∈ πN−j+1O, j = 1, . . . , N},

for N ≥ 1.

LEMMA 21. The sets FNDk(O) are Σ0(pZp)-stable.

PROOF. It suffices to show that FNDk(O) is stable under the ac-

tion of matrices of the form1 0

c 1

 , c ∈ pZp, and

a b

0 d

 , a ∈ Z∗
p,

as we have the factorizationa b

c d

 =

 1 0

c/a 1

a b

0 ∆/a


in Σ0(pZp), where ∆ = ad− bc 6= 0.

Let γ = ( 1 0
c 1 ) with c ∈ pZp and let µ ∈ FNDk(O). If 0 ≤ ` ≤ k,

then

(µ|kγ)(x`) = µ((1 + cx)k−`x`) = µ(polynomial of degree k) = 0.



3. MODULAR SYMBOLS 49

Now suppose 1 ≤ j ≤ N . Then a direct calculation shows that

(30) (µ|kγ)(xk+j) =
∑
n≥0

(−1)n
(
n+ j − 1

j − 1

)
cnµ(xk+j+n).

As cn ∈ pnZp ⊂ πnO and µ(xk+j+n) ∈ πN−j−n+1O, it follows that

each term in (30), and therefore (µ|kγ)(xk+j), is in πN−j+1O. The case

γ = ( a b0 d ) is similar. �

Thanks to the above lemma, we may define the Σ0(pZp)-modules

ANDk(O) = Dk(O)/FNDk(O), N ≥ 0.

We call ANDk(O) the N -th approximation to the module Dk(O), fol-

lowing the terminology of [22]. Note that ANDk(O) is a finitely gen-

erated O-module. This will be crucial for our computational appli-

cations.

3. Modular symbols

DEFINITION 22. Let V be a right Σ0(pZp)-module, written (v, γ) 7→

v|γ for v ∈ V and γ ∈ Σ0(pZp). A V -valued pre-modular symbol is sim-

ply a function ϕ : P1(Q) × P1(Q) → V , written (r, s) 7→ ϕ{r → s}. If

ϕ satisfies the additivity relation

(31) ϕ{r → t} = ϕ{r → s}+ ϕ{s→ t}

for all r, s, t ∈ P1(Q), then ϕ is called a modular symbol.

Let preSymbV and SymbV denote the set of pre-modular and

modular symbols, respectively.

The semigroup Σ0(pZp) acts on preSymbV and SymbV by the

rule

(ϕ|γ){r → s} = ϕ{γr → γs}|γ,
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where the action of Σ0(pZp) on P1(Q) is by fractional-linear trans-

formations. If Γ ⊂ Σ0(pZp), we denote by SymbΓ V the set of all

ϕ ∈ SymbV such that ϕ|γ = ϕ for all γ ∈ Γ.

The group preSymbV and SymbV are equipped with the action

of a Hecke operator Up defined by

ϕ|Up =

p−1∑
a=0

ϕ|

1 a

0 p

 .

REMARK 23. Fix a positive integer M prime to p and consider the

double-coset decomposition

Γ0(pM)

1 0

0 p

Γ0(pM) =

p−1∐
a=0

Γ0(pM)γa.

If ϕ belongs to SymbΓ0(pM) V , then ϕ|Up ∈ SymbΓ0(pM) V and

(ϕ|Up){r → s} =

p−1∑
a=0

ϕ{γar → γas}|γa

for any choice of representatives γa. This is not true if ϕ is merely

taken to be in SymbV or preSymbV . Thus, our extension of Up from

SymbΓ0(pM) V to these larger spaces is non-canonical.

Let W be a K-vector space on which Up acts linearly, and let λ ∈

K be a Up-eigenvalue. We shall denote by WUp=λ the corresponding

eigenspace.

DEFINITION 24. Let ψ be a nonzero vector in WUp=λ. The slope of

ψ is the number ordp λ. If A is one of Lk(K), ANDk(O) or Dk(K) and

W = SymbΓ0(pM)A, then we say that the slope of ψ is non-critical if

ordp λ < k + 1.
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REMARK 25. Note that the slope of ψ may be fractional if the

eigenvalue λ lies in a ramified extension of Qp.

By the Eichler-Shimura theory, Lk(C)-valued modular symbols

correspond to classical modular forms of weight k + 2. To a form g

of weight k + 2 we associate the modular symbol ϕg where

(32) ϕg{r → s} =

∫ s

r

(z +X)kg(z)dz.

