Heegner Points, Stark-Heegner points, and values of L-series

Number Theory Section Talk
International Congress of Mathematicians
August 2006, Madrid.

Elliptic Curves

E= elliptic curve over a number field F

L(E/F, s) = its Hasse-Weil L-function.

Birch and Swinnerton-Dyer Conjecture.

$$\operatorname{ord}_{s=1} L(E/F, s) = \operatorname{rank}(E(F)).$$

Theorem (Gross-Zagier, Kolyvagin)

Suppose $\operatorname{ord}_{s=1} L(E/\mathbf{Q}, s) \leq 1$. Then the Birch and Swinnerton-Dyer conjecture is true.

Key special case: if L(E/Q, 1) = 0 and $L'(E/Q, 1) \neq 0$, then E(Q) is infnite.

Essential ingredient: Heegner points

Modularity

Write
$$L(E/\mathbf{Q}, s) = \sum_{n>1} a_n n^{-s}$$
.

Consider

$$f(\tau) = sum_n a_n e^{2\pi i n \tau}, quad\tau \in cH.$$

Theorem The function f is a modular form of weight two on $\Gamma_0(N)$, where N is the conductor of E.

Modular parametrisation attached to E:

$$\Phi: \mathcal{H}/\Gamma_0(N) \longrightarrow E(\mathbf{C}).$$

$$\Phi^*(\omega) = 2\pi i f(\tau) d\tau$$

$$\log_E(\Phi(\tau)) = \int_{i\infty}^{\tau} 2\pi i f(z) dz = \sum_{n=1}^{\infty} \frac{a_n}{n} e^{2\pi i n \tau}.$$

CM points

 $K = \mathbf{Q}(\sqrt{-D})subset\mathbf{C}$ a quadratic imaginary field.

Theorem. If τ belongs to $\mathcal{H} \cap K$, then $\Phi(\tau)$ belongs to $E(K^{ab})$.

This theorem produces a *systematic* and *well-behaved* collection of algebraic points on E defined over class fields of K.

Heegner points

Let D be a negative discriminant.

Heegner hypothesis: $D \equiv s^2 \pmod{N}$.

$$\mathcal{F}_D^{(N)} = \{Ax^2 + Bxy + Cy^2 \text{ such that } B^2 - 4AC = D, N | A, B \equiv s \pmod{N}\}$$

Gaussian Composition:

$$\Gamma_0(N)\backslash \mathcal{F}_D^{(N)} = \operatorname{SL}_2(\mathbf{Z})\backslash \mathcal{F}_D = G_D$$

is an abelian group under composition, and is identified with the class group of the order of discrimiannt D.

Given $F \in \mathcal{F}_D^{(N)}$, the point

$$P_F := \Phi(tau)$$
, where $F(\tau, 1) = 0$,

is called the Heegner point (of discriminant D) attached to F.

Heegner points

Class field theory:

$$\operatorname{rec}:G_D\longrightarrow\operatorname{Gal}(H_D/K),$$

where H_D is the ring class field attached to D.

Write

$$\Gamma_0(N)\mathcal{F}_D^{(N)} = \{F_1, \dots, F_h\}.$$

Theorem The Heegner points P_{F_j} belong to $E({\cal H}_D)$ and

$$P_{\sigma F} = \operatorname{rec}(\sigma^{-1})P_F.$$

In particular, letting D = disc(K),

$$P_K := P_{F_1} + \dots + P_{F_h}$$

belongs to E(K).

Theorem (Gross-Zagier)

$$L'(E/K, \mathcal{O}_K, 1) = \hat{h}(P_K) \cdot (\text{period})$$

Kolyvagin's theorem

Theorem (Kolyvagin)

If P_K is of infinite order, then E(K) has rank one and III(E/K) is finite. (Hence, BSD holds for E/K.)

Main ingredient: P_K does not come alone, but is part of a norm-compatible collection of points in $E(K^{ab})$.

Corollary. If $\operatorname{ord}_{s=1} L(E,s) \leq 1$, then the Birch and Swinnerton-Dyer conjecture holds for E.

Sketch of Proof. Choose a quadratic field K satisfying the Heegner hypothesis, for which $\operatorname{ord}_{s=1} L(E/K, s) = 1$.

By Gross-Zagier, P_K is of infinite order.

By Kolyvagin, the BSD conjecture holds for E/K.

BSD for E/\mathbf{Q} follows.

Totally real fields

Question: Does the above scheme generalise to other number fields?

Suppose E is defined over a totally real field F.

Definition: E is arithmetically uniformisable if $[F:\mathbf{Q}]$ is odd or if N is not a square.

If E is modular, and arithmetically uniformisable, there is a *Shimura curve parametrisation*

$$\Phi: Jac(X) \longrightarrow E$$

defined over F.

Also, X is equipped with a collection of CM points attached to orders in CM extensions of F.

Theorem (Zhang, Kolyvagin). Suppose that E is modular and arithmetically unifomisable. If $\operatorname{ord}_{s=1} L(E/F,s) \leq 1$, then BSD holds for E/F.

Non arithmetically uniformisable curves

Theorem (Longo, Tian). Suppose that E is modular. If $\operatorname{ord}_{s=1} L(E/F,s) = 0$, then BSD holds for E/F.

Sketch of proof: Let f be the modular form on $\operatorname{GL}_2(F)$ attached to E. One can produce modular forms that are congruent to f, and correspond to quotients of Shimura curves. For each $n \geq 1$, there is a Shimura curve X_n for which $J_n[p^n]$ has $E[p^n]$ as a constitutent.

Key formula: Relate Heegner points attached to K, on X_n , to L(EK, 1) modulo p^n .

