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Abstract 

Two number fields having the same Dedekind Zeta function need not have isomor- 

phic class groups. However, the ppar t s  of these class groups are isomorphic except 

possibly for a finite number of exceptional primes p. These exceptional prime num- 

bers divide the degree of the normal closure of the number field. In this thesis we 

extend this result to étale algebras having the same Dedekind Zeta function. These 

algebras consist of direct sums of a finite number of number fields. We apply this tu  

the study of the class groups of subfields of normal extensions having Galois group 

isomorphic to GLa (Fp). 



Résumé 

Deux corps de nombres qui possèdent la même fonction Zéta de Dedekind n'ont 

pas forcément des groupes de classes isomorphes. On sait cependant que les p 

parties de ces groupes de classes sont égales en dehors d'un nombre fini de nombres 

premiers p exceptionnels. Ces nombres premiers exceptionnels divisent tous le degré 

de le clôture galoisienne du corps de nombres. Dans cette thèse nous généralisons 

ce résultat aux algèbres étales qui ont des fonctions Zéta de Dedekind identiques. 

Ces algèbres sont des sommes directes d'un nombre fini de corps de nombres. On 

applique cette théorie pour étudier les groupes de classes de certains sous corps 

d'extensions galoisiennes qui ont un groupe de Galois isomorphe à GL2 (Fp). 
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Chapter 1 

Introduction 

Since the time of Dedekind, one customary starting point for analysing the arith- 

metic of algebraic number fields has been the map 

assigning to each number field its Dedekind zeta function 

I 

Cd4 = C NO, for x E (1, m) 
I E O K  

where 1 runs through al1 the ideals of the number ring Oi( and N ( I )  = IOK/I). 

This function is known to converge for al1 x > 1 (see, for example [fi-Ta] p.283). 

Moreover, it extends to a meromorphic function of x E C having a simple pole 

at x = 1. The Dedekind zeta function of a number field encodes many of its 

invariants. If two number fields K and K' have the same Dedekind zeta function, 

we Say that K and Kt are arithmetically equivalent number fields. They share 

degrees [K : QI = [K' : Q] and discriminants Dx = LIK#, have the same number of 

real embeddings s (K)  = s(K') and of pairs of complex embeddings t ( K )  = t (K t ) ,  

have isomorphic unit groups UK = UK/, and they determine the same normal 

closure L over Q (for an introduction of the above concepts read for example [Ma] 

or [Fr-Ta]). Denoting G = Gal(L/Q), H = Gal(L/K) and H' = Gal(L/K1) we 

have the following equivalence (see [Pe2]) 

CK(x)  = c K 1  (x) if and only if 1: = 1% 



where 1g (respectively lgt) is the trivial representation of H (or Hf) induced to G 

(see chapter 2 section 3 for definitions). 

The first example of nonisomorphic arithrnetically equivalent number fields was 

discovered in 1925 by Gassman [Ga] with K and Kt of degree 180. Later Perlis 

[Pel] constructed infinite families of pairs of nonisomorphic arithmetically equiv- 

alent fields. In that same article Periis proved that the srnallest degree for which 

there exist pairs of nonisomorphic arithmetically equivalent fields is 7. 

The Ideal Class Group of a number field K, denote CIK, is the quotient of the 

group of fractional ideals by the group PK of principal ideds. This group is 

abelian, and is therefore isomorphic to the direct sum of its pSylow subgroups (in 

fact every nilpotent group has that property, cf.[Ha] theorem 10.3.4 page 155). In 

other words we have ClK = eP~lg).  It is a classic result that the class group of a 

number field is finite (see again [Ma] or [Fr-Ta]). By computing the residue at  the , 

simple pole x = 1 of the Dedekind zeta function of K one obtains ([F'r-Ta] p.284) 

'2s+t~tRKhK 
lim ( x  - l)CK(x) = 
z+1+ WK IDK III2 

where RK is the regulator of K, hK is the class number (which is the number of 

elements in ClK), and WK is the number of roots of u n i e  in K. Comparing those 

residues at x = 1 for a pair of arithmetically equivalent number fields K and K' we 

get 

h K *  RK = hK" RK#. 

This equation motivated Perlis t o  explore the relation between class goups of arith- 

rnetically equivalent number fields K and Kt. Perlis [Pe2] introduced a group 

theoretic invariant, a natural number v = v(G, H, Hf), ahose definition depends on 

G, H ,  H f  and not on L, K or K t  such that for al1 prime p not dividing v we have 

He also showed that the primes dividing v must divide IHI = 1 H'I. In the same 



paper he was able of computing explicitly the natural number v in two concrete 

exarnples. 

Before describing the general structure of this thesis we need to define the Dede- 

kind zeta function of an algebra. The algebras we study are finite direct sums of 

number fields. Let L: = @Ki be such an algebra. Then we define CL(") to be 

Ili C K ~  (XI - 
We also introduce the Artin-L fimction L(x, p), where p is a representation of 

G = Gal(K/Q). Let P be a prime lying over p and denote D, = {O E G; op = 

P) the decomposition group at P. Let I' = {a E G; o(a) e a(mod P) for al1 

a E OK) be the inertia group a t  P. Finally denote by a,, E D& the Robenius 

automorphism at P ,  i.e op is an element whose restriction to the inertia field KIP 

is the F'robenius automorphism. If V is the vector space on which G acts via p, we 

define the Artin Lfunction as follows 

Using this definition one shows (see for example [R-Ta] p.311) that 

where p and $J are two representations of G and p + 11 is the direct sum of these 

represent ations. 

In chapter 2, we study the group GL2(Fp). On that goup we define the split and 

non-split Cartan subgroup, denoted C and Cl, and the Borel subgroup, denoted B. 

We also construct the character table of G. In chapter 3 we use that cbaracter table 

to prove the following relation on induced representations 



where N and N' are respectively the norrnalizers of C and Cf. By the basic proper- 

ties of the Artin Lfunctions (see above) one sees that L(x,  1: +1) = L(z ,  ~ $ ) L ( x ,  1) 

= C K ~  (x)C(z) and similady L(z, IN, + 1g) = C K ~ l  ( z ) ~ ~ B  (2) where for example KB 

denotes the fixed field of K by B. Hence we have 

It follows that the two algebras L = KN $ Q and L' = K ~ '  @ K B  share the same 

Dedekind zeta function. They are then said to be an'thmetidy equident .  In chap 

ter 4 we extend Perlis' result to arithrnetically equivalent algebras by constructing 

a positive integer v such that  for al1 prime e not dividing P we have 

We also show that the primes dividing v divide the order of G. In chapter 5 we 

apply the theory developed so far to a concrete family of examples arising fiom the 

c %division points of elliptic curves. In these examples we prove that is a power of 

2. 



Chapter 2 

A brief study of G = GL2(Fp) 

2.1 The conjugacy classes of G 

Consider G = GL2(Fp) , the group of 2 x 2 invertible square matrices with entries in 

the finite field F, of p elements. It can also be seen as the group of autornorphisms 

of the vector space V = F, x Fp over Fp. The cardinaüty of G is equal to the 

number of bases of V. For the first vector of the basis, there are g? - 1 choices 

(rejecting (0,O)). For the second, you need to take out all the vectors spanned 

by the first one and you get (p2 - 1) - ( p  - 1) = (p2 - p) choices. Therefore 

IGl = (p'- l)(PZ - p )  = p ( p +  1)@ - 1)2. 

Given g E G, consider its characteristic polynornial p,(x) = x2 - t2 + n where 

t =trace(g) and n =det(g) (the nom). We know fiom basic linear algebra that 

%(x) = pu,,-i (2) for any a E G. In other words p J z )  is invariant by conjuga- 

tion. Furthemore, a conjugacy class is completely determined by its characteristic 

polynomial. There are four possibilities for pg (x) . 

The first case; p,(x) = ( x  - a)2 and the eigenspace associated to a is of dimension 

two. In that case g = ( O ) The matrix g ir scalar and (p - 1) such classes 

exiçt. When the matrix g is scalar we denote it by: g - Al. 



