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Abstract

Two number fields having the same Dedekind Zeta function need not have isomor-
phic class groups. However, the p-parts of these class groups are isomorphic except
possibly for a finite number of exceptional primes p. These exceptional prime num-
bers divide the degree of the normal closure of the number field. In this thesis we
extend this result to étale algebras having the same Dedekind Zeta function. These
algebras consist of direct sums of a finite number of number fields. We apply this to
the study of the class groups of subfields of normal extensions having Galois group

isomorphic to GL2(Fp).



Résumé

Deux corps de nombres qui possédent la méme fonction Zéta de Dedekind n’ont
pas forcément des groupes de classes isomorphes. On sait cependant que les p-
parties de ces groupes de classes sont égales en dehors d'un nombre fini de nombres
premiers p exceptionnels. Ces nombres premiers exceptionnels divisent tous le degré
de le cloture galoisienne du corps de nombres. Dans cette thése nous généralisons
ce résultat aux algébres étales qui ont des fonctions Zéta de Dedekind identiques.
Ces algébres sont des sommes directes d'un nombre fini de corps de nombres. On
applique cette théorie pour étudier les groupes de classes de certains sous corps

d’extensions galoisiennes qui ont un groupe de Galois isomorphe & GLy(F,).
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Chapter 1

Introduction

Since the time of Dedekind, one customary starting point for analysing the arith-

metic of algebraic number fields has been the map
K+— CK (.’E)
assigning to each number field its Dedekind zeta function

1
Ck(z) = 7 for z € (1,00)
x(z I:EKN(I) or 00

where I runs through all the ideals of the number ring Og and N(I) = |Og/I|.
This function is known to converge for all z > 1 (see, for example [Fr-Ta] p.283).
Moreover, it extends to a meromorphic function of z € C having a simple pole
at £ = 1. The Dedekind zeta function of a number field encodes many of its
invariants. If two number fields K and K’ have the same Dedekind zeta function,
we say that K and K' are arithmetically equivalent number fields. They share
degrees [K : Q] = [K’ : Q] and discriminants Dx = D, have the same number of
real embeddings s(K) = s(K') and of pairs of complex embeddings t(K) = t(K"),
have isomorphic unit groups Ux =~ Uk, and they determine the same normal
closure L over Q (for an introduction of the above concepts read for example [Ma)
or [Fr-Ta]). Denoting G = Gal(L/Q), H = Gal(L/K) and H' = Gal(L/K") we

have the following equivalence (see [Pe2])
Ck(z) = (ko (z) if and only if 1§ =15,

1



where 1§ (respectively 1§,) is the trivial representation of H (or H') induced to G

(see chapter 2 section 3 for definitions).

The first example of nonisomorphic arithmetically equivalent number fields was
discovered in 1925 by Gassman [Ga] with K and K’ of degree 180. Later Perlis
[Pel] constructed infinite families of pairs of nonisomorphic arithmetically equiv-
alent fields. In that same article Perlis proved that the smallest degree for which

there exist pairs of nonisomorphic arithmetically equivalent fields is 7.

The Ideal Class Group of a number field K, denote Clg, is the quotient of the
group Ix of fractional ideals by the group Px of principal ideals. This group is
abelian, and is therefore isomorphic to the direct sum of its p-Sylow subgroups (in
fact every nilpotent group has that property, cf.[Ha} theorem 10.3.4 page 155). In
other words we have Clg = GB,,Cl,(’(’). It is a classic result that the class group of a
number field is finite (see again [Ma] or [Fr-Ta]). By computing the residue at the
simple pole z = 1 of the Dedekind zeta function of K one obtains ([Fr-Ta] p.284)

_ ‘2s+t7rtRKhK

Jim (z — 1)¢k(z) = WelDxl®

where Rk is the regulator of K, hg is the class number (which is the number of
elements in Clg), and W is the number of roots of unity in K. Comparing those
residues at £ = 1 for a pair of arithmetically equivalent number fields K and K’ we
get

hg-Rg = hg - Rgr.

This equation motivated Perlis to explore the relation between class groups of arith-
metically equivalent number fields K and K’'. Perlis [Pe2] introduced a group-
theoretic invariant, a natural number v = v(G, H, H'), whose definition depends on

G,H, H' and not on L, K or K’ such that for all prime p not dividing v we have
ci® ~ c1®),

He also showed that the primes dividing v must divide |H| = |H’|. In the same



paper he was able of computing explicitly the natural number v in two concrete

examples.

Before describing the general structure of this thesis we need to define the Dede-
kind zeta function of an algebra. The algebras we study are finite direct sums of
number fields. Let £ = @K; be such an algebra. Then we define (,(z) to be
IT; ¢ ()- )

We also introduce the Artin-L function L(z, p), where p is a representation of
G = Gal(K/Q). Let P be a prime lying over p and denote D, = {0 € G;oP =
P} the decomposition group at P. Let I, = {¢ € G;0(a) = a(mod P) for all
a € Ok} be the inertia group at P. Finally denote by o, € D,/I, the Frobenius
automorphism at P, i.e g, is an element whose restriction to the inertia field K
is the Frobenius automorphism. If V' is the vector space on which G acts via p, we

define the Artin L-function as follows
L(z,p) = [[detyin(1 —opp™®)™"  (z>1).
2
Using this definition one shows (see for example [Fr-Ta] p.311) that
L(z,1$) = ¢k (2)

and that
L(z,p+ %) = L(z, p) - L(z, ¥)

where p and 1 are two representations of G and p + 1 is the direct sum of these

representations.

In chapter 2, we study the group GL;(F,). On that group we define the split and
non-split Cartan subgroup, denoted C and C’, and the Borel subgroup, denoted B.
We also construct the character table of G. In chapter 3 we use that character table

to prove the following relation on induced representations

1$5+1=15 +1§



where N and N’ are respectively the normalizers of C and C'. By the basic proper-
ties of the Artin L-functions (see above) one sees that L(z,1{+1) = L(z,1$)L(z, 1)
= (g~ (z)((z) and similarly L(z,1§, + 1§) = (xar (z)Cx 5 (z) where for example KB
denotes the fixed field of K by B. Hence we have

Cren (z)C(z) = Cyemr () ke ().

It follows that the two algebras £ = K¥ @ Q and £’ = KV @ KB share the same
Dedekind zeta function. They are then said to be arithmetically equivalent. In chap-
ter 4 we extend Perlis’ result to arithmetically equivalent algebras by constructing

a positive integer v such that for all prime ¢ not dividing » we have
cidy ~ 9, @ cllf,.

We also show that the primes dividing v divide the order of G. In chapter 5 we
apply the theory developed so far to a concrete family of examples arising from the
3-division points of elliptic curves. In these examples we prove that v is a power of

2.



Chapter 2

A brief study of G = GLy(F))

2.1 The conjugacy classes of G

Consider G = GL,(F,) , the group of 2 x 2 invertible square matrices with entries in
the finite field F,, of p elements. It can also be seen as the group of automorphisms
of the vector space V = Fp x Fp, over F,. The cardinality of G is equal to the
number of bases of V. For the first vector of the basis, there are p? — 1 choices
(rejecting (0,0)). For the second, you need to take out all the vectors spanned

by the first one and you get (p? — 1) — (p — 1) = (p® — p) choices. Therefore
IGl = #*-1)(#*-p)=pp+ 1)(p-1)%

Given g € G, consider its characteristic polynomial p,(z) = 22 — tz + n where
t =trace(g) and n =det(g) (the norm). We know from basic linear algebra that
Py(Z) = Pogo-1(z) for any o € G. In other words p,y(z) is invariant by conjuga-
tion. Furthermore, a conjugacy class is completely determined by its characteristic

polynomial. There are four possibilities for p,(z).

The first case; py(z) = ( —a)? and the eigenspace associated to a is of dimension

a 0
two. In that case g = . The matrix g is scalar and (p — 1) such classes

0 a
exist. When the matrix g is scalar we denote it by: g ~ A,.



The second case; p,(z) = (z — a)? but the eigenspace associated to a is of

dimension one. By the theory of the Jordan canonical form (see for example [Ja]

0 a
exist. When g is of the second case we denote it by: g ~ A,.

a 1
section 3.10 p. 200), g is conjugate to ( ) Here again (p — 1) such classes

The third case ; p,(z) has two distinct roots, a and b in F,. By the Jor-

0 b

. o . . . a 0
dan canonical form, g is diagonalisable and is conjugate to ) There are
fl’:—l)ép—'—z)- such classes corresponding to subsets of two elements in F;. When g is of

the third case, it is denoted by: g ~ Aj.

The fourth case; p,(z) is irreducible over F,. Let F,2 be a fixed quadratic
extension of F,. The irreducible monic polynomials of degree two over F, are in
bijection with (Fp2 \ F;)/t, where t is the Galois automorphism. Hence there are
P—%Lll of them. When g has irreducible characteristic polynomial, we denote it by:
g ~ B;.