The following definition is due to G. Stevens [27]:

DEFINITION 26. A rigid analytic modular symbol of weight k on

Γ0(pM), defined over K, is an element of SymbΓ0(pM) Dk(K).

The following simple lemma will be useful.

LEMMA 27. SymbΓ0(pM) Dk(K) ∼= (SymbΓ0(pM) Dk(O))⊗O K.

PROOF. The proof follows from Lemma 20, the stability of Dk(O)

under the action of Σ0(pZp), and the following well known fact con-

cerning modular symbols: There exist finitely many pairs

(ai, bi) ∈ P1(Q)× P1(Q), i = 1, . . . , n

with the property that for each pair (r, s) ∈ P1(Q)×P1(Q) there exist

ξi ∈ Z[Γ0(pM)] such that

(33) (s)− (r) =
n∑
i=1

ξi((bi)− (ai))

as formal divisors on P1(Q). Let ψ be in SymbΓ0(pM) Dk(K). By

Lemma 20, we may find an element c of O such that cψ{ai → bi} ∈

Dk(O) for all 1 ≤ i ≤ n, implying that cψ ∈ SymbΓ0(pM) Dk(O). �
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There is a natural Σ0(pZp)-equivariant, surjective specialization

map

π0 : Dk(K)→ Lk(K)

given by

(34) π0(µ)(T ) =

∫
Zp

(T − t)kdµ(t) =
k∑
j=0

(
k

j

)
µ(tk−j)T j.

Let m ∈ Lk(K) and let µ be the unique preimage of m under π0 satis-

fying µ(xj) = 0 for j > k. We define the j-th moment of m, denoted

m(xj), to be the quantity µ(xj). Note that the section m 7→ µ of π0 is

not Σ0(pZp)-equivariant. The map π0 induces a corresponding func-

tion

π0
∗ : SymbΓ0(pM) Dk(K)→ SymbΓ0(pM) Lk(K)

in the obvious way. Since π0 is a Σ0(pZp)-module homomorphism,

the induced map π0
∗ is equivariant with respect to the action of the

operator Up.

We will also have need of notation for families of related maps.

We let πN denote the natural projection from Dk(O) onto ANDk(O).

If N > M , then πM reduces to a map

πN,M : ANDk(O)→ AMDk(O).

Since these maps are all Σ0(pZp)-equivariant, the induced maps πN∗
and πN,M∗ on modular symbols are all Up-equivariant. Note that our

notation is consistent, as Lk(O) ∼= A0Dk(O).

The main goal of this paper is to give a new proof of the following

result of G. Stevens [27], which translates into a simple effective al-

gorithm for computing eigenlifts of Lk(Qp)-valued modular symbols

to rigid analytic modular symbols.
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THEOREM 28. Let λ be an eigenvalue of the Up operator acting on

SymbΓ0(pM) Lk(Qp) such ordp λ < k + 1, and let K = Qp(λ). Then the

restriction

(35) π0
∗ : (SymbΓ0(pM) Dk(K))Up=λ → (SymbΓ0(pM) Lk(K))Up=λ.

is an isomorphism.

REMARK 29. For applications to the construction of global points

on elliptic curves as in [10], [18], and [28], it suffices to consider the

case k = 0 and λ = ±1.

The next section is devoted to the proof of this theorem. In § 5,

we will address the practical implementation of the proof as a com-

putational algorithm.

4. Lifting eigensymbols

Recalling the definition of the moments of an element of Lk(O)

given after (34), we set

Lλk(O) = {m ∈ Lk(O) : m(xi) ∈ πv(λ)−eiO, 0 ≤ i ≤ bv(λ)/ec},

where e is the ramification index of K/Qp and b·c is the floor func-

tion. That the group Lλk(O) is Σ0(pZp)-stable can be shown using

the same ideas as those used in the proof of Lemma 21. Let ϕ0 ∈

SymbΓ0(pM) Lk(K) be an eigensymbol with eigenvalue λ inK of slope

strictly less than k+1. Assume further that ϕ0 takes values in Lλk(O).

LEMMA 30.

(1) Let µ ∈ Dk(O) be such that π0(µ) ∈ Lλk(O). Then

µ|

1 a

0 p

 ∈ λDk(O).
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(2) Let µ be in FNDk(O). Then

µ|

1 a

0 p

 ∈ λFN+1Dk(O).