The second case; p,(x) = (x - a)* but the eigenspace associated to a is of 

dimension one. By the theory of the Jordan canonical form (see for example [Ja] 

section 3.10 

exist. When 

p. ~oo), g is conjugate to ( O Y ) . Herr again ( p  - 1) such classer 

g is of the second case we denote it by: g - A2. 

The third -case ; p,(x) has two distinct roots, a and b in F,. By the Jor- 

dan canonical form, g is diagonalisable and is conjugate to ( ) . There are 

such classes corresponding to subsets of two elements in F;. When g is of 
2 

the third case, it is denoted by: g - As. 

The fourth case; h ( x )  is irreducible over Fi. Let Fp2 be a fixed quadratic 

extension of F,. The irreducible monic polynomials of degree two over F, are in 

bijection with (Fp2 \ Fp)/t, where t is the Galois autornorphism. Hence there are 

of them. When g has irreducible characteristic polynomial, we denote i t  by: 2 

9" Bi. 

Now we compute.the sizes of each of these four types of conjugacy classes. The 

general strategy is the following. Given a conjugacy class C, the group G acts 

transitively on C via conjugation. By a basic fact in group action theory (see [Ja] 

section 1.12 p.71) we have ICI = Corbitr[G : Z(xi)] where x E C and Z(z) is the 

centralizer of x. We therefore have 

For the first case when g is in the center, we have IAl(g)l = 1. In other 

words the number of element in the conjugacy class of g - Al is one because then 

g belongs to the center of G. 



For the second case, g - .42, let x = 

tation shows that xg = gx if and only if c = O and a = d. Hence 

For the third case, g A3, let g = ( y  8) .  Then zg = g r  if and only if 

(b, c) = (O, O). Hence 

Thus IZ(g)l = @ - 1)* and I&(g)I = p(p + 1) by equation (2.1). 

For the 

corijugacy 

zZ(g)x-' 

fourth case, g - BI,  let a be a root of p,(x). Then g belong to the 

ciau of g' = ( ) . Let r E GL2(Fpz) be such that g' = tben 

is contained in 

Moreover it consists exactly of the matrices in Z(gf) satisfying 3 = r;i. Thm Z ( g )  

is isomorphic to  F j and 

IZ(d1 = p2 - 1- 

By equation (2.1) we get IBl (g) 1 = p(p - 1). The results are summarized in the 

following table. 

Table 1 Conjugacy classes of G 



Conjugacy class 1 # of classes 1 # element/cIasç 

2.2 Definition of the split and non-split Cartan 

subgroup 

This section is inspired from ([Lal] chapter 18, section 12). A split Cartan subgroup 

of G is a conjugate to the group of diagonal matrices. 

Let FPz be a separable quadratic extension of Fp. Let {wl, w2) be a ba i s  of Fp2 over 

Fp. Then Fi2 acts on Fp x Fp with respect to the chosen basis via multiplication. 

We can therefore view Fi, as a subgroup of G. We denote by C this subgroup. 

A different choice a basis of Fp2 corresponds to conjugation of CI in G. We cal1 

C' a non-split Cartan subgroup . The subalgebra FP[Ct] cMat2 (Fp) is isomorphic 

to Fpz itself while the units of the algebra are the elements of C = F;2. Consider 

(1, a) as a basis for Fp2 over F p  For example, when p # 2, a can be taken as a 

root of x2 - a where a is not a square in Fp. In that case we describe the elements 

of C in the natural basis (1, a) of Fpz and we have 

Before continuing the analysis of our Cartan subgroups we need the foll.owing 

classical theorem found for example in ([Ja] p.207). 



Theorem 1 (Frobenius Theorem) Let A E Mn ( F ) ,  F a field, and let det(AI - 

A) = dl (A) . ds(X) be the characteristic polynomial exptessed in irreducible factors 

over F[X]. Let ni = deg di(X). Then the dimension of the vector space over F of 

matrices commuting with A 2s given by the fonula 

We are now ready to resume our study of the Cartan subgroups. 

Lemma 1 The subgroup C is a maximal commutative subgroup 

Proof Clearly Ct is a commutative subgroup. Now suppose x E G cornmutes 

with al1 elernents of Cr. The matrix endomorphisms, Mat2(Fp), is an F,-algebra. 

Consider Fp[Cr] as a subalgebra of Mat2(Fp). We know IF&''] 1 = p2. For x # 
Fp[Cf], we have IFp[Cf , x] 1 2 p2+ 1. Now by the formula of Theorem 1 the dimension 

of the vector space over Fp of matrices commuting with z can't be equal to  3 (analyse 

the possible s), hence IFp [Cf, x] 1 # p3. Since IFp [Cf, x] 1 divides 1 Mat2 (F,) 1 it implies 

that IFP[C1, x] 1 = /Mat2 (F,) 1 but then Mat2 (F,) would be commutative which is 

not the case. Therefore x E Fp[Ct]. But x is invertible, so x E C'. QED. 

A Cartan subgroup is a subgroup conjugate to the split Cartan subgroup or to 

one of the subgroups described above (one of the Cr). Here is a more conceptual 

way of seeing the Cartan subgroups. 

Lemma 2 Every maximal commutative subgroup of GL2(Fp) is a Cartan subgroup, 

and conversely. 

Proof Clearly the split Cartan subgroup is a maximal commutative subgroup of 

G. Suppose H is a maximal commutative subgroup of G. We Say that H is 

diagonalizable if and only if al1 its elements are diagonalizable with respect to a 

fixed basis. If H is diagonalizable over Fp, then H is contained in a conjugate of the 

split Cartan subgroup. On the other hand, suppose H is not diagonalizable over Fp. 

It is diagonalizable over F:, the separable closure of Fp (in the basis ((1, O), (0,l)) 



of Fi = Fp @ Fp, any element cu E H is equivalent to the diagonal matrix (O :) 
where x and z are the eigenvalues of a), and the two eigenspaces of dimension 1 

give rise to two characters 

#,&H -+FF 

of H in the multiplicative group of the separable closure. For each element a! E H 

the values #(a) and $'(a) are the two eigenvalues of a. At Ieast for one cu E H, 

these eigenvalue are distinct because H is not diagonalizable. Hence the pair of 

elements #(a), @(a!) are conjugate over F. The image 4 ( H )  is cyclic, and if b(cr) 

generates this image, then we see that $(a) generates a quadratic extension Fpz of 

F,. The map 

a H 4(a) with o! E H 

extends to an Fp-linear mapping, also denoted by 4, of the algebra Fp[H]  into Fp2. 

It follows that $ : Fp[H]  --+ Fp2 is an isomorphism. Hence q5 maps H into Fi2,  

and in fact maps H onto Fi2 because H was taken to  be maximal. QED. 

The normalizers of C and C'. 

We also want to describe what are the normalizer of C and C t .  Let -q = 

adx - bcy -a&x + ab 
cdx - cdy -bcx + ady 

if and only if (a, d) = (0, O )  or (b, c )  = (0, O ) .  Therefore the normalizer of C is 

Before computing N t ,  the normalizer of C we need two lemmas. 

Lemma 3 Let t be 

(In the basis (1, (Y) 

the heur  automorphism ofFg given by the galois conjugation. 

of FP2 chosen above, it is described by the matriz (: 0 1 ) J  



tx = Tt jor d l  x E Fp2 

Proof A direct verification. 

Since t does not commute with Cf, it follows from lemma 3 that t E N' - Cf. 

Lemma 4 (N' : CI) = 2 

Proof (see [Sel] p.279): If s E Nt, the application x H sxs-' gives rise to an 

auto morphidm of F,[C'] fixing Fp. Let : Nf + {f 1) = Aut(Fp2) be the 

homomorphism which sends s to this automorphism. If +(s) is the identity then s 

cornmutes with C and hence belongs to Cf by lemma 1. Hence ker($) = Cf. But 

.il, is surjective by lemma 3. QED. 
Lemma 4 implies 

2.3 The character table of G 

2.3.1 Represent ation t heory of groups 

We review the basic facts of representation theory of groups (see for example [Seal). 