Now we compute the sizes of each of these four types of conjugacy classes. The
general strategy is the following. Given a conjugacy class C, the group G acts
transitively on C via conjugation. By a basic fact in group action theory (see [Ja]
section 1.12 p.71) we have |C| = X ,4i,[G : Z(z;)] where z € C and Z(z) is the

centralizer of z. We therefore have
[Cl=[G:Z(g9)] foranygeC (2.1)

For the first case when g is in the center, we have |A;(g)| = 1. In other
words the number of element in the conjugacy class of g ~ A, is one because then

g belongs to the center of G.



a l

0 «a
tation shows that g = gz if and only if c = 0 and e = d. Hence

Z(g)={x€G’ : z=(a b)}
0 a

Thus |Z(g)| = (p — 1)p and |A42(g)| = (p — 1)(p + 1) by equation (2.1).

a b
For the second case, g ~ 4,, let z = and g = ( ) A compu-
c d

a 0
For the third case, g ~ A3, let g = ( ) Then zg = gz if and only if
0 g

Z(g)={zeG : xz(a 0)}
0 b

Thus |Z(g)| = (p — 1)? and |A;3(g)| = p(p + 1) by equation (2.1).

(b,¢) = (0,0). Hence

For the fourth case, g ~ By, let o be a root of p,(z). Then g belongs to the

a 0
conjugacy class of g’ = ) Let z € GL2(F,2) be such that ¢’ = zgz~! then
0 @

zZ(g)z™! is contained in

Z(g’)={:z:€G' : :1:=(’71 0 )}
0 7

Moreover it consists exactly of the matrices in Z(g') satisfying 1 = 7. Thus Z(g)

is isomorphic to F;, and
1Z(9)| =p* - 1.

By equation (2.1) we get |Bi(g)| = p(p — 1). The results are summarized in the
following table.

Table 1 Conjugacy classes of G



Conjugacy class # of classes | # element/class

a 0
g~ A 0 a (»-1) 1
1

a 2
g~ Ay 0 (p-1) p -1
a
a 0 1)(p—2
g~ Az 0 b 2 p(p+1)

g~ B;  non-split E(%Q p(p—1)

2.2 Definition of the split and non-split Cartan

subgroup

This section is inspired from ([Lal] chapter 18, section 12). A split Cartan subgroup

of G is a conjugate to the group of diagonal matrices.

a 0
C= with a,b € F}
0 b

Let Fp2 be a separable quadratic extension of F,. Let {w;, w;} be a basis of Fp2 over
F,. Then F;. acts on Fp, x F, with respect to the chosen basis via multiplication.
We can therefore view F, as a subgroup of G. We denote by C' this subgroup.
A different choice a basis of Fz corresponds to conjugation of C’ in G. We call
C' a non-split Cartan subgroup . The subalgebra F,[C'] CMat,(F,) is isomorphic
to Fy itself while the units of the algebra are the elements of C" = F},. Consider
{1,a} as a basis for Fp2 over F,. For example, when p # 2, o can be taken as a
root of 22 — @ where @ is not a square in F,. In that case we describe the elements

of C' in the natural basis {1, a} of Fy2 and we have

0’={($ “y) :(z,y)aé(o,O)}-
¥y z

Before continuing the analysis of our Cartan subgroups we need the following

classical theorem found for example in ([Ja] p.207).

8



Theorem 1 (Frobenius Theorem) Let A € M,(F), F a field, and let det(\] —
A) =dy(A)---ds(A) be the characteristic polynomial ezpressed in irreducible factors
over F[)\]. Let n; = deg di()\). Then the dimension of the vector space over F of
matrices commuting with A is given by the formula

8
N =3Y"(25-2j + 1)n;.
j=1

We are now ready to resume our study of the Cartan subgroups.
Lemma 1 The subgroup C' is a marimal commutative subgroup

Proof Clearly C' is a commutative subgroup. Now suppose z € G commutes
with all elements of C'. The matrix endomorphisms, Mat,(F,), is an F,-algebra.
Consider F,[C'] as a subalgebra of Maty(F,). We know [F,[C’]| = p%. For z ¢
F,|C'], we have |F,[C',z]| > p?+1. Now by the formula of Theorem 1 the dimension
of the vector space over F, of matrices commuting with z can’t be equal to 3 (analyse
the possible s), hence |F,[C", z]| # p®. Since [F,[C’, z]| divides |Mat,(F})| it implies
that |F,[C’, 2]} = [Mat,(F,)| but then Mat,(F,) would be commutative which is
not the case. Therefore £ € F,[C']. But z is invertible, so z € C'. QED.

A Cartan subgroup is a subgroup conjugate to the split Cartan subgroup or to
one of the subgroups described above (one of the C’). Here is a more conceptual

way of seeing the Cartan subgroups.

Lemma 2 Every mazimal commutative subgroup of GLo(¥,) is a Cartan subgroup,

and conversely.

Proof Clearly the split Cartan subgroup is a maximal commutative subgroup of
G. Suppose H is a maximal commutative subgroup of G. We say that H is
diagonalizable if and only if all its elements are diagonalizable with respect to a
fixed basis. If H is diagonalizable over F,,, then H is contained in a conjugate of the
split Cartan subgroup. On the other hand, suppose H is not diagonalizable over Fp.
It is diagonalizable over Fy, the separable closure of F, (in the basis {(1,0), (0,1)}



0
of F;, = F, ®F,, any element a € H is equivalent to the diagonal matrix ( ‘ )
0=

where = and 7 are the eigenvalues of ), and the two eigenspaces of dimension 1
give rise to two characters
6,0 - H— F;’

of H in the multiplicative group of the separable closure. For each element a € H
the values ¢(a) and ¢'(a) are the two eigenvalues of a. At leasf for one a € H,
these eigenvalue are distinct because H is not diagonalizable. Hence the pair of
elements ¢(a),¢'(a) are conjugate over F. The image ¢(H) is cyclic, and if ¢(c)
generates this image, then we see that ¢(a) generates a quadratic extension Fp2 of
F,. The map

ar— ¢(a) witha e H

extends to an Fy-linear mapping, also denoted by ¢, of the algebra F,[H] into Fy..
It follows that ¢ : F,[H] — F,2 is an isomorphism. Hence ¢ maps H into F.,

and in fact maps H onto F}. because H was taken to be maximal. QED.

The normalizers of C and C’.

We also want to describe what are the normalizer of C and C'. Let g =

a b z 0
€ G and € C, then
c d 0y

g z 0 g = 1 adz - bey —abz + aby cC
0y det(g) cdz — cdy —ber + ady

if and only if (a,d) = (0,0) or (b, c) = (0,0). Therefore the normalizer of C is

a 0 0 ¢
N = s :a,b,c,d€Fp 0.
0 b d 0

Before computing N/, the normalizer of C’ we need two lemmas.

Lemma 3 Lett be the linear automorphism of Fj2 given by the galois conjugation.

1 0
(In the basis {1,a} of Fp2 chosen above, it is described by the matriz ) )
| 0 -1

10



Then
tz =7t for all x € Fpe

Proof. A direct verification.

Since t does not commute with C’, it follows from lemma 3 that t € N' — C".
Lemma 4 (N':C')=2
Proof (see [Sel] p.279): If s € N’, the application £ — szs™! gives rise to an
auto morphidm of Fy[C'] fixing Fp. Let ¢ : N' — {1} = Aut(F,:) be the
homomorphism which sends s to this automorphism. If 1(s) is the identity then s

commutes with C' and hence belongs to C’' by lemma 1. Hence ker(y) = C’. But

9 is surjective by lemma 3. QED.
Lemma 4 implies

N' = C'utc’

= {(’ “”),( z “y):(z,y);e(o,m,a;m}
y z -y -z

2.3 The character table of G

2.3.1 Representation theory of groups

We review the basic facts of representation theory of groups (see for example [Se2]).
Given a finite group G, a homomorphism p : G — GL(V) from G into the

automorphism group of a vector space V over F (a field) is called a representation of

G. If pis a representation of G, p(g) can be viewed as an invertible (dimV) x (dimV)

square matrix. We say that p: G — GL(V) and ¢/ : G — GL(V") are isomorphic
representations if and only if there exist an invertible n x n matrix M (where

n = dim(V') = dim(V’)) such that for all g € G we have

p(g)M = M/p'(g).

. For any representation p of G we can write p as a direct sum of irreducible repre-

sentations. The set of irreducible representations is defined to be the smallest set

11



of representations having the above property. To the representation p we associate

the character x, : G — F defined by

Xp(g) = trace p(g).

Proposition 1 When F has characteristic zero, two representations having the

same character are isomorphic.