PROOF. If µ is in Dk(O), then

(
µ|

1 a

0 p

)(xj) = µ((a+ px)j)

=

j∑
i=0

(
j

i

)
aj−ipiµ(xi).

Let t = bv(λ)/ec. Suppose first that µ is in Lλk(O). If 0 ≤ i ≤ t, then

piµ(xi) = piπ0(µ)(xi) ∈ πei+v(λ)−eiO = λO.

If, on the other hand, i > t, then it is clear that ei > v(λ), and hence

piµ(xi) = πeiµ(xi) is once again in λO. This proves (1). Now suppose

µ is in FNDk(O). The terms in the above sum with 0 ≤ i ≤ k vanish.

If j ≥ 1, then v(pk+j) ≥ v(λ) + 1, implying that

pk+jµ(xk+j) ∈ πv(λ)ππN−j+1O = λπ(N+1)−j+1O.

This completes the proof. �

Assume the existence of a lift ϕN of ϕ0 to SymbΓ0(pM)A
NDk(O)

such that ϕN is also Up-eigensymbol with eigenvalue λ. Choose an

arbitrary lift ϕ of ϕN to an element of preSymbDk(O). As ϕ is also a

lift of ϕ0, part (1) of Lemma 30 implies that

ϕ|λ−1Up ∈ preSymbDk(O).

Therefore, we may define the symbol ϕN+1 by

ϕN+1 = πN+1
∗ (ϕ|λ−1Up) ∈ preSymbAN+1Dk(O).
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The Up-equivariance of the projection maps together with the rela-

tion πN = πN+1,N ◦ πN+1 imply that

πN+1,N
∗ (ϕN+1) = ϕN .

PROPOSITION 31. The pre-modular symbol ϕN+1 is a well defined

modular symbol in SymbΓ0(pM)A
N+1Dk(O), independent of the choice of

lift ϕ used in its construction. Moreover, ϕN+1 is a Up-eigensymbol with

eigenvalue λ.

We prove the proposition with a series of claims:

CLAIM. The premodular symbol ϕN+1 does not depend on the

choice of lift ϕ.

PROOF. Let ϕ′ : P1(Q) × P1(Q) → Dk(O) be a second lift of ϕN .

Then for each pair (r, s) ∈ P1(Q)× P1(Q), we have

(ϕ− ϕ′){r → s} ∈ FNDk(O).

The claim now follows from the above part (2) of Lemma 30. �

CLAIM. The premodular symbol ϕN+1 satisfies the additivity re-

lation (31) and is thus a modular symbol.

PROOF. Fix some s ∈ P1(Q), and define a symbol ϕ′ by

ϕ′{r → t} = ϕ

{
r → s+ a

p

}
+ ϕ

{
s+ a

p
→ t

}
.
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As ϕ′ is also a lift of ϕN , Claim 1 implies that

ϕN+1{r → t} = πN+1
∗ (ϕ′|λ−1Up){r → t}

= πN+1
(1

λ

p−1∑
a=0

ϕ

{
r + a

p
→ s+ a

p

}
|

1 a

0 p

+

1

λ

p−1∑
a=0

ϕ

{
s+ a

p
→ t+ a

p

}
|

1 a

0 p

)
= πN+1(ϕ|(λ−1Up){r → s}) + πN+1(ϕ|(λ−1Up){s→ t})

= ϕN+1{r → s}+ ϕN+1{s→ t}.

As s was arbitrarily chosen, we are done. �

CLAIM. The modular symbol ϕN+1 is Γ0(pM)-invariant.

PROOF. Let γ be in Γ0(pM). Since the map πN+1
∗ is equivariant

with respect to the action of Σ0(pZp), it follows that

ϕN+1|γ{r → s} = πN+1
∗

( p−1∑
a=0

ϕ|

1 a

0 p

 γ
)

Using the double coset decomposition

Γ0(pM)

1 0

0 p

Γ0(pM) =

p−1∐
a=0

Γ0(pM)

1 a

0 p

 ,

there exist elements γa ∈ Γ0(pM) such that

p−1∑
a=0

ϕ|

1 a

0 p

 γ =

p−1∑
a=0

(ϕ|γa)|

1 a

0 p

 .
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But since ϕN is Γ0(pM)-invariant, each ϕ|γa is also a lift of ϕN . There-

fore, by Claim 1 again,

ϕN+1|γ = πN+1
∗

( p−1∑
a=0

(ϕ|γa)|

1 a

0 p

)

= πN+1
∗

( p−1∑
a=0

ϕ|

1 a

0 p

) = ϕN+1

as desired. �

CLAIM. ϕN+1 is a Up-eigensymbol with eigenvalue λ.