Given a finite group G, a homomorphism p : G t GL(V) from G into the 

automorphism group of a vector space V over F (a field) is called a representation of 

G. If p is a representation of G, p(g) c m  be viewed as an invertible (dimV) x (dimV) 

square matrix. We say that p : G t GL(V) and p' : G -+ GL(Vf) are isomorphic 

representations if and only if there exist an invertible n x n matrix M (ahere 

n = dirn(V) = dim(Vf)) such that for al1 g E G we have 

For any representation p of G we can write p as a direct sum of irreducible repre- 

sentatiom. The set of irreducible representations is defined to be the srnallest set 



of representations having the above property. To the representation p Ive associate 

the character X, : G -+ F defined by 

Proposition 1 

same characier 

This is why we 

sentations. For 

When F has characteristic zero, two representations having the 

are isomorphic. 

often focus our study on the characters of G instead of its repre- 

any character x the dimension of x is defined to be equal to the 

dimension of the vector space V on which G acts. Since the trace is invariant under 

conjugation, x is a class function. In other words for dl the g's in a conjugacy class 

Cl of G their images by x are equal. 

Given x and 

Proposition 2 

2, two characters of G, we define 

If x and 2 are two irreducible chamcters of G then 

1 i fx=x'  

O otherwise 

Any character of G can be expressed as a linear combination of irreducible char- 

acters. The character table of G is defined by the gathering of all the irreducible 

characters of G in a table. We also know that the number of irreducible characters 

of G is equal to the number of conjugacy classes of G. 

Given H a proper subgroup of G, then any representation p : H -+ GL(V) 

gives rise to an induced representation p z  : G --+ Aut(W), where W is the space 

of functions from G to V satisfying f (hx) = p(h)  f (x) for al1 h E H, and the action 

of G on W is given by gf (x) = f (xg) .  The character of cdled the induced 

character x$, is defined as follows 
4 

where ~ ( g )  = x(9)  i f 9 E H  

O otherwise 



A special type of induced character is obtained when one consider the trivial 

character lH : H -+ C where l ~ ( h )  = 1 for al1 h E H. Then you construct 1; 

with the above definition. Actually 1% is the character associated to  the permuta- 

tion representation of the coset space [GIHIQ. For g E G, 1$(g) is equal to the 

dimension of the subspace S where S = {x E [G/H]Q : gx = x). 

We now introduce an important theorem that is going to play a major role in the 

contruction of the character table of GL2(Fp). 

Theorem 2 (Frobenius Reciprocity) Let x be o chamcter ofG and S be a char- 

acter of H ,  where H is a subgroup of G. Then 

where XH i s  the restriction of x on H .  

2.3.2 The computation of the character table of G 

Again this part is based on ([Lalj chapter 18, section 12). Here are some definitions 

we need in the course of computing the character table of G. 

A = Diagonal subgroup of G 

Z = Center of G 

U = Group of unipotent elements (: i )  
B = Borel subgroup = UA = AU 

Then (BI = p(p-  I ) ~ .  We will construct the irreducible characters of G by inducing 

characters from B. There are four types of irreducible characters of G . 

First type 

Let p : F; -+ C* denote a complex character. Then p o det : G + C* are the 

characters of the first type of dimension one. Its values on the conjugacy classes 

are given in the following table. 

Table 2 



There are @ - 1) characters of first type, because IF;I = @ - 1). Note that they 

are al1 irreducible, since they are of dimension 1. 

Second type 

Let 

We obtain the induced character 

vq = 14w) 
where 

&(il) if S E B 
O otherwise 

Note that q!f is not irreducible because it contains p o det. Indeed using the Frobe 

nius Reciprocity Theorem we get 

- 1 
- - +Jg)(p 0 det) (g)* where * means conjugate 

IBI ,,* 

The characters x = @ - p 0 det are called of second type. Let's study the values 

that II): takes on the different conjugacy classes. 

For an elernent in the center we get 



For an element in a conjugacy class of the form A2 we have for x = ( :: 1:) 
a 1 ~ 1 x 4 ~  - 21x3 - ~ 2 x 3 ~  x: 

O a -xi ~ 1 x 3  - ~2x3~1 + aqx4 
belongs to B if and only if x E B. So we obtain 

For an element in a conjugacy class of the form A3 and for a given x E G we 

have 

belongs to B if and only if 1 3  or is equal to zero. So we obtain 

Lastly for an element ,û E C - F; (i.e P is of the form B I )  we have that any 

conjugate of p does not belong in B because pS(x) is invariant via conjugation and 

pa(x) is irreducible while for al1 g E B, p,(x) is reducible. So we have 

In the following table we reproduce the characters of type two. 

Table 3 



These type-two characters are al1 irreducible; indeed, using Table 1 we find 

There are ( p  - 1) such characters of type two corresponding to  the different possible 

P. 

Third type 

Let 1/> : A + C* denote a homornorphism. Take w = (: i) N \ A *  

a O a O 
T h e n ~ = w - ~ a n d w ~  O d ) w =  ( d  O  a O )  = g w i f g =  d ) .  Tbus 

conjugation by w is an automorphism of order 2 on A. Let [w]l/i be the conjugate 

character; i.e.([w]$(g)) = @(wgw-') = $(gW) for g E A. Then [w]p = p (because 

[w]p(g) = p(gW) = p(g)).  The characters p on A are precisely those which are 

i n h a n t  under [w]. The others can be written in the form 

with distinct characters $1, $2 : F'; + C*. We amy consider the induced character 

$G = Indg([u]+) with $ such that ui@ # l / i .  Those characters x = l/iG will be called 

of the third type. Let us study the values that takes on the different conjugacy 

classes. 



For an element in the center we have 

For an element in the conjugacy class of the form A2 we already know that 
/ \ 

g ( 0 O ) g-l E B if and only if g t B. Henre we have 

For an element in a conjugacy class of the form A3 we define 

There are two alternatives for an g E N ( B ) .  In the first g E B and then @G (U :) 
=+(O :) . In the second possibility g E N ( B )  - B  then we know that N ( B )  = 

B u Bzu. This is right because 

Therefore for such a g we have that g = gow for some go E G and we get 

where z = ( 0 : ) . So when ue  evaluate @G on an elernent =I: = (0 : ) We EFt 

@ Lastly for an element P E Cf - Fi we have @G(P) = O because there exist no 
* '  

g E G such that gpg-' E B. 



The characters of type three are reproduced in the table below. 

Table 4 

Moreover a character $c of the third type is irreducible. To show this, let us 

compute &O I x ( ~ ) I 2 .  We remark first that two elements g and g' E A are in the 

same conjugacy class if and only if g = g' or g = [wlg'. Now we have , using Table 1 

and Table 4 

The third term of this sum is equal to 

We write the sum over x E A \ F; as a sum for x E A minus a sum for x E F;. If 

x E F; then xW-' = x ' - ~  - - 1. By assumption on q5, the character x H  XI-^) 

for x E A is non trivial, and therefore the sum over x E A is equal to zero. So we 

get that the third term is equal to 

and 

b-1)b-2) Proving that qG is irreducible. Finally there are characters of the third 

type. Because this is the number of characters $ such that 1/, # [w]& divided by 

two because $ and [w]$ induced the same character $ J ~  in G. 



Fourth type 

Let B : FP2 + C denote a homomorphism, 

C (the non-split Cartan subgroup). Consider t 

that t = t - l .  So 

which is viewed as a character on 

P * tpt = [tlP 

is an automorphisrn i f  C which is also a field automorphism of FP[C1] = Fpz over 

F,. Since [Fpr : Fp] = 2, it follows that conjugation by t is the automorphism 

,6 H P*. AS a result we obtain the conjugate character [t]0 such that 

and we get the induced character 

Let p : F; + C denote a hornomorphism as in the first type. 

And X : F: -t C be a non-trivial homomorphism. Consider (p, A) = the character 

(P,  W G  = 

conjugacy 

G. 

For an 

i n d & ( ~ ,  A). Now what we want is the value of BG and (p, on the 

classes of G. We now compute BG 

element in the center we get 

For an dernent r = ( 0 : ) in a conjugacj 

on the Merent conjugacy classes of 

class of the form A2 we have 



because gxg-' $ C' for al1 g E G. 

For an  element x = ( : ) a + b, in a conjugacy c i a s  of the form /î3 ne have 

gq-l $ Cf for al1 g E G: This irnplies OG(z) = 0. 