This is why we often focus our study on the characters of G instead of its repre-
sentations. For any character x the dimension of x is defined to be equal to the
dimension of the vector space V on which G é.cts. Since the trace is invariant under
conjugation, ¥ is a class function. In other words for all the ¢’s in a conjugacy class
C, of G their images by x are equal.
Given x and X/, two characters of G, we define
(6 x) = I—Cl?l > x(9)x'(g7).
g9€G
Proposition 2 If x and X' are two irreducible characters of G then

(X1X')={ Loix=x

0 otherwise

Any character of G' can be expressed as a linear combination of irreducible char-
acters. The character table of G is defined by the gathering of all the irreducible
characters of G in a table. We also know that the number of irreducible characters
of G is equal to the number of conjugacy classes of G. |
Given H a proper subgroup of G, then any representation p : H — GL(V)
gives rise to an induced representation p§ : G — Aut(W), where W is the space
of functions from G to V satisfying f(hz) = p(h)f(z) for all h € H, and the action
of G on W is given by gf(z) = f(zg). The character of p, called the induced

character x§, is defined as follows
1 o
Xi(0) = 1 H] 2 X 9)
z€G

ifge H
where x(g) = x(9) gest
0 otherwise



A special type of induced character is obtained when one consider the trivial
character 1y : H — C where 1y(h) = 1 for all h € H. Then you construct 1§
with the above definition. Actually 1% is the character associated to the permuta-
tion representation of the coset space [G/H]Q. For g € G, 1§(g) is equal to the
dimension of the subspace S where S = {x € [G/H]Q: gz = z}.

We now introduce an important theorem that is going to play a major role in the

contruction of the character table of GL,(F,).

Theorem 2 (Frobenius Reciprocity) Let x be a character of G and 1) be a char-
acter of H, where H is a subgroup of G. Then

(X’ wfa;()G = (XH) ¢)H

where xg 1s the restr'ictionAof x on H.

2.3.2 The computation of the character table of G

Again this part is based on ([Lal] chapter 18, section 12). Here are some definitions

we need in the course of computing the character table of G.

A = Diagonal subgroup of G
Z = Center of G
) 15
U = Group of unipotent elements( )
01
B = Borel subgroup = UA = AU
Then |B| = p(p—1)%. We will construct the irreducible characters of G by inducing

characters from B. There are four types of irreducible characters of G .

First type
Let p : F; — C* denote a complex character. Then podet : G — C* are the
characters of the first type of dimension one. Its values on the conjugacy classes

are given in the following table.

Table 2

13



a 0 a 1 a 0
(NG| Lo
0 a 0 a 0 d
podet| pa)P | waP | wad) | podet(s)

There are (p — 1) characters of first type, because |F;| = (p — 1). Note that they

- are all irreducible, since they are of dimension 1.

Second type
Let

We obtain the induced character
1[),? =1 ndg(¢#)

where

Yulg) ifge B

0 otherwise .

(%)(z— E (9797") and %u(g) = {

9€G

Note that ¢f is not irreducible because it contains podet. Indeed using the Frobe-

nius Reciprocity Theorem we get

(Y5, podet)e = (dm, p0 det)

= 13 B| 3" Yu(g)(zodet)(g)* where * means conjugate
9€B

= IB'ZIP

geB
= 1.

The characters x = 1ﬁf — podet are called of second type. Let’s study the values
that wf takes on the different conjugacy classes.

For an element in the center we get

C a3 0)-te( 0] =

0 a

14



T, T
c For an element in a conjugacy class of the form A, we have for z = ( b )
Z3 T4

2
. a 1 T1Z40 — T)23 — T334 zy
in G that z 1= E?t.l(T) \

0 a —I3 T1T3 — T2Z3a + AT T4

belongs to B if and only if z € B. So we obtain

el @1 1 . a 1)
#ad) - mEells o))

- '—;—l Y $u(0)e(@)ule™)

geB
= p(a)®

For an element in a conjugacy class of the form A; and for a given z € G we

e 0} _, 1 T1T4Q — ToZ3b —Z1T0a + T172b
z T = ———
0 b det(x) T3T4a — .'IZ3.'L'4b —I3ZT20 + $1.‘E4b
( belongs to B if and only if z3 or z4 is equal to zero. So we obtain
a 0 1 . a 0
ve =2 |y gt
“No o B gzeé “1"lo s
2|B| a0

Lastly for an element 8 € C' — F; (i.e 8 is of the form B,) we have that any

have

conjugate of 3 does not belong in B because pg(z) is invariant via conjugation and

ps(z) is irreducible while for all g € B, py(z) is reducible. So we have
Y. (B€C'\F;)=0

In the following table we reproduce the characters of type two.

|G a) (e o)

vg-nodet| pu@? | 0 | ued)  [-modet(s)

Table 3

X HEC'\F;

15



These type-two characters are all irreducible; indeed, using Table 1 we find

IGI(x:x) = Y Ix(9)l?

g€G
p—-1
= 3l +
P+ )Y ad)f +pp—1) T |- podet(B)P
a<d BeC'\F;
SN R UEL (CEE RS

— p(p2— 1) (2p2 _ 2)
= |G|

There are (p—1) such characters of type two corresponding to the different possible

I-

Third type
01

Let v : A — C* denote a homomorphism. Take w = € N\ A.
10

0 d 0 0
Then w = w-! and w| w = =g¥if g = ¢ . Thus
‘0 d 0 a 0 d

conjugation by w is an automorphism of order 2 on A. Let [w]y be the conjugate
character; i.e.([w}y(g)) = Y(wgw™) = ¥(g¥) for g € A. Then [w]y = pu (because
[wle(g) = u(g”) = n(g)). The characters 1 on A are precisely those which are

invariant under [w]. The others can be written in the form

¢( @0 ) = b))
0 b

with distinct characters 1,1, : F; — C*. We amy consider the induced character
¥C = Ind§([wlp) with 1 such that wip # 1. Those characters x = %€ will be called
of the third type. Let us study the values that 1/ takes on the different conjugacy

classes.
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For an element in the center we have
1

cl ¢ O . a 0} _,
o) - azebi )

- %zb(a 0) = 0+ 1)),

0 a

For an element in the conjugacy class of the form A, we already know that

a 1
g( ) ¢~ € B if and only if g € B. Hence we have
0 a

“(02) s 2) e

For an element in a conjugacy class of the form A3 we define

N(B)={:z:€G :z(a 0)$—1€B}=BU{(1:1 1:2) :.7:2,2:3;&0}.
0 b I3 0

0
( There are two alternatives for an g € N(B). In the first ¢ € B and then ¢¢ ( ¢ )
0 b
a 0 '
= . In the second possibility ¢ € N(B) — B then we know that N(B) =
0 b

B U Bw. This is right because

Ty Zo Ol_xle
0 =z3 10 a:30.

Therefore for such a g we have that g = gow for some go € G and we get

a O a 0 N
P (g( )g“‘) =9 (90( ) go“) = P(z")
0 b 0 b

a 0 a 0
where z = ( ) . So when we evaluate %€ on an element z = ( ) we get
0 b 0 b

¥o(z) = lTlg—l(IBlw(x) + |BR(z?)) = %(z) + %(a®).

Lastly for an element 8 € C' — F}; we have ¥(8) = 0 because there exist no
g € G such that g8g~! € B.

17



The characters of type three are reproduced in the table below.

X T = a#b
0 a 0 a 0 b
Wl #9|@+1%@) | ¥ | w@+vE) | o

Moreover a character 1C of the third type is irreducible. To show this, let us

Table 4

BeC'\F;

compute 3, |x(9)|>. We remark first that two elements g and ¢’ € A are in the
same conjugacy class if and only if g = ¢’ or g = [w]g’. Now we have , using Table 1
and Table 4

THCQP = p+1? T WE@P+ @ -1 Y W)

g€eG a=1 a=1

tpp+1) 3 (@) + (=)

ze(A\Fp)/w
The third term of this sum is equal to

(p+1)p

2 z\:1.~.(¢(w) + 9" )@ (7) + (=)
=&;—1) > (4149 ™) + 9"

z€A\F;

We write the sum over z € A\ F}, as a sum for z € A minus a sum for z € F}. If
z € F} then z¥~! = g1~ = 1. By assumption on ¢, the character z — 9(z'~%)
for z € A is non trivial, and therefore the sum over £ € A is equal to zero. So we

get that the third term is equal to
2e+ Dinip - 1)p - 2) - 260~ 1] = plp + 1o - (o~ 3)
and
§l¢6(y)l2 = (p+DE°* -1+ -0 -1) +plp+1)p-1)@-3)
g = p(p- 1)@ 1) =[Gl
Proving that € is irreducible. Finally there are ﬂgﬁl characters of the third

type. Because this is the number of characters 9 such that ¢ # [w]y, divided by

two because 1 and [w]y induced the same character ¥¢ in G.
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Fourth type

Let 8 : F;; — C denote a homomorphism, which is viewed as a character on

1 0
C' (the non-split Cartan subgroup). Consider t = ( ) € N'\ C'. We have
0 -1
that t =171, So
B +— tft = [t}8
is an automorphism of C' which is also a field automorphism of F,{C'] ~ F,. over
F,. Since [Fp2 : Fy] = 2, it follows that conjugation by ¢ is the automorphism

B — (P. As a result we obtain the conjugate character [t]# such that
([£16)(8) = 6([2)8) = 6(5"),

and we get the induced character
6° = ind% (8) = indS ([t]0)-

Let p: F; — C denote a homomorphism as in the first type.

And A : F} — C be a non-trivial homomorphism. Consider (, A) = the character

on ZU such that
(1, X) (( 0 m )) = ma)\(z).