PROOF. Observe that ϕ|λ−1Up is also a lift of ϕN . The claim now

follows from the Σ0(pZp)-equivariance of πN+1
∗ and an application of

Claim 1 similar in spirit those appearing above. �

Proposition 31 follows from these claims.

PROOF OF THEOREM 28. We begin by showing the injectivity of

the map (35). By Lemma 27, it suffices to show that

(SymbΓ0(pM) Dk(O))Up=λ ∩ kerπ0
∗ = 0.

Let ψ be in the above intersection and set u = λ−1Up. Notice that

SymbΓ0(pM) Dk(O) ∩ kerπ0
∗ = SymbΓ0(pM) F

0Dk(O).

Therefore, by part 2 of Lemma 30, we see that

ψ = ψ|uN ∈ SymbΓ0(pM) F
NDk(O).

The injectivity follows.

We not turn to the surjectivity of π0
∗ on λ-eigenspaces. Let ϕ0 ∈

SymbΓ0(pM) L
λ
k(O) be an eigensymbol with eigenvalue λ. We con-

struct an eigenlift ϕ∞ ∈ SymbΓ0(pM) Dk(O) of the symbol ϕ0. Using
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the recipe of §4 together with Proposition 31, we may inductively

construct a sequence

ϕN ∈ SymbΓ0(pM)A
NDk(O)

of Up-eigensymbols satisfying the compatibility property

πN+1,N
∗ (ϕN+1) = ϕN , N ≥ 0.

By this compatibility relation, the ϕN glue together to a symbol

ϕ∞ ∈ lim←−
{πM,N
∗ }

(SymbΓ0(pM) F
NDk(O))Up=λ ∼= (SymbΓ0(pM) Dk(O))Up=λ.

By construction, we have π0
∗(ϕ

∞) = ϕ0. This establishes the surjec-

tivity and thus concludes the proof of Theorem 28. �

REMARK 32. Let ψ0 ∈ SymbΓ0(pM) Lk(K) be an eigensymbol with

eigenvalue λ and eigenlift ψ∞. Let s be the smallest positive integer

such that πsψ0 ∈ SymbΓ0(pM) L
λ
k(O). Then it is interesting to note that

the above constructions gives an explicit, uniform lower bound of s

for the π-adic valuations of the moments ψ∞{r → s}(xn). It would be

interesting to know how sharp this bound is in cases where v(λ) > 0.

The above arguments show that the correspondences ϕ0 7→ ϕN

extend to injections

uNλ : (SymbΓ0(pM) L
λ
k(O))Up=λ ↪→ (SymbΓ0(pM)A

NDk(O))Up=λ,

which are compatible in the sense that πN+1,N
∗ ◦uN+1

λ = uNλ . The maps

uNλ can be packaged together into an injection

(36) u∞λ : (SymbΓ0(pM) L
λ
k(O))Up=λ ↪→ (SymbΓ0(pM) Dk(O))Up=λ
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which is actually an isomorphism when tensored with K. If ϕ0 is

ordinary (i.e. v(λ) = 0), then Lλk(O) is just Lk(O) and (36) itself is an

isomorphism.

5. Computing the lifts in practice

Restricting ourselves to the modular symbols which arise in prac-

tice, let g ∈ Sk+2(Γ0(pM)) be a normalized Hecke-eigenform with

Up-eigenvalue λ of non-critical slope, and let ψg ∈ SymbΓ0(pM) Lk(C)

be the modular symbol attached to g as in (32). Dividing ψg by a

suitable transcendental factor Ω, we may assume

ψ0 := Ω−1ψg

takes values in Lk(Q(g)), where Q(g) is the field generated by the

Hecke-eigenvalues of g.