Lastly for an element ,û E (Cf \ Fi), we have g&-' E Cf if and only if g E N' so 

We now study (p, x ) ~  on the different conjugacy classes of G. For an elernent 

in the center, (p, x ) ~  

2 1  2 2  F b r a n e l e m e n t , g = ( ~ ~ ) , a n d z = (  X3 374 ) E G ' w e b a ~ e x g z - ~ ~ Z U  

if and only if x3 = O. Cal1 S the set {x E G : x3 = O), For x E S we have zgxm1 = 

and Our cornputation cornes down to 

( )  P-1 P-1 
- - - pZ4 where p is a pth root of unity 

@ - 1) .1=1,=1 

For an elornent g = ( O : ) , # he have 



This belong to ZU if and only if x3xq(b - a)  = O and ( b  - a)(xix4 + x2x3) = O nhich 

is impossible. Thus ( p ,  x ) ~ ( ~ )  = O. 

For an element p E Ct\FG, then 9pg-l 4 ZU for al1 g E G. Thus (p,  X)9(P) = 0. 

The information obtained on the two characters BG and (p, is reorganized in 

the following table. 

Table 5 

X 

eG 

(PI wG 
Now consider the zharacter ( r e s g ,  X)O, where res0 is the restriction of 8 to FP. Then 

by the Frobenius Reciprocity Theorem we have 

((..se, x ) ~ ,  eG) = ((resd, A), O)F; = 
1 C 1O2(a)I2 = 1 

b - 1) a e q  

So BG OCCUIS in the character of (resd, x ) ~ .  Thus we define 8' = ( r d ,  - BG = 

([tls)'. A character 0' is said to be of the fourth type if 0 is such that 0 # [ t ]B .  

Using Table 5 we get the following table 

Table 6 

Lemma 5 û' of the fourth type  is irreducible. 



The third sum is equal to 

We write the surn over p E CI \ Fi as a sum for p E Cl minus a sum for p E Fi. If 

B E F; then = Pt-' = 1. By the assumption on 9 (@ # [t]9), the character 

for ,O E C is non-trivial and therefore the sum over B E C' is equal to zero. So we 

get that the third t e m  is equal to 

and 

So (Of ,  8') = 1 implies that 8' is irreducible. QED. 

The table also shows that there are 1 (Cf \ Fi)I = 9 distinct characters 

of the fourth type. We thus corne to  the final result of this section, namely the 

character table of G. 

Table 7 Character table of GL2 (Fp) 

1 Type ( number of that type 1 dimension 

To verify that there are no more irreducible character of G, one shows that the 

total number of characters in Table 7 is equal to  the number of conjugacy classes 

in Table 1. 

I 

I I  

I I I  

IV 

p O det 

@ - p d e t  

tl # [UJIii 
e l , e # [ t ] e  

(P - 1) 

(P- 1) 
[P- WP-21 

2 

pcp-1) 
2 

1 

P 

(P+U 

0- 1) 



Chapter 3 

Induced representations from the 

normalizers of the split and 

non-split Cartan subgroups 

Let us denote 15 and lEl the two induced characters. Our goal in this section will 

be to compare them. We will prove that 

where B is the Borel subgroup as defined in the last chapter. 

As we have seen, to  understand better the induced representation of the sub- 

group N (resp. N') in G, it is a good strategy to  find a set X (resp. X') on which 

G acts transitively and such that for an x E X the Stab(x) = N. When we do find 

such an X then I $ ( ~ )  is equal to the number of fked points of g in X. To construct 

these two sets , X and X', we will exploit the Mobius transformations acting on a 

projective space. 



3.1 Mobius transformations acting on Pl (F,) 

Consider the natural action of G = GL2(Fp) on the projective lines over Fp, i.e. 

P1(F,) = Fp U {oo). This natural action is via the Mobius transformations 

where x E Pl(Fp), with the convention that a/O = m, gm = a/c if c # O and 

Lemma 6 If g # X I ,  then g has ut most two fied points in Pl(Fp). 

Proo f (see for exarnple [La21 p.231 lemma 5.5): Let g = (: :). i f c  = 0 then 

g has one or two fixed points depending if a is equal to d or not. In that case oo is 

dways fixed. If c # O then for x # -d /c  ( because g(-d/c) = a, ) we have gx = x 

if and only if 
2 cx + x(d - a) - d = 0. (3.1) 

But this equation has at most two solutions different from {oo} and g(m) = 

a /c  # oo so cx> is not k e d  by g. QED. 

So the number of fixed points of g depends only on the number of solutions of 

(3.1) and we get 

O when (d - a)2 + 4bc # 
1 when (d - a)2 + 46e = O 

2 when (d - a)2 +4bc= O 

where a = O means that a is a square number in F,. To compare with the conjugacy 

classes of G we now consider %(y), the characteristic polynornial of g. The roots 

of p,(y) = y2 - y(a + d) + ad - cd are given by the quadratic formula 



So the number of 

Remembering the 
1 O when ( d -  a)* + 4 b c #  0 

distinct roots of the p,(y) is 1 uvhen (d - a)* + 4bc = O . 
2 when (d - a)2 + 4bc = 

conjugacy class of an element g E G is completely determined by 

the roots of its characteristic polynomial and by comparing (when c = O and when 

c # 0) the distinct roots and the fixed points of g we see that 
- 

#fJ9 " Ai) = P + 1 
#jp(9  - A21 = 1 

# f p ( g N A 3 )  = 2 

#,J9 " BI) = O 

3.2 Mobius transformations acting on X .  

Let X be set consisting of al1 subsets of two elements of P1(Fp). Then 1x1 = 

(p+1)2-(p+1) 2 = 9. The action of G on Pl (Fp) by Mobius transformations gives 

rise naturally t o  an action of G on X by g{xi, 22) = {gq, gx2). 

Lemma 7 This action of G on X is transitive, and Stab(0, oo) = N .  

Proof Let a, b E F,. Then we have (I :) 
(a,co} and ( : :){O,m} = {a ,b }  wbicb shows the trsnsitivity. 

1 I 

Setting x = {O, 00) E X we have 

Denote Si and Ss the two sets in the last equation. Let g = ( : : ) , 9 b e w F  
\ / 

to SI if and only if b = O and c = O. On the other hand g belongs to S2 if and only 

if d = O and a = O.  We therefore have 



which complet es the proof of the lemma. QED. 

Theorem 3 The values of on the different wnjugacy classes of G ( which 

is equal to the number of fized points of g with respect to the action of G on X 

described above ) are given in the table below. 

Table 8 Values taken by  1: ( g )  

conj. class 

P u A l  (; O) 
$7 - A2 (: a )  
9 " A3 (; ;) alb # -1 

9 " A3 (: b )  alb = -1 

Proof: If g is in the center then g is the identity when it acts on X. Therefore the 

9 " B1 
non - split 

t # O  

9 " BI 
non - split 

t = O  

number of points fixed by g is P*. 

# of classes 

1-1 

iPzUE3 
2 

ZIA 2 

- 

if g = ( O i )  we saw that g 6r.s m in Pl(Fp). W will use the fact that p 

Sp-112 
2 

9 

as a   obi us transformation has order p. Indeed, 

#elernents per clms 

1 

P? - l 

P ( P  + 1) 

P(P + II 

1: (g) 

p(P+l) 2 

O 

1 

ps.l 
2 

PO-  1) 

P@-1) 

O 

p+l 
2 



So we rewrite g as 

where si is any point different from W. The number of k e d  point of such a g is 

the number of subsets of two elements in PI (Fp) h e d  by the g - action. When 

you look at g decomposed in cycles it is clear that there are no such hced point. 

K g  = (: a )  where a + b, ue knov g fixes two points, 0 an6 m in Pl(F,). 

We will use-the f&t that the order of g divides ( p  - 1). Indeed 

We write g with cycles and we obtain more subsets of two elernents fixed by g, apart 

from the subset {O, w) which is always fixed, if and only if the order of g is equal 

to two. Then we have @ - 1)/2 more subsets. The order of g is two if and only if 

g = h ( ol ) The ournber of hred pointa of g in X ia (p + 1112 if g ha. order 

two and 1 ~hekr i se ;  

If g = [ O1 ) where t is the trace and n the n o m  and sucb that p g ( r )  = 

x2 - tx+n is ineducible, we know fioni the first section of this chapter that g has no 

fixed points in Pl(Fp). By the same reasoning, to have any subset of two elements 



fixed by g, we must have g of order 2. 

if and only if t = O. So when t = O, then we obtain ( p +  1)/2 subsets of two elements 

fixed by g because 

Therefore the number of fixed points of g is 2 if trace(g) = O and zero otherwise. 