(#,A)¢ = indy(u, A). Now what we want is the value of #° and (i, A\)€ on the

conjugacy classes of G. We now compute #° on the different conjugacy classes of
G.

For an element in the center we get

ec(‘; 0) I'g,'lat]o)( )=p<p—1)o(a).

a 1

For an element z =
0 a

) in a conjugacy class of the form A; we have

1 .
8%(z) = o gﬂ(gmg'l) =0
9

19



because gzg~! ¢ C' for all g € G.

‘ a 0

For an element z = a # b, in a conjugacy class of the form A4; we have
0 b

9zg~! ¢ C' for all g € G. This implies 8%(z) =0
Lastly for an element 3 € (C'\ F}), we have g8g~'! € C' if and only if g € N’ so

-1 1 . -
) 6°(8) = IC’I > 6(gBg )+|N,\C,|9(yﬁg Y

gec'
= 8(8) +0(8").

We now study (u,A)€ on the different conjugacy classes of G. For an element

in the center, (y, A)G( ; z ) = I—'z%l-,(u, A)(a) = (p? - 1)u(a).

T3 I4
if and only if z3 = 0. Call S the set {z € G : z3 =0}, For z € S we have zgz~! =

al T1 To
For an element ,g = ,and T = € G we have zgz~' € ZU
0 a

1
a a(n1z
( (125 a™) ) and our computation comes down to
C 0 a

G le
(1, 0)°(9) wm;mnu )

= IZU| :tggu(a $1274 )

- Il’g(gl T Aot

z1,T4=1

_#a) B
= oD > Y p*™* where pis a p* root of unity

z1=114=1

=’@5§( )

z1=1

= —ula).

a 0
For an element g = ( ),a # b we have
0 b

( a1 T174(a — b) z1z5(b — a)
T Get() '

z3z4(a — b) zoxz3(b— a)
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This belong to ZU if and only if z324(b—a) = 0 and (b— a)(z1z4 + 7273) = 0 which
is impossible. Thus (g, A)%(g) = 0.

For an element 8 € C'\Fy, then gBg~! ¢ ZU for all g € G. Thus (g, A)9(8) = 0.
The information obtained on the two characters 8¢ and (i, A)€ is reorganized in

the following table.

a 0 a 1 a O
X ( ( ) ( )a;éb ,BGC"\F;
0 a 0 a

85 | plp—1)6(a) 0 0 6(B8) + 6(8")
(1,28 | (* = p(a) | —u(a) 0 0

Now consider the character (resf, A)®, where resf is the restriction of 8 to F,. Then

Table 5

by the Frobenius Reciprocity Theorem we have

oo 2 e =1

So 8€ occurs in the character of (resf, A)¢. Thus we define 8’ = (resf, A\)¢ — 66 =

([t]6)’. A character 6’ is said to be of the fourth type if 6 is such that 8 # [t]6.

((resB, X)C,6%) = ((res8, N), 0)r; =

Using Table 5 we get the following table

X a#b
0a/ | oa)| oo
0,040 0-16()| —6a) | 0  |-6(8)-6(8)

Lemma 5 & of the fourth type is irreducible.

Table 6

B €C'\F;

Proof

E@F = e-1p-1)+@E-1E"-1)

geG
2P0 s~ sy 4 a2

2 pecnr;
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The third sum is equal to

plp—1)

s 2 (0(8)+8(8))O(B™) +6(5™))
BEC'\F;
=p__(p2' 1) Y @+1+6(8+6(871)).
BEC'\F;

We write the sum over S € C’\ F; as asum for 8 € C' minus a sum for § € F;. If

B € F} then §'~* = *~! = 1. By the assumption on 6 (8 # []6), the character

Br— 0(5')

for B € C' is non-trivial and therefore the sum over # € C’ is equal to zero. So we

get that the third term is equal to
Iip‘z——l)[z(f’ —p-2(p- 1)) =pp-1)°
and
g%lo'(g)lz = (p=10+(p-1)*p+1) +plp— 1)
= @-1)p-1)+(+1)+p" =G|

So (#',¢') = 1 implies that @' is irreducible. QED.

The table also shows that there are 3|(C' \ F})| = 3%11-1 distinct characters
of the fourth type. We thus come to the final result of this section, namely the
character table of G.

Table 7 Character table of GLy(F,)

Type number of that type | dimension
I podet (p-1) 1
IT | % — podet (p-1) P
I [4°, ¢ # [wly = (p+1)
IV @, 0#[te Pt r-1)

To verify that there are no more irreducible character of G, one shows that the
total number of characters in Table 7 is equal to the number of conjugacy classes
in Table 1.
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Chapter 3

Induced representations from the
normalizers of the split and

non-split Cartan subgroups

Let us denote 1§ and 1§, the two induced characters. Our goal in this section will

be to compare them. We will prove that
1§ -1§, =15 -1

where B is the Borel subgroup as defined in the last chapter.

As we have seen, to understand better the induced representation of the sub-
group N (resp. N') in G, it is a good strategy to find a set X (resp. X’) on which
G acts transitively and such that for an z € X the Stab(z) = N. When we do find
such an X then 1§(g) is equal to the number of fixed points of g in X. To construct
these two sets , X and X', we will exploit the Mobius transformations acting on a

projective space.
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3.1 Mobius transformations acting on P,(F))

Consider the natural action of G = GL3(F,) on the projective lines over F,, i.e.

P,(F,) = F, U {oo}. This natural action is via the Mobius transformations

- a b z_az+b
gr= c d T ex+d

where £ € Py(F,), with the convention that a/0 = oc, goo = a/c if ¢ # 0 and

goo =0 if c=0.

Lemma 6 If g # M, then g has at most two fized points in Py(F,).

a b
Proof (see for example [La2] p.231 lemma 5.5): Let g = . If ¢ = 0 then
c d

g has one or two fixed points depending if a is equal to d or not. In that case oo is
always fixed. If ¢ # 0 then for z # —d/c ( because g(—d/c) = o0 ) we have gz =z
if and only if

cr’+z(d-a)-d=0. (3.1)

But this equation has at most two solutions different from {oo} and g(co0) =
a/c # 0o so oo is not fixed by g. QED.
So the number of fixed points of g depends only on the number of solutions of

(3.1) and we get

0 when (d-a)2+4bc# 0O
#rp(9) =4 1 when (d—a)2+4bc=0
2 when (d—a)2+4bc=0

where @ = O means that a is a square number in F,,. To compare with the conjugacy
classes of G we now consider py(y), the characteristic polynomial of g. The roots

of pg(y) = y> — y(e + d) + ad — cd are given by the quadratic formula

a+d£,/(d—a)?+4ch
= . .

y
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0 when (d— a)? + 4bc # O
So the number of distinct roots of the pg(y) is { 1 when (d—a)®+4bc=0 .

2 when (d—a)? +4bc =0
Remembering the conjugacy class of an element g € G is completely determined by

the roots of its characteristic polynomial and by comparing (when ¢ = 0 and when

¢ # 0) the distinct roots and the fixed points of g we see that

#pg~ A1) = p+1
#rp(g~A2) = 1
#plg~A3) = 2
#p(g~B1) = 0

3.2 Mobius transformations acting on X.

Let X be set consisting of all subsets of two elements of P,(F;). Then |X| =
e+ ~(p+1) — (4lp The action of G on P, (F,) by Mobius transformations gives

rise naturally to an action of G on X by g{zi,z,} = {911, 93}

Lemma 7 This action of G on X is transitive, and Stab{0,00} = N.

0 1
Proof. Let a,b € F,. Then we have ( . ){0, oo} = {0, a}, ( 4 ){0, oo} =
11 01

b a
{a,00} and {0, 00} = {a, b} which shows the transitivity.
11

Setting £ = {0,000} € X we have

Stab(z) = {g€G:9z==z}
{9 € G:g(0,00) =(0,00)} U {g € G: 9(0, 00) = (o0, 0)}

a b
Denote S; and S, the two sets in the last equation. Let g = , g belongs
c d

to S, if and only if b =0 and ¢ = 0. On the other hand g belongs to S, if and only
if d = 0 and a = 0. We therefore have
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© G -

which completes the proof of the lemma. QED.

Theorem 3 The values of 1§(g) on the different conjugacy classes of G ( which
is equal to the number of fized points of g with respect to the action of G on X

described above ) are given in the table below.

Table 8 Values taken by 1§ (g)

conj. class | #of classes | #elements per class | 15 (g)

a 0

a 1
g~ A p-1 pP-1 0
0 a

C T (e o [
o)

afb#-1 \0 b 2 P+ '
grnr A3 a 0 _
/b 1 ( 0 b ) %1 Plp+1) %1-
a/b=—
g~ B . (p-1)?
£ 0 non — split 5 p(p—-1) 0
~ B
gt Ol non — split = p(p—1) =

Proof. If g is in the center then g is the identity when it acts on X. Therefore the

number of points fixed by g is 2&L.
a1l
Ifg= we saw that g fixes oo in P1(F,). We will use the fact that g
0 a

as a Mobius transformation has order p. Indeed,

gz _ a® 2a
0 a®
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So we rewrite g as

g = (p — cycle)(c0) = (z1, (1), g%(z1), - - -, 8 (1) ) (00)

where z; is any point different from co. The number of fixed point of such a g is
the number of subsets of two elements in P,(F,) fixed by the g — action. When

you look at g decomposed in cycles it is clear that there are no such fixed point.
a 0
Ifg= where a # b, we know g fixes two points, 0 and co in P, (F,).
b

0
We will use the fact that the order of g divides (p — 1). Indeed

a® 0
g
as”! 0
0 !