Let {(ai, bi) : 1 ≤ i ≤ n} be the finite set of pairs in P1(Q)× P1(Q)

considered in Lemma 27. If the field Q(g) has a simple enough struc-

ture (e.g. Q(g) is Q or a quadratic field), then by computing (32) to

sufficiently high accuracy, one should be able to recognize the val-

ues ψ0{ai → bi} as elements of Lk(Q(g)). These values completely

determine ψ0 as an element of SymbΓ0(pM) Lk(Q(g)). Thus, ψ0 may be

stored as the finite sequence of (k + 1)-tuples

(ψ0{ai → bi}(x0), . . . , ψ0{ai → bi}(xk)) ∈ Q(g)k+1,

1 ≤ i ≤ n. Let K be the completion of Q(g) at a place p above p. Fix

an embedding of Q(g) intoK and let O, v, and π be as above. Let ϕ0 ∈

SymbΓ0(pM) L
λ
k(O) be obtained from ψ0 by scaling by an appropriate

power of π. Of course, the scaling factor involved in producing ϕ0

must be taken into account when deciding on the precision to which

the eigenlift of ϕ0 must be computed.



60 2. LIFTING MODULAR SYMBOLS

A lift ϕN of ϕ0 to SymbΓ0(pM)A
NDk(O) is determined by ϕ0 to-

gether with the sequence of N -tuples

(ϕN{ai → bi}(xk+1), . . . , ϕN{ai → bi}(xk+N)) ∈
N∏
j=1

O/πN+1−jO,

1 ≤ i ≤ n. This data may be easily represented on a computer.

Having dealt with the issue of storing ANDk(O)-valued modular

symbols, it remains to indicate how the data

ϕN+1{ai → bi} ∈ AN+1Dk(O), 1 ≤ i ≤ n,

may be computed given the corresponding data for ϕN . As in the

proof of Lemma 27, for 1 ≤ i ≤ n and 0 ≤ α ≤ p − 1, we may find

elements ξiα,j ∈ Z[Γ0(pM)] such that(bi + α

p

)
−
(ai + α

p

)
=

n∑
j=1

ξiα,j((bj)− (aj))

as formal divisors on P1(Q) × P1(Q). For 1 ≤ i ≤ n, let µi be a lift of

ϕN{ai → bi} to Dk(O) and define an distribution νi by the formula

νi = λ−1

p−1∑
α=0

n∑
j=1

µj|(ξiα,j)−1

1 a

0 p

 .

Noting that

π0(νi) = λ−1

p−1∑
α=0

ϕ0
{ai + α

p
→ bi + α

p

}
|

1 a

0 p

 ,

it follows by part 1 of Lemma 30 that νi is actually in Dk(O).

PROPOSITION 33. The identity

πN+1(νi) = ϕN+1{ai → bi}

holds.
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PROOF. Let ϕ be any lift of ϕN to preSymbDk(O) and recall that

ϕN+1 = πN+1
∗ (ϕ|(λ−1Up)). For each α with 0 ≤ α ≤ p− 1, we have

ϕ
{ai + α

p
→ bi + α

p

}
−

n∑
j=1

µj|(ξiα,j)−1 ∈ FNDk(O).

The proposition now follows from part 2 of Lemma 30. �

The computation of the νi from the µi boils down to manipula-

tions with formal power series: If γ = ( a bc d ) ∈ Σ0(pZp) and µ ∈

Dk(O), then one may compute the m-th moment of µ|γ by expand-

ing
(
b+dx
a+cx

)m in a Taylor series and “integrating term-by-term” (see

the proof of Lemma 21). Using these methods, our proof of Theo-

rem 28 translates into an efficient algorithm for computing eigenlifts

of modular symbols of non-critical slope.





CHAPTER 3

Discussion and future directions

Although we feel that we have convincingly demonstrated the

feasibility of computing Shimura-Heegner points on elliptic curves

via Cerednik-Drinfeld theory, our treatment of this issue is far from

complete. We treated only the cases of curves over Q of conductor 2p

and curves over Q(
√

5) of prime conductor. It seems clear, however,

that our methods should generalize fairly directly, at least to curves

defined over Q or over a real quadratic field. The challenge in im-

plementing a more general algorithm would lie in the enumeration

of various one-sided ideal classes of a quaternion algebra over such

a field. Our approach to this enumeration process in the case of al-

gebras defined over Q(
√

5)– see Chapter 1, Appendix A.2 – is most

likely highly inefficient. Further study of this enumerative problem

would be interesting.

In the Chapter 1, Appendix B, we showed how one may use p-

adic integration to compute the Tate period q attached to a Hilbert

modular newform on Γ0(p) with rational Hecke eigenvalues. From

the Tate period, one may compute the corresponding j-invariant

j(q). If Ej(q) an elliptic curve over Q(
√

5) with j-invariant j(q), then

Ej(q) admits a “minimal”quadratic twist E of conductor p (see [25]).