There are 9 conjugacy classes of the form Bi with their trace = O. Indeed, if 
- 

t = 0 we get g = ( O ) and p&) = z2 + n must be irreducible. This is true 

if and only if -n is not a square in Fp. Which is true half of the values that n can 

take, 9. QED. 

3.3 Mobius transformations acting on Pl (F$) 

Before constructing Our set X' we analyse the action via Mobius transformations 

of G on P1(Fp*) = Fp(a) U (00). 

Lemma 8 When G acts on Pi(Fp2) via the Mobius transfomations action tue have 

Proof: Using lemma 6 we get again that for g # X I  then g has a t  most two fixed 

points. By the same logic presented in section 3.1 it suffices to study p J z )  to find 

the number of fixed points of g . So for the g not in a conjugacy class of the form 

g - BI we get the desiied number of fixed points. 

It remains only to study the case pg(z) is irreducible for g E G. Here pg(x) is 

irreducible in Fp but not in F&). So in Fp(a), p,(x) = (x - A) (x - 1) where 



X E F,* - Fp The numbers X and are the eigenvalues of g . Now consider Il' and 

W' (see [La21 p.235 exercice 14) the two eigenvectors associated to  X and 1. Then 

W and W' can be written in the following way: 

Indeed, suppose W - = ( :) then 

is possible if and only if c = O which contradicts the fact that p,(x) is irreducible 

over Fp. Actually w' = E because when you fix W = ( f ) p u  br r r  W' to be 

- .  

- 
. One venfies this in the equation gW' = XW' using that gW = A R '  . Let 

W U I  
S = (W W.) = ( ) tben using that 

gS = g(W, W') = (AW, XW') = (W, W') ( A  o ) = S ( ~  O )  
O x O Si 

we find that 

Thus S is a matrix that conjugates g to a diagonal matrix in GL2(Fpz) . Kow we 

daim that w and TU are fixed points of g. Indeed, 



In a similar way one shows g(w) = E. By lemma 6 , we obtain that g has exactly 

two fixed points , w and ui. QED. 

3.4 Mobius transformations acting on X'. 

The group G acts on X' = (Fp2 \ Fp)/wnj. by Mobius transformations. (This 
- 

follows because if x E Fpr , then g (x) = g (z) .) 

Lemma 9 The action of G on X' is transitive, and the Stabilizer Stab(x) is qua1 

t a  Nt ,  ÿ x = [a] E X'. 

Proof Let g = ( 1 1 ) E G; theo g(o) = u if and only if 

one checks that this is true if and only if g E Nt.  The transitivity of the G-action 
- 1 2  1 - follows frorn a counting argument: the orbit of [a] has size & = !-$-~l~.)  - 

= IX'I. QED. 

From the preceding section, when G acts on Pl (F,,) we have 

We will use this to calculate the number of fixed points of an arbitrary g E G with 

respect to  the action on X'. The computation will prove the following theorem. 



Theorem 4 The values of l$(g) on the diffent conjugacy classes of G (which is 

equal to the number offized points o f g  with respect to the action of G on X' defined 

above ) ore compiled in the table below. 

Table 9 Values taken by l$ (g)  

conj. class 

g ,̂ Bi 
non - split 

9 - Bi 
non - split 

Proof: For g in the center the number of fixed points by g is lx'( = v. 
For the case where g = ( O ) , there is no z E F, (a) such that g@) = z ( the 

point {m} being the only one in ~(F,(CX)) ). So the only possible case is when an 

element is sent into its conjugate by g. We have ( i i ) (XI + W) = ( ~ 1  - ~ 2 4  

if and only if 2ax2a = -1, which is impossible because 2aga # Fp while -1 does 

belong to Fp. So the number of fixed points of such a g is zero. 

For the case where g = (U ), o # b then p bas tuofixedpointsin PZ(FP(a)) 

namely a, and {O). But those two do not belong in Fpr - Fp. Therefore again our 

only hope is to find an x such that g(x) = z. So this condition says ( i :)(XI+ 



2 4  = x1 - x2a if and only if (a - b)xl + (a + b)x2cr = O . We know x2 # 0, 

it implies that (a + b) = O. Since (a + b) = O then (a - b) just can't be equal to 

zero and xl must be zero. Hence g has a fixed point if and only if xi'= O and 

a/b  = -1. When a/b = -1 the number of fixed points is equal to the number of 

different values taken by xz. Since X ~ Û :  = -x2a in X', we have that this number is 

( p  - 1)/2. Therefore the number of fixed points of such a g is a/b=  -1 

O otherwise 

For the case 9 = ( 1 y ) where x2 - B + n is irreducible, the argument is 

less straightforward. Rom our earlier result, we know there exist w, w E F,(a) - Fp 
such that g(w) = w and g ( a )  = E- So in any case, we certainly have one element 

in X' fixed by g . If there are more fixed points they must satis& g(x) = Z where 

z E F,(a) - Fp . This is true if and only if y = I if and only if tx - 1 = n(x3). 

So we deduce that t must be equal to zero because xz E Fp while x $ Fp . When 

t = O we have that ( ) (x) = r if and only if nrr = -1. So we are looiiog 

for the number of x satisfying 
-1 xz= -, 
n 

Lemma 10 The following sequence of mappings is exact. 

Norm 
1- kerN - Fi2 - Fi- 1 

Proof The norm of an element x E FP2 is defined as Norm(x) = XE . One checks 

that the norm is a homomorphism. If z = x1 + x~cr ,  its norm is 

where rn E Fp - {O) . First, the cardinality of ker(N) is at  most 2 p  because for a 

Exed xi there is at most two values of x2 such that Norm(x) = 1. On the other hand 

the cardinality of ker(N) is at least @ + 1) because @ + 1) divides Iker(N) 1 since i t  

is the kernel of an homomorphism Fi2 -t Fi. We deduce that Iker(N) 1 = @ + 1). 
So the sequence is in fact an exact sequence, hence F;2/ker(N) is isornorphic to FP. 

QED. 



Lemma 10 implies that for -l/n there are p+ 1 elements in Fi, (one whole coset 

of ker(N)) such that Norm(x) = -l/n. For such an x with norm equal to -i/n we 

have that x $ F;. Indeed if it were then x2 = - l /n  which implies x2 + l/n = O has 

a solution in Fp. This contradicts our choice of g. Therefore the number of fixed 

points of g in X' is equal to 1 + 9 = y. QED. 

3.5 The link between 1% and 1$, 

We now deduce the link between 1% and 1$. Consider the character x = 1$ - IN,. 
Using tables 8 and 9 we have that 

On the other hand, we remark that the irreducible character of G of type two 

@ - p O det ( see table 3 chapter 2 ) is exactly equal to x when p : Fi t C* is 

the trivial homomorphism. But $f - 1 = 1$ - 1. 

Theorem 5 Let G = GL2(Fp) with the subgroups N ,  Nt and B as defined in 

chupter 2. We have the following relation on the induce. charucters 

The dimension equation is now verified. 



Chapter 4 

Extension of Perlis' result 

In this chapter we will extend Perlis' method of comparing the Class Groups of 

arithmetically equivalent fields to the fixed fields of the normalizers of the split 

and non-split Cartan subgroup and the Borel subgroup. The construction we will 

encounter in this chapter is an analogue of the one of Perlis found in [Pe2]. 

The first section is devoted to defining the group theoretic invariant, a positive 

integer number Y, in terms of the induced representations of G = GL2(Fg) from 

the latter subgroups and in showing that its prime divisors must divide the order 

of G. In the second section we construct an isomorphism between the &part of the 

ideal class group of the fked field of N onto the !-part of direct sum of the class 

g o u p  of N' and the class group of B, and this for al1 primes t not dividing v. In 

the last section we discuss the difference between the main theorem of this chapter 

and Nehrkorn's theorem established in [Wa]. We will see how important it is to 

find concrete exarnples where the set of prime divisors of v is strictly contained in 

the set of prime divisors of IGI to make our result effective. 