= I.

gp—l

We write g with cycles and we obtain more subsets of two elements fixed by g, apart
from the subset {0,000} which is always fixed, if and only if the order of g is equal
to two. Then we have (p — 1)/2 more subsets. The order of g is two if and only if

1 0
g=2A "|. The number of fixed points of g in X is (p + 1)/2 if g has order
0 -1
two and 1 otherwise.
t -
Ifg= where ¢ is the trace and n the norm and such that p,(z) =
n O

2 —tz+n is irreducible, we know from the first section of this chapter that g has no

fixed points in P;(F,). By the same reasoning, to have any subset of two elements
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fixed by g, we must have g of order 2.

2 ?2—-n —t
g = =)\
nt -n

if and only if t = 0. So when ¢ = 0, then we obtain (p+1)/2 subsets of two elements
fixed by g because

g = (z1,921) (2, 922) - "(Ia;_l,g:rp;_t)-

Therefore the number of fixed points of g is P—;fl if trace(g) = 0 and zero otherwise.

There are Q—;—ll conjugacy classes of the form B, with their trace = 0. Indeed, if

0 -
t=0wegetg= ) and p,(z) = 2 + n must be irreducible. This is true
n 0

if and only if —n is not a square in F,. Which is true half of the values that n can
-1
take, ?;2— QED.

3.3 Mobius transformations acting on P;(F2)

Before constructing our set X' we analyse the action via Mobius transformations
of G on P;(Fp2) = Fp(ar) U {0}.

Lemma 8 When G acts on P1(F,z) via the Mobius transformations action we have

#1(9)(g ~ A) = PP +1
#1p(9)(9~ A42) = 1
#1p(9)(g ~ Az) = 2
#12(9)(g~ B1) = 2

Proof. Using lemma 6 we get again that for ¢ # AI then g has at most two fixed
points. By the same logic presented in section 3.1 it suffices to study p,(z) to find
the number of fixed points of g . So for the g not in a conjugacy class of the fom_l
g ~ B; we get the desired number of fixed points.

It remains only to study the case p,(z) is irreducible for g € G. Here p,(z) is
irreducible in F, but not in Fy(e). So in Fy(a), p(z) = (z — A)(z — X) where
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A € Fp2—F,. The numbers A and X are the eigenvalues of g . Now consider 1V and
W' (see [La2] p.235 exercice 14) the two eigenvectors associated to A and X. Then

W and W' can be written in the following way:

w33

w
Indeed, suppose W = ( ) then
0

w a b w aw w
A = = =
0 c d 0 cw 0
is possible if and only if ¢ = 0 which contradicts the fact that p,(z) is irreducible

w
over F,. Actually w’' = @ because when you fix W = you force W’ to be
1

w -
( ) One verifies this in the equation gW’ = AW’ using that gW = AW . Let
1

w w
S=WWwW)= then using that
11
- A0 A0
9S8 = g(W,W') = OW, \W') = (W, W’) =5 <
0 A 0 A
we find that

51,9 A0
go = S B
0 A

Thus S is a matrix that conjugates g to a diagonal matrix in GL2(F,:) . Now we

claim that w and @ are fixed points of g. Indeed,

/
ow = s|* E)S-l(uo
\0 A

( T
_ o E)( 1/d /d)(w)
Lo X\ -1/d wd

29




In a similar way one shows g(@) = W. By lemma 6 , we obtain that g has exactly

two fixed points , w and w. QED.

3.4 Mobius transformations acting on X'.

The group G acts on X' = (Fp2 \ Fp)/conj. by Mobius transformations. (This
follows because if z € Fp2, then g(z) = ¢(Z).)

Lemma 9 The action of G on X' is transitive, and the Stabilizer Stab(z) is equal
to N', ifc=[o] € X'.

b
Proof. Let g = ( ¢ ) € G; then g(a) = a if and only if
c d

aax+b ac+b
=@ or =
ca+d ca+d

—Q.

one checks that this is true if and only if g € N’. The transitivity of the G-action

follows from a counting argument: the orbit of [¢] has size IStaItfil[a])l = pz(&"_ll);g:ll)) =
ele-l) — | X'|. QED.

2
From the preceding section, when G acts on P;(F,2) we have

#m(g~A) = pPP+1
#pplg~Az2) = 1
#plg~ A3) = 2
#m(g~B1) = 2

We will use this to calculate the number of fixed points of an arbitrary g € G with

respect to the action on X’. The computation will prove the following theorem.
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Theorem 4 The values of 15.(g) on the diffent conjugacy classes of G (which is
equal to the number of fized points of g with respect to the action of G on X' defined

above ) are compiled in the table below.

Table 9 Values taken by 15.(g)

conj. class | #tof classes | #elements per class | 15.(g)
a 0
g~ A p—1 1 2=l
0 a 7
a 1
g~ A p-1 -1 0
0 a
~ A a 0
9 3 "12 =3 plp+1) 0
a/b# -1 0 b
~ A a 0
I Bzl plp+1) 2
afb=-1 \0 b
g~ Bl . —1)2
non —split | &51- p(p—1) 1
t4£0
~ B
I~H on— split el p(p—1) efs
t=0

Proof: For g in the center the number of fixed points by g is [X'| = ﬂ%—g

a1
For the case where g = , there is no z € F,(a) such that g(z) = z ( the
0a

point {oo} being the only one in P, (Fy(a)) ). So the only possible case is when an

a 1
element is sent into its conjugate by g. We have (z1 + z20) = (7} — 220)
0 a

if and only if 2az,a = ~1, which is impossible because 2az;a ¢ Fp, while —1 does
belong to F,. So the number of fixed points of such a g is zero.
a 0
For the case where g = at a # bthen g has two fixed points in Py (Fy(a))
0
namely co and {0}. But those two do not belong in F,2 — F,. Therefore again our

0
only hope is to find an z such that g(z) = Z. So this condition says ( “ )(a:l +
0 b
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Tya) = 1) — zoc if and only if (a — b)z; + (a + b)z2a = 0. We know z, # 0,
it implies that (@ + b) = 0. Since (a + b) = 0 then (2 — b) just can’t be equal to
zero and z; must be zero. Hence g has a fixed point if and only if z, = 0 and
a/b = —1. When a/b = —1 the number of fixed points is equal to the number of
different values taken by z,. Since zoa = —z3c in X', we have that this number is
(p — 1)/2. Therefore the number of fixed points of such a g is 7 afb=-1 .
0 otherwise

t -1

n 0
less straightforward. From our earlier result, we know there exist w, @ € Fy(a) —F,

For the case g = ( ) where z? — {z + n is irreducible, the argument is

such that g(w) = w and g(@) = @. So in any case, we certainly have one element
in X' fixed by g . If there are more fixed points they must satisfy g(z) = T where
z € Fp(a) — F, . This is true if and only if £=! =7 if and only if tz — 1 = n(zZ).

So we deduce that ¢ must be equal to zero because T € F, while z ¢ F, . When

-1
t = 0 we have that (z) = 7 if and only if nzZT = —1. So we are looking
n 0
for the number of z satisfying
-1
IT = - (3.3)

Lemma 10 The following sequence of mappings is ezact.

N
kerN x — X0 | g 1

p? ?

1

Proof. The norm of an element z € F,. is defined as Norm(z) = =% . One checks

that the norm is a homomorphism. If z = z; + z;q, its norm is

Norm(z) = (21 + 220)(z; — T20) = 12 — 2202

where m € F, — {0} . First, the cardinality of ker(/N) is at most 2p because for a
fixed x; there is at most two values of 25 such that Norm(z) = 1. On the other hand
the cardinality of ker(V) is at least (p+ 1) because (p + 1) divides |ker(N)| since it
is the kernel of an homomorphism F;, — F;. We deduce that |ker(N)| = (p+1).
So the sequence is in fact an exact sequence, hence F;:/ker(N) is isomorphic to F}.
QED.
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Lemma 10 implies that for —1/n there are p+1 elements in F;. (one whole coset
of ker(N)) such that Norm(z) = ~1/n. For such an z with norm equal to —1/n we
have that z ¢ F;. Indeed if it were then 22 = —1/n which implies 22 + 1 /n =0 has
a solution in F,,. This contradicts our choice of g. Therefore the number of fixed
points of g in X' is equal to 1 + ‘%1)- = 93’;—11 QED.

3.5 The link between 1§ and 1§,

We now deduce the link between 1§ and 1%,. Consider the character x = 1§ — 1.

Using tables 8 and 9 we have that

x(g~4) =p

x(g~42) =0
x(g~A4;3) =1
x(g~B) = -1

On the other hand, we remark that the irreducible character of G of type two
1/),‘;" — podet ( see table 3 chapter 2 ) is exactly equal to x when p : F, —C"is

the trivial homomorphism. But % — 1 = 1§ — 1.