In this way, one may be able to produce tables of elliptic curves, in

the spirit of Cremona [5], of prime conductor defined over Q(
√

5)

supplementing the tables of Fourier coefficients of Hilbert modular

63
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forms given in [12]. Of course, implementation of more general ver-

sions of our algorithm could facilitate construction of further tables.

In light of the indispensability of Cremona’s tables for number theo-

retic experimentation, this may be a worthwhile project to pursue.

Let τ ∈ Hp be a fixed point of an optimal embedding of a qua-

dratic order o, as in Chapter 1, §7. As we have seen, we may canon-

ically associate to a character χ : Pic o � {±1} of exact order 2 a

divisor of degree 0 (see Chapter 1, §9). When χ is trivial, however,

we are forced to exploit an auxilliary Hecke operator T`, where ` is

a prime of good reduction for E, in order to obtain the degree zero

divisor

d` = (`+ 1− T`)(τ).

Due to the necessity of choosing an auxilliary prime, the Shimura-

Heegner point

P` = Tate
(
×
∫

(`+1−T`)τ

ωµE

)
.

is not canonically associated to the character χ. Although the point

P` certainly depends on `, it is nonetheless true that for any two

primes ` and `′ of good reduction for E, we have

(`′ + 1− T`′)P` = (`+ 1− T`)P ′
`.

In other words, the element (` + 1 − a`)
−1P` of E(Ho) ⊗ Q is inde-

pendent of `, where Ho is the ring class field attached to the order

o. Although P` is not in general divisible by (` + 1 − a`) in E(Ho),

we have observed empirically that is very often divisible by factors

thereof. At least for curves over Q, the point P` always turned out to

be divisible by the quantity (`+1−a`)/#E(Q)tors in the several cases

we have checked. Note that this is an integer as the denominator is
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just #Ẽ(F`), which divides #E(Q)tors by [26, Chapter VII, Prop. 3.1].

It is tempting to ask something like the following:

• Is there a map Hp → Cp, provisionally denoted

τ 7→
(
×
∫ τ

ωµ

)#E(Q)tors

,

such that((
×
∫ τ

ωµ

)#E(Q)tors
)`+1−a`

= ×
∫

(`+1−T`)τ

ωµ ?

Of course, the above formulation is modelled after Darmon’s con-

jecture on the existence of semi-indefinite (semi-definite?) p-adic in-

tegrals, see [6, Conjecture 5] or [10, Conjecture 1.6]. If anything re-

sembling the above is true, it is almost certainly a p-adic manifesta-

tion of a construction of Zhang [32]. Here, he defines of a canonical

map from a Shimura curve X into (JacX) ⊗ Q using the canoni-

cal “Hodge” divisor class (of degree one on each component of X)

as a base point for defining an Abel-Jacobi map. Due to relations

with special values of L-functions, it would be extremely interesting

to give a purely p-adic description of this map. Work of Bertolini-

Darmon and Dasgupta suggest that Hida theory could perhaps lend

some insight into these issues.

The Heegner point phenomenon is not restricted to elliptic curves

defined over number fields – there is an analogous construction in

the setting of elliptic curves defined over function fields of curves

over finite fields. For simplicity, we consider the function field F =

Fp(t) with ring of integers A = Fp[t]. Let ∞ be the place of F with

uniformizer t−1 and denote by F∞ the completion of F at∞. Let o∞

be the ring of integers of F∞ and let m∞ be the unique maximal ideal
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of o∞. Set C∞ equal to the completion of an algebraic closure of F∞

and define the∞-adic upper half-plane H∞ by

H∞ = P1(C∞)− P1(F∞).

Let E be an elliptic curve over F of conductor n∞, where n is an

ideal of Fp[t], and suppose that the reduction of E at∞ is split mul-

tiplicative. Then by Drinfeld’s theory [13], E is analytically modular

(borrowing terminology from [30, §3.2]) in the sense that one may

attach to E an automorphic form ϕE whose L-function matches that

of E. By an invocation of strong approximation analogous that of

Chapter 1, §4, the form ϕE may be viewed as a function

ϕE : Γ0(n)\GL2(F∞)/I∞F
∗
∞ → Z,

where Γ0(n) (resp. I∞) is the subgroup of GL2(A) (resp. of GL2(o∞)

consisting of matrices which are upper-triangular modulo n (resp.

modulo m∞). Moreover, we may assume that ϕE takes values in no

proper subring of Z. Following the recipe of Chapter 1, §4, we may

identify ϕE with a Z-valued measure µE on P1(F∞).