4.1 Definition and divisors of v 

Let K be a normal extension of Q with Galois group G. Consider N, N', B the 

three subgroups defined in chapter 2 and their respective fixed fields K*, K*', 

KB.  We have that [K : Q] = IGl = p @ -  l), [KN : QI = IG/NI = 2 9  



- - -N I  - : Q] = IG/N'I = 9, [ K e  : 4: = IG/BI = ( p  + l), and from chapxr  3, we 

- b o w  that 15 + 1 = 1 s t  + lg. Let us &-note by x the character 1: + 1 and 3y X' the 

r5aracter + 1s. Their respective representations, D and Dl : G + G L k ( Q ) ,  

zre  isomorphic, where k = 1 + IG/-';l = (G/NfI + IG/BI = W. Triose two 

rqresentations are the permutation rqxesentation of G on 1.' = Q [ G / $ 3  Q and 

1-' = Q[G/Nt]  Q[G/B] .  Since the? are isomorphic there exist a ra t io rd  k x k 

bvertible rnatrix M such that 

EST al1 g E G. By clearing denomkators, we may assume that the coefficients 

GI' M are integers. For the momenz we ignore invertibilit~ and we look a t  al1 

kttegral matrices satisfying (4.1). TO see what M looks like when it satisfies (4.1) 

ee describe D and Dl explicitly. Let = 1, f i ,  ~ 3 ,  . . . , PJGIN~ be representatives for 

ù e  left cosets of G by N and let pk = 1 be a representative for the coset G. Now 

la p4, = 1, pb, . . . , piclN,, be represenzatives for the left cosets of G by 137 and let 

, . . . , = 1 be representatives ~ G T  the left cosets of G by B. The action of G 

OD these cosets describes two homomc.~phisms s and n' from G into the qsimetric 

s o u p  Sk given by 7r&) = j, where g,aJV = pjN for 1 5 i 5 JGINI and rr , (k)  = 1 

and  ~ i ( i )  = j, where gpiN' = 4.5- for 1 5 i < IG/N'I and g@ = dB for 

i > IG/NII. Associating i with the i rh  basis element of an k-dimensional vector 

spice over Q then identifies 7r9 and sr; with the matrices 

rbe displayed term being the (i, j) th &ment and 6 being the Kronecker 6 fùinction. 

Bs- comparing the coefficients one sees that a k x k matrix M = (mij)  s a t s e s  (4.1) 

if and only if 

fsr al1 g E G. That is, if and only if M is constant on the orbits of G unider the 

action g(i, j )  = (?r,i, ~roj). 



Let M be the set of all integral k x k matrices satisfying the equivalent conditions 

(4.1) and (4.2) and let 

v = gcd(ldetM1, M E M}. (4-3) 

Since x = 2, there exist at least one M E M with nonzero deterrninant. Thus u is 

a well defined positive integer. 

Remark 1 By interchanging x and )( (D and 0) we obtain another set M' and 

this does not change v. Then a matrix M belongs to M if and only if its transpose 

Mt belongs to Mt. We will need the set Mt in the next section. 

We now turn our attention to the prime divisors of v. We want to show that these 

primes divide the order of G. The group G acts in two ways on the free module 

Ztxl CB Zlxz $ @ Ztxk over the ring of !-adic integer Zt by permuting the xi's 

by the rules of r and a'. That is, the element g E G acts on these fiee module via 

the matrices D(g) and Dt(g). This gives us two Zt[G]-modules which we denote & 

and K. 

Lemma 11 The prime divisors of v are precisely the primes l for whzch the Ze[G]- 

modules Vc and are not isomorphic. 

Proof. Suppose fi and are isomorphic. A Zt[G]-isomorphism from fi to  Ii( is 

described in term of the basis xi, 2 2 ,  . . . , xk by a matrix N = (nu) in GLk (ZL) 

satisfying 

W g ) N  = NDt(9) 

for ail g E G. That is N satisfies (4.2) and detN $ O (mod t) .  Let M = (mu) be 

the matrix with coefficients in Z uniquely determined by O 5 mij < B and mg =- n, 

(mod l ) .  Then M E M (by verifying equation (4.2)) and detM = detN f O (mod 

t). So we have ! does not divide u . Conversely, if E does not divide v,  then there 

is a matrk M E M whose determinant is not divisible by l .  Thus M is invertible 

over Ze and yields an isomorphism from to V,'. QED. 



With this lemma, we will know the prime divisors of v as soon as we have a way 

of recognizing the primes e for which and V,' are isomorphic. 

Lemma 12 Let l be any prime number not dividing the order of G. Then & and 

V; are projective Zt[G] -modules. 

Proof We first show Q is projective. Let e : Vr -+ Y and f : F t Y be any two 

Z4[G]-homomorphisms where f is surjective. By definition fi is projective if and 

only if there exist 11 : & t F a Z4[G]-homomorphism such that f$ = e. Since 

G permutes the xi's in a two orbits action, any Ze[G]-homorn~rphism is completely 

determined by the image of XI and xk. Furthermore, an assignment of xl and zk 

extends to a Zc[G]-homomorphism from & if and only if the stabilizer of xl also 

stabilizes its image and the stabilizer of xk also stabilizes its image. The stabilizer of 

xl is N and the stabilizer of x k  is G. Hence N also stabilizes e(xl) and G stabilizes 

e(xk) in Y. Let zl E F be any preimage of e(xl) and zk E F be any preimage of 

e(xr). Since IN1 and IGI are not divisible by t they are invertible in Zr.  We now 

because n E Stab(e(x1)). Similarly we have f (zi) = e(xr). So the map $ : xi c-t 4 
and xk c-t 2; defines the desired Zc[G]-homomorphism that satisfies f $  = e. 

Indeed, on one hand one verifies that nO@(xl) = $ ( x l )  for all no E N and go$(xk) = 

$(xk) for al1 go E G to show that $ is an homomorphism. On the other hand one 

checks th& f o g(sl) = e(zl) and f O g(xk) = e(zk). We therefore have that fi is a 

projective Zl[G]-module. 

One shows in a similar fashion that is projective by studying the images of xl, 

xk-p and their corresponding stabilizers N t ,  B and by using the-fact that lNtI and 

1B1 are invertible in Ze. QED. 

We now obtain the main result of this section. 



Theorem 6 Euey prime number dividing v divides the order of G .  

Proof Given a prime l not dividing IGI. We will show that t does not divide u. For 

this, by lemma 11, we must show & i &' as Zf[G]-modules. The representations 

D, Dt of G on Vf and V/ have the same character. Furthermore since k' does not 

divide IGI it implies that V( and 5' are projective. And projective Zt[G]-modules 

are determined up to isornorphism by their characters (see [Se21 section 16.1, corol- 

lary 2 to theorem 34). We need this fact about projective Zf-modules because Zl 

representations are not always determined by their characters (for example, let & 

and Vb+1) be two vector spaces over F, with dimension 1 and ( p  + 1). Consider 

now f i  and pb,,) the respective trivial representations of G acting on & and Vb+l); 

every g E G is sent in the identity automorphism. The characters are equal even if 

the representations are not isomorphic). This shows that and are isomorphic. 

QED. 

(4 (el 4.2 The isomorphism cz Cl,,, @ ClKB for k' 

not dividing v. 

The ideal class group ClK ( for any number field K ) is the direct sum of its t-Sylow 
(1) subgroups. This section contains a proof that Cl,, = CI$,,, $CI$ whenever e does 

not divide v. We begin by considering the following two an't6meticdJy equivalent 

algebras (see introduction) L = K~ $ Q and L' = K*' $ K ~ .  Let M = (mij) be a 

matrix in M. We now define a map p, : L* -t Li*; for a = a~ @ al E L* we set 

Lemma 13 For matrices A and B in M and for a = aa 8 al E L* we have 



Proof (i) We certainly have that p.&) is nonzero and lies in K @  K. For nt E Nt = 

G ~ ~ ( K / K ~ ' )  we have x;.(l) = 1 and for b E B = Gal(K/KB) we have iri(l;) = k. 