Theorem 5 Let G = GLy(F,) with the subgroups N, N' and B as defined in

chapter 2. We have the following relation on the induced characters

1§ -15 =15 -1} (3.4)

The dimension equation is now verified.

dim(1§) - dim(1§,) = p(P;- 1) _ p(pz— 1)

=p
= dim(1§) — dim(1).
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Chapter 4
Extension of Perlis’ result

In this chapter we will extend Perlis’ method of comparing the Class Groups of
arithmetically equivalent fields to the fixed fields of the normalizers of the split
and non-split Cartan subgroup and the Borel subgroup. The construction we will
encounter in this chapter is an analogue of the one of Perlis found in [Pe2].

The first section is devoted to defining the group theoretic invariant, a positive
integer number v, in terms of the induced representations of G = GLy(F,) from
the latter subgroups and in showing that its prime divisors must divide the order
of G. In the second section we construct an isombrphism between the ¢-part of the
ideal class group of the fixed field of N onto the ¢-part of direct sum of the class
group of N' and the class group of B, and this for all primes £ not dividing v. In
the last section we discuss the difference between the main theorem of this chapter
and Nehrkorn’s theorem established in [Wa]. We will see how important it is to
find concrete examples where the set of prime divisors of v is strictly contained in

the set of prime divisors of |G| to make our result effective.

4.1 Definition and divisors of v

Let K be a normal extension of Q with Galois group G. Consider N, N’, B the
three subgroups defined in chapter 2 and their respective fixed fields KV, KV,
KB. We have that [K : Q] = |G| = p(p — 1)%(p + 1), [K" : Q] = |G/N| = 2&1)

34



BN Q)= |G/N'| =2l [KB:.Q =|G/B|=(p+ 1), and from chaper 3, we
ow that 1§ +1 = 1§ +1§. Let us Z=note by x the character 1§ +1 and v x’ the
czaracter 1§, + 1§. Their respective representations, D and D' : G — GLi(Q),
zre isomorphic, where k = 1+ |G/| = |G/N'| + |G/B| = P’—f{i"- ose two
rzpresentations are the permutation rzpresentation of G on V' = Q[G/N] = Q and
1" = Q[G/N'] ® Q|G/B]. Since ther are isomorphic there exist a ratioral k x k

i=vertible matrix M such that
D(g) M = MD'(g) (4.1)

for all g € G. By clearing denomi-.ators, we may assume that the coefficients
oI M are integers. For the momen: we ignore invertibility and we look at all
integral matrices satisfying (4.1). To see what M looks like when it satisfies (4.1)
we describe D and D' explicitly. Let g = 1, ps, pa, ..., pi/~) be representatives for
the left cosets of G by IV and let p = 1 be a representative for the coset G. Now
et pf =1,0,..., piG/N'I be representatives for the left cosets of G by A" and let
Pe—pr--+1 P =1 be representatives for the left cosets of G by B. The action of G
on these cosets describes two homomcrphisms 7 and 7’ from G into the symmetric
group Si given by my(i) = j, where g N = p;N for 1 < i < |G/N| and 7 (k) =1
and my(i) = j, where go{N' = piN" for 1 < i < |G/N'| and gp,B = p;B for
i > |G/N'|. Associating ¢ with the izh basis element of an k-dimensional vector

space over Q then identifies m; and 7, with the matrices
D(g) = (6ixy5¢ and D'(g) = (8im5),

the displayed term being the (¢, j)th element and § being the Kronecker § function.

By comparing the coefficients one sees that a k x k matrix M = (m;;) satisfies (4.1)

- If and only if

Mij = Magintj (4.2)

for all g € G. That is, if and only if M is constant on the orbits of G umder the

action g(4,7) = (myt, 7g5).
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Let M be the set of all integral k& x k& matrices satisfying the equivalent conditions
(4.1) and (4.2) and let

v = ged{|detM|,M € M}. (4.3)

Since x = X/, there exist at least one M € M with nonzero determinant. Thus v is

a well defined positive integer.

Remark 1 By interchanging x and x’ (D and D’) we obtain another set M’ and
this does not change v. Then a matrix M belongs to M if and only if its transpose

M?* belongs to M'. We will need the set M’ in the next section.

We now turn our attention to the prime divisors of v. We want to show that these
primes divide the order of G. The group G acts in two ways on the free module
Zyz) @ Zyzo @ - - - ® Zyzi over the ring of f-adic integer Z, by permuting the z;’s
by the rules of 7 and #'. That is, the element g € G acts on these free module via
the matrices D(g) and D'(g). This gives us two Z,[G]}-modules which we denote V,
and V.

Lemma 11 The prime divisors of v are precisely the primes £ for which the Z,[G)-

modules V; and V; are not isomorphic.

Proof. Suppose V, and Vj are isomorphic. A Z,[G]-isomorphism from V, to V} is
described in term of the basis z,,%5,...,2; by a matrix N = (n;;) in GLk(Z,)
satisfying
D(g)N = ND'(g)

for all g € G. That is IV satisfies (4.2) and detN # 0 (mod ¢£). Let M = (m;;) be
the matrix with coefficients in Z uniquely determined by 0 < m;; < £ and m;; = ngy;
(mod £). Then M € M (by verifying equation (4.2)) and detM = detN # 0 (mod
£). So we have £ does not divide v . Conversely, if £ does not divide v, then there

is a matrix M € M whose determinant is not divisible by £. Thus M is invertible

over Z; and yields an isomorphism from V, to V,/. QED.
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With this lemma, we will know the prime divisors of » as soon as we have a way

of recognizing the primes ¢ for which V; and V; are isomorphic.

Lemma 12 Let ¢ be any prime number not dividing the order of G. Then V; and

V, are projective Z,|G)-modules.

Proof. We first show V, is projective. Let e : V; — Y and f: F — Y be any two
Z,[G)-homomorphisms where f is surjective. By definition V; is projective if and
only if there exist ¢ : V; — F a Z,[G]-homomorphism such that fi) = e. Since
G permutes the z;’s in a two orbits action, any Z,[G]-homomorphism is completely
determined by the image of z; and z;. Furthermore, an assignment of z; and zx
extends to a Z,[G]-homomorphism from V, if and only if the stabilizer of z, also
stabilizes its image and the stabilizer of z;, also stabilizes its image. The stabilizer of
z) is N and the stabilizer of z; is G. Hence IV also stabilizes e(z;) and G stabilizes
e(zx) in Y. Let z; € F be any preimage of e(z;) and z; € F be any preimage of
e(zx). Since |N| and |G| are not divisible by £ they are invertible in Z,. We now
set 21 = |[N|™! C,ennzy and 2, = |G| Tye 92k Then we have

fz) = f(NIT 32 na)

neN

INI=2 32 nf(z)

neN
1

V] '%:vne(zl) = e(z;)

because n € Stab(e(z,;)). Similarly we have f(z}) = e(zx). So the map ¢ : z; — 2}

and z; — z; defines the desired Z,[G]-homomorphism that satisfies fi) = e.
Indeed, on one hand one verifies that nyy(z,) = ¥(z,) for all ny € N and gotp(zx) =
(zx) for all go € G to show that 1) is an homomorphism. On the other hand one
checks that fog(z,) =e(z)) and f o g(zx) = e(zx). We therefore have that V is a
projective Z,{G]-module.

One shows in a similar fashion that V, is projective by studying the images of z;,
Z-p and their corresponding stabilizers N’, B and by using the fact that |N’'| and
| B| are invertible in Z,. QED.

We now obtain the main result of this section.
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Theorem 6 FEvery prime number dividing v divides the order of G.

Proof: Given a prime £ not dividing |G|. We will show that £ does not divide v. For
this, by lemma 11, we must show V; >~ V; as Z,|G]-modules. The representations
D, D’ of G on V and V; have the same character. Furthermore since ¢ does not
divide |G| it implies that V; and V; are projective. And projective Z,[G]-modules
are determined up to isomorphism by their characters (see [Se2] section 16.1, corol-
lary 2 to theorem 34). We need this fact about projective Z,-modules because Z,
representations are not always determined by their characters (for example, let ¥}
and Vp41) be two vector spaces over F, with dimension 1 and (p + 1). Consider
now p; and p(p41) the respective trivial representations of G acting on V; and Vip+1)s
every g € G vis sent in the identity automorphism. The characters are equal even if
the representations are not isomorphic). This shows that V; and V} are isomorphic.
QED.