In addition to its analytic modularity, the curve E is, again in the

terminology of [30, §3.3], geometrically modular in the sense that E

admits a uniformization Φ by the Jacobian J0(n) of the Drinfeld mod-

ular curve X0(n). The curve X0(n) is the compactification of an affine

curve Y0(n) whose C∞-points are identified with the rigid analytic

quotient Γ0(n)\H∞. The affine curve Y0(n) is a moduli space for pairs

of n-isogenous Drinfeld F -modules.

In [16], Gekeler and Reversat make explicit the relationship be-

tween the analytic and geometric modularity of E by giving an ∞-

adic analytic description of the uniformization Φ : J0(n) → E in
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terms of the measure µE associated to the automorphic form ϕE .

This description, originally phrased in terms of Drinfeld-Manin type

theta functions, was reinterpreted by Longhi [17] in the language of

∞-adic integration. Let

Φ∞ : Div0 H∞ → E(C∞)

be the composition of the projection Div0 H∞ → Div0X0(n)(C∞) with

the map induced by Φ on C∞-points and let Tate : C∗
∞ → E(C∞) be

the Tate uniformization of E. Then Longhi’s version of the result of

Gekeler and Reversat states that for (τ ′)− (τ) ∈ Div0 H∞, we have

Φ∞ : (τ ′)− (τ) 7→ Tate
(
×
∫

P1(F∞)

(
x− τ ′

x− τ

)
dµE(x)

)
.

In addition, Longhi shows that if τ and τ ′ represent CM points on

X0(n), then Φ∞((τ ′) − (τ)) is a global point on E. We shall refer

to global points on E constructed in this manner as Drinfeld-Heegner

points. An independent construction of Drinfeld-Heegner points was

given by Pál in [21]. As Drinfeld-Heegner points play an important

role in the arithmetic of elliptic curves over function fields (e.g. for-

mulas of Gross-Zagier type are expected to hold), it would be ex-

tremely desirable to compute these points in practice. Therefore, we

ask the following question:

• Is there an efficient algorithm for computing ∞-adic inte-

grals of the form

×
∫

P1(F∞)

(
x− τ ′

x− τ

)
dµE(x) ?

The obvious analogies with the Shimura-Heegner points consid-

ered in Chapter 1 may lead one to believe that our algorithm pre-

sented earlier may be easily adapted to the function field setting.
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This is not so, however. In §8, we showed that in characteristic zero,

the computation of integrals of the above form may be reduced (at

least up to roots of unity and powers of p) to that of the moments of

µE of the form∫
a+pZp

(x− a)ndµE(x), a ∈ Z/pZ, n ≥ 0.

The essential point is that we need the p-adic exponential function

– not available in characteristic p – to recover the Teichmüller repre-

sentative of the multiplicative integral in question from the values of

the corresponding additive moments. In the function field case, an

incredible amount of data is lost in passing from the measure µE to

its moments of the form∫
a+m∞

(x− a)ndµE(x), a ∈ o∞/m∞, n ≥ 0.

Evidently, such moments depend only on the values of µE modulo

p. Thus, representing µE on a computer by the using the above se-

quences of moments does not preserve enough information to facil-

itate the computations that we with to carry out. Thus, we ask the

following:

• Give a sequence µ(n)
E , n ≥ 0, of approximations to the mea-

sure µE , efficiently representable on a computer, such that

the sequence µ(n)
E completely determines µE .

This question in complexity theory seems to be fundamental in the

theory of automorphic forms of Drinfeld type. There is always the

possibility that no such algorithm exists. This possibility strikes us

as unlikely, but would nonetheless be extremely fascinating. Thus,

progress on this problem in any direction should have extremely in-

teresting consequences.
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We find the two problems mentioned above especially tantaliz-

ing, especially due to the fact that the rank conjecture for elliptic

curves has been proven in the function field context [23, 29]. More-

over, a result of Darmon [8] inspired by [29] states that, assuming the

conjecture of Birch and Swinnerton-Dyer, one may construct many

examples of elliptic curves of large rank over Fp(t) where this excess

is the result of Drinfeld-Heegner point phenomena. Thus, an algo-

rithm for calculating these Drinfeld-Heegner points might allow us

to actually compute examples of Mordell-Weil groups of arbitrarily

large rank.
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