Writing A = (mij) and setting 7;.f(i) = r and xb(i) = 1, from (4.2) we then have 

k- 1 k-1 

(nt Ci3 b ) p ~  (a) = n ntpi=l @ n bpi b(al)mkk 
i d  t 

so the image p&) lies in the  algebra K ~ '  @ KB since nt and b were taken arbitrary. 

Clearly p~ is multiplicative so we conclude that it is a group homomorphism. 

(ii) It follows directly from the definitions 

(iii) Recall that for B E M its transpose belongs to Mt (see remark 1). Just as 

each matrix in M gives rise to a homomorphism from L* to LI*, the matrix Bt gives 

rise to  a homomorphism p ~ t  in the opposite direction, namely for a' = a ~ t  N. a~ 

and Bt = (bij) we have 

We also have that the matrix product yields  AB: : L t LI. The composition 

(pBi) O (pa) also maps L onto itself. One checks the validity of (iii) by a straight- 

forward computation using (4.2) to convert indices like we did in the proof of (i) 

above. QED. 

The maps / 1 ~  will be used to define homomorphisms between the class groups 

of L and LI. This is accomplished in several steps. First, for any matrix M, let 

M+ be the matrix obtained by replacing the negative components of M by zero, 

and let M- = (-M)+. Then both M+ and M- have nonnegative entries, and 

M = M+ - M - .  By looking at condition (4.2) we see that when M E M we also 

have M+ and M- both belong to M. 

Next, we consider a nonnegative matrix M+ E M and observe that if x E L* 

is the direct sum of two integers (in KN and Q) then p ~ + ( x )  is &O the direct 



sum of two integers (in K ~ '  and KB). For the integral ideals U, A of KN and Q 

respectively we define 

to be the L'-ideal generated by the images of elements of U @ A. This definition 

extends imrnediately to direct sums of fractional ide& (of KN and Q). 

Finally, for M = M+ - M- in M and for any fractional ideal 24 @ A of L', we 

set 

This is a well-defined map on IN $ 1, where IN and I are the ideal groups l of KN 

and Q respectively. By denoting the ideal groups of K ~ '  and KB by IN' and IB we 

have the following lemma. 

Lemma 14 The map U @ A ++ p M ( U 8 d )  is a group homomorphism from IN @ I 

to IN# B IB- 

Proof Let 24 @ A and V @ B be two elements in IN $ I. In order to show pM((U $ 

A)(V @ 23)) = ~ M ( U  û3 A) - ~ M ( V  $ B)  it suffices to check that equality holds when 

both sides are extended to K @ K. Writing the extended ideals in square braquets, 

we must show [PM ((U @A) (V @ B) )] = [pM (U @A)] [pM (V @ B)] . This latter equality 

is an immediate consequence of the following claim: 

For every direct surn of ideals W $ C of K~ û3 Q we have 

the right hand side brackets denote extended ideals to K and we consider product 

of ideals in K. To prove this claim it  is sufficient to consider M with nonnegative 

coefficients and W, C are integral ideals in their respective number ring. 

The left hand side of (4.4) is generated by the images pM(w @ c) of elements in 

'The ideal group of a nurnber field K is the group of the fiactional ide& containing the integral 

ideals with the natural multiplication of ideais. 



W $ C, so the we h a ~ e  the inclusion C . Denote by the right hand side of (4.4) 

by [W] @ [Cl Mk. Write W = (wi, tu2) and C = (ci, c2) (see for example [Ma] 

p. 61). Then ( w ~ )  = W Dy and (w2) = W Dr with integral ideals Dy, Dy. 

The generators can be chosen so that V; is relatively prime to the norm of Dr; so 

that [Df] is relatively prime to every conjugate of [Dy] (see, for example [He], Satz 

74). By a similar construction we obtain D; and 2): with the same property where 

(ci) = C = V: and ( q )  = C Di. 

Now the claimed equality is clearly true for principal ideals, and the map W@C 

[w] @ [Cl Mk is multiplicative, so 

The gcd of these two principal idea1s of IK @ IK is [pM(wl @ cl), pM(w2 $ c2)] = 

[wIMl @ [cIMk, showing that the right side of (4.4) is contained in the left side. This 

gives the proof of the lemma. QED. 

Since the p~ take principal ideals of IN $ Iq to principal ideals of IN, @ IB, 

we obtain a family of homomorphisms between C I K ~  and Cl,~f 8 C I K ~  for each 

M E M. The next theorem studies these homomorphisms when they are restricted 

to  the e-Sylow subgroups of the ideal class groups. 

Theorem 7 Let KN, K ~ '  and Kg be as before. Then for all prime numbers t not 

dividing u ute have CC; cz ~l !$ ,  @ c&. 

Proof: Since t does not divide u there is a matrix A E M with l? not dividing 

detA. Let B be the matrix whose transpose is Bt = (detA) - A-'. Then B also 

belongs to  M. Let E cl$ lie in the kernel of PM. Then pMÜ = 1, so 1 = 
- ( d e t ~ )  

P ( B ~ ( P A ~ )  = PAPU = u , by lemma 13. Since Ü is killed by a power of i? and 

by detA, it follows that Ü = 1, so the restriction of to ~ 1 %  is injective. Since 

our arithmetically equivalent algebras, L and L', have symmetric roles, exchanging 

them yields an injection in the opposite direction, implying that the finite groups 
(JI CI!% and dl$, @ Cl,, are isornorphic. QED. 



4.3 Discussion on the Brauer's class number re- 

lation 

In Brauer relation theory we study the relation between class groups of subfields 

L* of L when we have an equation relating their respective induced representations 

in G =Gal(L/Q) in the following way 

and a ~ ,  bH E ZZo. For example when al1 the UR, bH's are equal to zero but for one 

H < G and one H' < G, H # H' we have ax = bRt = 1, then L~ and L ~ '  are 

arithmetically equivalent. Walter, in his article [Wa] published in 1979 (almost at 

same time Perlis proved his result on the class groups of arithmetically equivalent 

fields), showed the following theorem. 

Theorem 8 (Nehrkorn's theorem) Let L be a nonnal eztension Q and suppose 

the equation (4.5) 2s satisfied on the induced representation for some a ~ ,  bH.  Then 

for al1 the primes p not dividing the order of G=Gal(L/Q), we have the following 

isornorphism on the p-part of the subgroups 

Nehrkorn's theorem already tells us that for al1 the primes not dividing the order of 

GL2(Fp) we have the desired isomorphism of Theorem 7 between the class groups. 

In other words, if it is impossible to' find concrete examples where the set of prime 

divisors of the integer v is strictly contained in the set prime of divisors of IG1, then 

Theorem 7 would not be very interesting. In the next section, we will study an 

example where the only prime divisor of v is 2 while the prime divisors of IGI are 

2 and 3. 

Perlis7 construction can be extended, mutatis mutandis, to the more general 

context of equation (4.5). I t  is possible to construct a Y-Perlis integer with its 



associated extended relation on the class groups. But without concrete examples 

and the possibility of computing the integer u these results would not tell us much 

more than what we extract from Nehrkorn's theorem. 



Chapter 5 

Numerical examples 

In this section we study some concrete examples. First, we find normal extensions 

of Q with Galois group PGL2(F3), by studying elliptic curves. Second, we apply 

theorem 7 to the class groups of arithmetically equivalent algebras by computing 

explicitly the integer v. 

5.1 The field of 3-division points on E. 

We have for G = GL2(Fp) that + 1 = lgl + 1; (see 3.4). These four characters 

are also characters of PGL2(Fp) = G/Z which is denoted by G. Now we denote in 

a similar way = NIZ, B = B / Z  and fVi = N'/Z. Using the fact that Z is the 
- 

tenter of G, one shows 1$ (35) = 15  (g) IN (5). We observe also that  1: = 1% when 

we consider these characters as characters of G. Note that in the following TE = xZ. 

- 

So we have a similar relation of characters in G, namely -1. 