4.2 The isomorphism CIKN ~ Cl ' D Cl for ¢
not dividing v.

The ideal class group Clg ( for any number field K ) is the direct sum of its £-Sylow
subgroups. This section contains a proof that Cl%’n ~ C1¥ P aC1¥) x & whenever £ does
not divide v. We begin by considering the following two arithmetically equivalent
algebras (see introduction) L = K¥ @ Q and L' = K™ @ KB. Let M = (my;) be a

matrix in M. We now define a map upy : L* — L*; fora = ay ® a; € L* we set

k-1 k-1
pm(a) = I:I pi(an)™ (@)™ & I_I pi(an)™*(a,) ™

Lemma 13 For matrices A and B in M and for a = ay ® a; € L* we have

(?)  pm is a homomorphism (of multiplicative groups) from L* — L.
(i)  wa+sy(a) = pala)rs(a)-
(i) (pae) o (14) = wasy).
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Proof. (i) We certainly have that u4(a) is nonzero and liesin K@ K. Forn' € N' =
Gal(K/K™') we have },(1) = 1 and for b € B = Gal(K/K®B) we have 7}(k) = k.
Writing A = (m;;) and setting 7n(i) = r and m(i) = {, from (4.2) we then have

m;; = My and My = mye. Thus we get

k-1 k-1
(n' ®b)pa(e) = [l n'pi=i(an)™n'(a1)™ & [] bpi(an)™*b(a;)™*
t=1 T
k-1 k-1
= I pr(an)™ (@)™ & [] ;i(an)™*(a,) ™
r=1 =1
= #A(a)’

so the image p4(a) lies in the algebra K™V'® K® since n’ and b were taken arbitrary.
Clearly p4 is multiplicative so we conclude that it is a group homomorphism.

(ii) It follows directly from the definitions

(iii) Recall that for B € M its transpose belongs to M’ (see remark 1). Just as
each matrix in M gives rise to a homomorphism from L* to L, the matrix B* gives
rise to a homomorphism pp: in the opposite direction, namely for o’ = ap & ap

and B! = (b;;) we have

IG/N'| N k IG/N'| k
pee(a) = I silen)™- TI Aies) @ II di(an)®™ - TI Pi(as)™.
=1 i=|G/N"}+1 =1 1=|G/N"|+1

We also have that the matrix product yields pgpt : L — L. The composition
(upt) © (14) also maps L onto itself. One checks the validity of (iii) by a straight-
forward computation using (4.2) to convert indices like we did in the proof of (i)
above. QED.

The maps pp will be used to define homomorphisms between the class groups
of L and L'. This is accomplished in several steps. First, for any matrix M, let
M+ be the matrix obtained by replacing the negative components of M by zero,
and let M~ = (—~M)*. Then both M* and M~ have nonnegative entries, and
M = M* — M-. By looking at condition (4.2) we see that when M € M we also
have M+ and M~ both belong to M.

Next, we conéider a nonnegative matrix M+ € M and observe that if z € L*

is the direct sum of two integers (in KV and Q) then pp+(z) is also the direct
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sum of two integers (in K™ and K#). For the integral ideals i, A of K and Q

respectively we define
pu+UD A) = (uy+(u®a),u € and a € A)

to be the L'-ideal generated by the images of elements of 2 & A. This definition
extends immediately to direct sums of fractional ideals (of K and Q).
Finally, for M = M* — M~ in M and for any fractional ideal I ® A of L', we

set
puU & A) = (up+ (U ® A)) - (um-U & A)) 7

This is a well-defined map on Iy & I, where Iy and I are the ideal groups ! of K~
and Q respectively. By denoting the ideal groups of K’ and K2 by In: and I we

have the following lemma.

Lemma 14 The mep UD A — pup(UD A) is a group homomorphism from In®1
to Iy ® Ip.

Proof. Let U@ A and V & B be two elements in Iy @ I. In order to show (U &
A (V& B)) = uyU e A) - pp(V @ B) it suffices to check that equality holds when
both sides are extended to K @ K. Writing the extended ideals in square braquets,
we must show [py (U A)(VOB))] = [um (UDA)][um (VO B)]. This latter equality
is an immediate consequence of the following claim:
For every direct sum of ideals W & C of KN @ Q we have
k k

kW e C)] = g V™ & E pilC]™ (4.4)
the right hand side brackets denote extended ideals to K and we consider product
of ideals in K. To prove this claim it is sufficient to consider M with nonhegative
coefficients and W, C are integral ideals in their respective number ring.

The left hand side of (4.4) is generated by the images pp(w & c) of elements in

1The ideal group of a number field K is the group of the fractional ideals containing the integral
ideals with the natural multiplication of ideals.
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W & C, so the we have the inclusion C . Denote by the right hand side of (4.4)
by WM @ [C]Mx. Write W = (w;,wq) and C = (c1,¢2) (see for example [Ma)
p. 61). Then (wy) = W. DY and (w;) = W . Dy with integral ideals DY, DY.
The generators can be chosen so that DY is relatively prime to the norm of DY’; so
that [DY’] is relatively prime to every conjugate of [D}] (see, for example [He], Satz
74). By a similar construction we obtain D{ and D§ with the same property where
(1) =C-Df and () =C - D5.

Now the -claimed equality is clearly true for principal ideals, and the map W&C —
[W]M: @ [C]M* is multiplicative, so

[se (wy @ c1)] = W)™ - DY @ [C]Ms - [DF] M

[ (w2 ® )] = WM - [DE)M: @ [C)M: - [DE]M-.

The ged of these two principal ideals of Ix @ Ik is [uam(w) @ c1), up(we & ¢2)] =
[W)M: @ [C]M¥, showing that the right side of (4.4) is contained in the left side. This
gives the proof of the lemma. QED.

Since the uys take principal ideals of Iy @ Iq to principal ideals of Iy & I,
we obtain a family of homomorphisms between Clg~x and Clgnx @ Clgs for each
M € M. The next theorem studies these homomorphisms when they are restricted

to the £-Sylow subgroups of the ideal class groups.

Theorem 7 Let K¥, KN and KB be as before. Then for all prime numbers € not

dividing v we have Cé?N o~ CZ(;)N, & Cl(,?,,.

Proof. Since £ does not divide v there is a matrix A € M with £ not dividing
detA. Let B be the matrix whose transpose is B = (detA) - A~!. Then B also
belongs to M. Let U € Clg?,, lie in the kernel of pps. Then ppdd = 1,50 1 =
u(Bz)(pAﬂ) = paptd = L—l{detA), by lemma 13. Since ¥/ is killed by a power of £ and
by detA, it follows that I/ = 1, so the restriction of z4 to Cl}?N is injective. Since
our arithmetically equivalent algebras, L and L', have symmetric roles, exchanging
them yields an injection in the opposite direction, implying that the finite groups
Cl(,?,., and Clg?,,,, 5] Cl(,?B are isomorphic. QED.
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4.3 Discussion on the Brauer’s class number re-
lation

In Brauer relation theory we study the relation between class groups of subfields
L¥ of L when we have an equation relating their respective induced representations
in G =Gal(L/Q) in the following way

Y, anlf= Y bylf, (4.5)
H<G H<G

and ay, by € Z2°. For example when all the ay, by’s are equal to zero but for one
H < G and one H' < G,H # H' we have ag = bg: = 1, then L¥ and L' are
arithmetically equivalent. Walter, in his article [Wa] published in 1979 (almost at
same time Perlis proved his result on the class groups of arithmetically equivalent

fields), showed the following theorem.

Theorem 8 (Nehrkorn’s theorem) Let L be a normal eztension Q and suppose
the equation (4.5) is satisfied on the induced representation for some ag,by. Then
for all the primes p not dividing the order of G=Gal(L/Q), we have the following
isomorphism on the p-part of the subgroups

on(CIE))* ~ ex(CIT))™.

Nehrkorn’s theorem already tells us that for all the primes not dividing the order of
GL.(F,) we have the desired isomorphism of Theorem 7 between the class groups.
In other words, if it is impossible to find concrete examples where the set of prime
divisors of the integer v is strictly contained in the set prime of divisors of |G|, then
Theorem 7 would not be very interesting. In the next section, we will study an
example where the only prime divisor of v is 2 while the prime divisors of |G| are

2 and 3.

Perlis’ construction can be extended, mutatis mutandis, to the more general

context of equation (4.5). It is possible to construct a v-Perlis integer with its
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associated extended relation on the class groups. But without concrete examples
and the possibility of computing the integer v these results would not tell us much

more than what we extract from Nehrkorn’s theorem.
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Chapter 5

Numerical examples

In this section we study some concrete examples. First, we find normal extensions
of Q with Galois group PGL2(F3), by studying elliptic curves. Second, we apply
theorem 7 to the class groups of arithmetically equivalent algebras by computing

explicitly the integer v.

5.1 The field of 3-division points on E.

We have for G = GL,(F,) that 1§ +1 = 1§, + 1§ (see 3.4). These four characters
are also characters of PGLy(F,) = G/Z which is denoted by G. Now we denote in
a similar way N = N/Z,B = B/Z and N" = N'/Z. Using the fact that Z is the
center of G, one shows 1§ (gh) = 1§(9)1$ (k). We observe also that 1§ = 1% when

we consider these characters as characters of G. Note that in the following 7 = zZ.

15h) = 53 Tx(Ehz)
TG
1 —
= = 1'—(1L'h:L"IZ)
GZ z€G N
= 2  Ta(aha™) = 151
e

So we have a similar relation of characters in G, namely 12—- +1= 1% + 1% .