Our goal is to find a normal extension L of Q with Galois group isomorphic 

to C. This is achieved by considering the pdivision field of an elliptic curve E 

defined over Q (ive the ai's are in Q). To make possible any calculation we fix 

p = 3. Let E : y* + alxy + a3y = x3 + a2x2 + alx + as be an elliptic curve 

over Q. A fundamental fact in the theory of elliptic curve is that E = {P = 

(2, y )  satis&ing the equation that defines E) has a group structure. This g~oup  is 

described in Silverman's book ([Si] chap.3). 

Now in that group consider E[3] the subgroup of E consisting of the Bdivision 

points, E[3] = (P E E such that 3P = O). Let us denote by LEISI the field of 

3-division points of E. In other words LE13] is the smdlest field containing the x 

and y coordinates of al1 the P's in E[3]. We know that LE[3] is a finite extension of 

Q with the property that Gal(LElsI/Q) 5 GL2(F3) (see [Si] p.90). A P is in E[3] 

if and only if 2P = -P. This will be more manageable since we have formulas to 

compute 2 P  and -P. Given P = (x, y) E E we use the Duplication Formula ( [ S i ]  

p.59) and we obtain that the x-coordinate of 2 P  is the following, 

where bz = a: + da2, b4 = 2a4 + alï~3, b6 = ai + 4a6, b8 = a:a6 + 4a2- - ala3a4 + 
a2ai - a:. On the other hand x[- P] = x.  Therefore if P = (sol yo) E E[3], xo must 

be a root of F(x) = 3x4 + b2x3 + 3b4x2 + 3b62 i- b8. We denote the splitting field of 

F(x) by L. Let us look at the y-coordinate of a P = (zo, go) E E[3]. 

On the other hand y[- P]  = - y0 - alxo - a3. From this, one checks that y0 is a root 

of an irreducible polynomial of degree two with coefficients in L. So we have that 

LE13] is a quadratic extension of L. Frorn now on we will be working on the field L. 

By classical Galois theory we know that the Galois group of L over Q is a subgroup 

of S4, the permutation group of 4 elernents, because F ( x )  is a quartic polynomial 



([Ga] part 14). In Our study we will only consider the elliptic curves E such that 
- 

Gal(L/Q) = Sq. We remark that Sq = PGL2(F3) = G; to see that consider the 

natural action of G on Pi(F3) via the Mobius transformations. Hence we have the 

desired L. 
-- 

When we look carefully at B, Nt and N as subgroups of S4 we note that B = S3, 
- 
N1= Dg the dihedral group of 8 elements generated by ((1,2,3,4), (1,3) (2,4)) and 
- 
N = (1, (1,2), (3,4), (1,2)(3,4)) isomorphic to  2/22 8 2/22. The objective now 

is to find three irreducible polynomials f ( x ) ,  g(x) and h ( x )  such that for any root 

cr of f (s) we have Q(a) = L', for any mot B of g(z) ne have Q ( P )  = L~ and for 
- 

any root 7 of h(x) we have Q(7) = LN The reason for this requirement is that 

GP-PARI (version 1.39.03) cornputes the Ideal Class Group of the number field 

Q(a) where <Y is any root of an irreducible polynomial f (x) entered by the user. 

By a simple substitution F ( x )  is rewritten as f (y) = y' +py2 + qp + T ;  p , g , r E  Q 

(namely you divide F ( x )  by 3 and then you let y = x + k). The splitting field of 

f (y) is isomorphic to the one of F ( x )  so we keep the same notation for the field, - 
namely L. Let al,crz, q and a4 be the roots of f(y) then Q(%) = L~ because 

Gal(L/Q(ai)) = S3. NOW if we define 

then Q(Pi) is isomorphic to  L" because Gal(L/Q(Pi)) = Ds the dihedral group of 

eight elements. After some calculation we get 

This implies that Our g(x) = x3 + 2 ~ 2 ~  + (p2 - 4r)z - g2 is the resolvent for f ( x )  

([Ga] part 14). 



Finally, if we construct h(x) by defining the following values 

then Q(yi) is isomorphic to L~ because Gâl(L/Q(yi)) = x. We verify that 

So when we consider 
2 4 2 3  2 -  2 2 2  n t l ( ~ - ~ ) = ~ 6 - ( 7 ; + + ; + ~ 3 ) ~  + ( ^ l : + ~ ? ~ h &  

we see that h(x) = x6 + 8x4 + 16(~*  - 4r)z2 - 64q2. 

We are ready to compute concrete examples. Given an elliptic curve E over Q 

picked in the tables of Cremona [Ci] we first make sure that the Galois group of 

the splitting field of F(x) is S4 (using a function of GP-PARI). Then we construct 

f (x), ( x )  ( x )  Lastly we feed in GP-PARI with these three polynomials and it 

gives us back the corresponding Ideal Class Group denoted respectively Clle , Cllg 

and Cl* . A sample of the computations we obtained is reproduced below. 

Table 10 The Class Groups in fvnction of the elliptic curve E 



For a given elliptic curve E taken from Cremona's table [Cr], you read in the above 

table the class number followed by a description of the class group as a direct sum 

of cyclic groups (in square brackets) for our three subfields of L. When we observe 
(3) table 10 we rernark that for al1 these elliptic curves CI:! = CIL. @ CI(- LN' while in 

general there is no isomorphism between the 2-part (even if they do not differ by 

much!). Rom this there is hope that only the prime 2 divides v = v(G, N, B, Ni). 
Actually we know that 2 divides v just by looking a t  table 10. We will now show 

that 3 does not divide v by exhibiting a matrix M E M such that 3 does not divide 

Idet M 1. 

The elliptic curve E ClLB 
I 

ClLs ClLN 
I 



5.2 Computationofv 

We now construct a general matrix M E M. Such a matrix must satisfy equation 

(4.2). To study the action of G on the couples ( 2 ,  j), we first identify the coset 

representatives of GIN by the elernents of X (where X is defined in section 3.2), 
-- 

then those of GIN' by the elements of X' (defined in section 3.4) and finally those 

of G/B by the elements of P1(F3). Denoting the-elements of G by the numbers 1 

to 24 and by letting G act on X, X' and Pl(&) one shows without difficulty that 

M with integer coefficient satisfies equation (4.2) for al1 g E G if an only if M has 

the following form 

( A B B D C C D '  

B A B C D C D  

B B A C C D D  

B B A D D C C  

B A B D C D C  

A B B C D D C  

i E E E F F F F  

where A, B, C, D, E, F are integers. When we specialized A = D = F = 1 and 

B = C = E = O we get a matrix with ldetMl = 2'. Another specialization 

(A = D = E = 1 and B = C = F = O) gives us a matrix M with IdetMi = 24. So 

the integer v is a power of 2 and is equal to 2,4 or 8. We now apply theorem 7 to 

obtain the following result. 

Theorem 9 For ail prime e dgerent from 2 we have 

where L is any number field (normal extension) such that its Galois group i s  ù o -  

morphic to  S4 (= G). 

This result tells us that in concrete examples it is possible to compute the v of 

theorem 7 and obtain that v has less prime divisors (only the prime 2) than the 

order of G (the primes 2 and 3). F'rom the family of examples we studied we can 



also believe that theorem 7 is optimal in the following sense: when 2 divided v, 

we found specific elliptic curves (see table 10) where the 2-part of the class group 

equation was not satisfied. This may well be true in general. 

To conclude let us say there is still much more to do with arithmetically equiv- 

alent algebras. First, by looking at  table 10 we see that the 2-part of these class 

groups differ at most by a factor 2. There is certainly a uray to bound the ratio 

hz/h; in function of Our integer v. We can look at Perlis' work (in [Pe2]) for a 

similar problem and try to find an integer i = i(v) such that 2-' 5 hz/hk 5 2'. We 

would need to calculate v explicitly in that case. Second, we would like to general- 

ize theorem 9 for al1 normal extensions with Galois goup GL2(Fp) for any prime 

p. The method one should use is to exhibit a x matrix satisfying 

equation (4.2) such that its determinant has only a few prime factors. Let L be a 

Galois extension with Galois group G = GL2(Fp). 1s it true that for primes l! # 2 

we have cl$, z ~ 1 $ ,  @ cl$,, , and sirnilarly for G = PGL2(Fp)? Our hope is to 

answer this question by the affirmative. 
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