Our goal is to find a normal extension L of Q with Galois group isomorphic
to G. This is achieved by considering the p-division field of an elliptic curve E
defined over Q (i.e the ¢;’s are in Q). To make possible any calculation we fix
p =3 Let E: y’>+aizy+azy = 73 + apx? + a4 + ag be an elliptic curve
over Q. A fundamental fact in the theory of elliptic curve is that E = {P =
(z,y) satisfying the equation that defines E} has a group structure. This group is
described in Silverman’s book ([Si] chap.3).

Now in that group consider E[3] the subgroup of E consisting of the 3-division
points, E(3] = {P € E such that 3P = 0}. Let us denote by Lg the field of
3-division points of E. In other words Lg(3 is the smallest field containing the z
and y coordinates of all the P’s in E[3]. We know that Lg(s is a finite extension of
Q with the property that Gal(Lg3)/Q) < GL2(F3) (see [Si] p.90). A P is in E[3]
if and only if 2P = —P. This will be more manageable since we have formulas to
compute 2P and —P. Given P = (z,y) € E we use the Duplication Formula ([Si]
p.59) and we obtain that the z-coordinate of 2P is the following,

i — b4.’L‘2 - 2b5.’1? - bs

Z[2P] = 413 + b21‘2 + 264.’17 + bs

where by = a? + 4ap, by = 2a4 +aya3, bs = a? + 4ag, bg = a’ag + 4azas — a1a304 +
aza —a?. On the other hand z{—P] = z. Therefore if P = (zo,y) € E[3], Zop must
be a root of F(z) = 3z* + boz3 + 3byz? + 3bsz + bs. We denote the splitting field of
F(z) by L. Let us look at the y-coordinate of a P = (zo, yo) € E[3].

pP| = - 3x2 + 2a5To + a4 — a1
y - 290 + a1T9 + a3

o)t

—:rg + agzTo + 2a¢ — a3yo
2y + a1z + a3

)- as ([Silp.59)

On the other hand y[—P] = —yy— a1 2o — a3. From this, one checks that y, is a root
of an irreducible polynomial of degree two with coefficients in L. So we have that
Lgy3 is a quadratic extension of L. From now on we will be working on the field L.
By classical Galois theory we know that the Galois group of L over Q is a subgroup

of S4, the permutation group of 4 elements, because F(z) is a quartic polynomial
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([Ga) part 14). In our study we will only consider the elliptic curves E such that
Gal(L/Q) = S;. We remark that Sy = PGLy(F3) = G; to see that consider the
natural action of G on P;(F;) via the Mobius transformations. Hence we have the
desired L.

When we look carefully at B, N" and N as subgroups of S; we note that B = S,,
N'= Dy the dihedral group of 8 elements generated by ((1,2,3,4),(1, 3)(2, 4)) and
N ={1,(1,2),(3,4),(1,2)(3,4)} isomorphic to Z/2Z & Z/2Z. The objective now
is to find three irreducible polynomials f(z), g(z) and h(z) such that for any root
a of f(z) we have Q(a) = L%, for any root 3 of g(z) we have Q(B) = L™ and for
any root «y of h(z) we have Q(7y) = L¥. The reason for this requirement is that
GP-PARI (version 1.39.03) computes the Ideal Class Group of the number field
Q(a) where « is any root of an irreducible polynomial f(z) entered by the user.
By a simple substitution F(z) is rewritten as f(y) = y* +py’ +qy+1; p,q,re Q
(namely you divide F(z) by 3 and then you let y = = + %). The splitting field of
f(y) is isomorphic to the one of F(z) so we keep the same notation for the field,
namely L. Let oy, a2, a3 and a4 be the roots of f(y) then Q(o;) = LF because
Gal(L/Q(c:)) = Si. Now if we define

b = —(a1+a3)(a; + ay)
B2
Bs = —(a1+oy)(az+ as),

—(ay + ao) (a3 + )

then Q(B;) is isomorphic to L¥ because Gal{L/Q(5;)) = Ds the dihedral group of

eight elements. After some calculation we get

Pr+B+B = —2p
BiB2+ BBz + Bofis = p*—4r
and  BiBefs = ¢

This implies that our g(z) = 2% + 2p2? + (p? — 4r)z — ¢? is the resolvent for f(z)
([Ga] part 14).
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Finally, if we construct h(z) by defining the following values

N
Y2
7
Ya
s

Ye

(a1 + a2) — (03 + o) = 2(; + a3)
2(ay + a3)

2(0y + ay)

"N

—72

=73,

then Q(v;) is isomorphic to LV because Gal(L/Q(v)) = N. We verify that

So when we consider
6

N+%B+7% = ~8

R+ i+ %y = 16(p® —4r)

V¥l = 64¢°.

1@ —7) =2 - (R + v+ )2t + (3 + 3 + 12)2? — vEdd

we see that h(z) = z% + 82* + 16(p® — 4r)z? — 64¢°.

We are ready to compute concrete examples. Given an elliptic curve E over Q
picked in the tables of Cremona [Cr] we first make sure that the Galois group of
the splitting field of F'(z) is S4 (using a function of GP-PARI). Then we construct
f(z), g(z), h(z). Lastly we feed in GP-PARI with these three polynomials and it

gives us back the corresponding Ideal Class Group denoted respectively Chs, Cngr

and Cl;x . A sample of the computations we obtained is reproduced below.

Table 10 The Class Groups in function of the elliptic curve E
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The ellipticcurve E | Clig | Cliw | Cliw
15A8 1 2 2
17A4 1 1 1
2681 1 3 3
3741 1 3 3
4341 1 }12,[12] | 6,[6]
46 A1 1 2 1
114C1 1 | 6,1[6] 3
11541 1 1 1
117A1 1 | 6,[6) 3
120A1 1 3 3
122A1 1 | 12,[12) | 6,[6]
123A1 1 | 4,[4 2
130B1 2 6,[6] 6,[6]

252B1 1 6, [6] 3
258G1 2 |12,[6,2]{12,16,2]
25941 1 3 3
26281 1 | 30,[30] | 15,[15]
264 A1 1 6, [6] 6, [6]

For a given elliptic curve E taken from Cremona’s table [Cr], you read in the above
table the class number followed by a description of the class group as a direct sum
of cyclic groups (in square brackets) for our three subfields of L. When we observe
table 10 we remark that for all these elliptic curves CIS% ~ CIS%- @ CISF’ while in
general there is no isomorphism between the 2-part (even if they do not differ by
much!). From this there is hope that only the prime 2 divides v = (G, N, B, N').
Actually we know that 2 divides v just by looking at table 10. We will now show
that 3 does not divide v by exhibiting a matrix M € M such that 3 does not divide

|det M.
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5.2 Computation of v

We now construct a general matrix M € M. Such a matrix must satisfy equation
(4.2). To study the action of G on the couples (i,7), we first identify the coset
representatives of G/N by the elements of X (where X is defined in section 3.2),
then those of G/N' by the elements of X’ (defined in section 3.4) and finally those
of G/B by the elements of P;(F3). Denoting the.elements of G by the numbers 1
to 24 and by letting G act on X, X’ and P,(F3) one shows without difficulty that
M with integer coefficient satisfies equation (4.2) for all g € G if an only if M has

the following form

(ABBDCCD)
BABCDCD
BBACCDD
BBADDC CC (5.1)
BABDCDC
ABBCDDC

\E EEFFF F|

where A, B,C, D, E, F are integers. When we specialized A = D = F = 1 and
B=C=EFE=0we get a matrix with |detM| = 2. Another specialization
(A=D=FE=1and B=C = F =0) gives us a matrix M with |detM| = 24. So
the integer v is a power of 2 and is equal to 2,4 or 8. We now apply theorem 7 to

obtain the following result.
Theorem 9 For all prime £ different from 2 we have

{4 {
¢l ~cif e ')

LN — LF
where L is any number field (normal extension) such that its Galois group is iso-

morphic to S4 (= G).

This result tells us that in concrete examples it is possible to compute the v of
theorem 7 and obtain that v has less prime divisors (only the prime 2) than the

order of G (the primes 2 and 3). From the family of examples we studied we can
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also believe that theorem 7 is optimal in the following sense: when 2 divided v,
we found specific elliptic curves (see table 10) where the 2-part of the class group
equation was not satisfied. This may well be true in general.

To conclude let us say there is still much more to do with arithmetically equiv-
alent algebras. First, by looking at table 10 we see that the 2-part of these class
groups differ at most by a factor 2. There is certainly a way to bound the ratio
ha/H, in function of our integer . We can look at Perlis’ work (in [Pe2]) for a
similar problem and try to find an integer ¢ = ¢(v) such that 2* < hy/h} < 2!. We
would need to calculate v explicitly in that case. Second, we would like to general-
ize theorem 9 for all normal extensions with Galois group GL2(F}) for any prime

p. The method one should use is to exhibit a 24242 x BP+2 matrix satisfying

equation (4.2) such that its determinant has only a few prime factors. Let L be a
Galois extension with Galois group G = GL3(F}). Is it true that for primes £ # 2
we have Clg,), ~ Clg?g ® Clg,),,,, and similarly for G = PGL(F,)? Our hope is to

answer this question by the affirmative.
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