Question. If E is not arithmetically uniformisable, and $\operatorname{ord}_{s=1} L(E/F, s) = 1$, show that $\operatorname{rank}(E(F))$ 1?

E.g. If E has everywhere good reduction over a real quadratic field.

Stark-Heegner points

Wish: There should be generalisations of Heegner points making it possible to

- a) prove BSD for elliptic curves in analytic rank ≤ 1 , for more general E/F;
- b) Construct class fields of K;

Paradox: Sometimes we can write down precise formulae for points whose existence is not proved.

General setting: E defined over a number field F;

K = auxiliary quadratic extension of F;

I will present three contexts.

- 1. $F = \mathbf{Q}$, K = real quadratic field;
- 2. $F = \text{totally real field}, K = ATR extension}$ ("Almost Totally Real"). (Logan)
- 3. F = imaginary quadratic field. (Trifkovic)

Real quadratic fields

Set-up: E has conductor N = pM, with $p \not \mid M$.

$$\mathcal{H}_p := \mathbf{C}_p - \mathbf{Q}_p$$
 (A *p*-adic analogue of \mathcal{H})

K= real quadratic field, embedded both in ${f R}$ and ${f C}_p.$

Naive motivation for \mathcal{H}_p : $\mathcal{H} \cap K = \emptyset$, but $\mathcal{H}_p \cap K$ need not be empty!

Goal: Define a p-adic "modular parametrisation"

$$\Phi: \mathcal{H}_p^D/\Gamma_0(M) \stackrel{?}{\longrightarrow} E(H_D),$$

for *positive* discriminants D.

Modular symbols

Set $\omega_f := Re(2\pi i f(z) dz)$.

Fact: There exists a real period Ω such that

$$I_f\{r \to s\} := \frac{1}{\Omega} \int_r^s \omega_f mbox beongsto \mathbf{Z},$$

for all $r, s \in P_1(Q)$.

Mazur-Swinnerton-Dyer measure:

There is a measure on \mathbf{Z}_p defined by

$$\mu_f(a+p^n\mathbf{Z}_p)=I_f\{a/p^n\to\infty\}.$$

Systems of measures

Let

$$\Gamma = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbf{SL}_2(\mathbf{Z}) \text{ such that } M|c \}.$$

Proposition There exists a unique collection of measures $\mu\{r \to s\}$ on $\mathbf{P}_1(\mathbf{Q}_p)$ satisfying

1.
$$\mu\{r \to s\}|_{\mathbf{Z}_p} = \mu_f$$
.

2.
$$gamma^*\mu\{\gamma r\to\gamma s\}=\mu\{r\to s\}$$
, for all $\gamma\in\Gamma$.

3.
$$\mu\{r \to s\} + \mu\{s \to t\} = \mu\{r \to t\}.$$

Rigid analytic functions

$$f\{r \to s\}(z) := \int_{\P_1(\mathbf{Q}_p) \frac{d\mu\{r \to s}{(t)}} z - t.$$

Properties:

1.
$$f\{\gamma r \to \gamma s\}(\gamma z) = (cz+d)^2 f\{r \to s\}(z)$$
, for all $\gamma \in \Gamma$.

2.
$$f\{r \to s\} + f\{s \to t\} = f\{r \to t\}.$$

Stark's conjecture

K= number field.

 $v_1, v_2, \ldots, v_n = \text{Archimedean place of } K.$

Assume: v_2, \ldots, v_n real.

$$s(x) = \operatorname{sign}(v_2(x)) \cdots \operatorname{sign}(v_n(x)).$$

$$\zeta(K, \mathcal{A}, s) = \mathsf{N}(\mathcal{A})^s \sum_{x \in \mathcal{A}/(\mathcal{O}_K^+)^{\times}} s(x) \mathsf{N}(x)^{-s}.$$

H = Narrow Hilbert class field of K.

 $\tilde{v}_1: H \longrightarrow \mathbf{C}$ extending $v_1: K \longrightarrow \mathbf{C}$.

Conjecture (Stark) There exists $u(\mathcal{A}) \in \mathcal{O}_H^{\times}$ such that

$$\zeta'(K, \mathcal{A}, 0) \doteq \log |\tilde{v}_1(u(\mathcal{A}))|.$$

u(A) is called a *Stark unit* attached to H/K.

Is there a stronger form?

Stark Question: Is there an *explicit analytic* formula for $\tilde{v}_1(u(A))$, and not just its absolute value?

Some evidence that the answer is "Yes": Sczech-Ren. (Also, ongoing work of Charollois-D.)

If \tilde{v}_1 is real,

$$\tilde{v}_1(u(\mathcal{A})) \stackrel{?}{=} \pm \exp(\zeta'(K, \mathcal{A}, 0)).$$

If \tilde{v}_1 is complex, it is harder to recover $\tilde{v}_1(u(A))$ from its absolute value.

$$\log(\tilde{v}_1(u(\mathcal{A}))) = \log|\tilde{v}_1(u(\mathcal{A}))| + i\theta(\mathcal{A}) \in \mathbb{C}/2\pi i \mathbf{Z}.$$

Applications to Hilbert's Twelfth problem \Rightarrow Explicit class field theory for K.

The **Stark Question** has an analogue for elliptic curves.

Elliptic Curves

E= elliptic curve over K

L(E/K, s) = its Hasse-Weil L-function.

Birch and Swinnerton-Dyer Conjecture. If L(E/K,1)=0, then there exists $P\in E(K)$ such that

$$L'(E/K,1) = \hat{h}(P) \cdot (\text{ explicit period}).$$

Stark-Heegner Question: Fix $v: K \longrightarrow \mathbb{C}$.

 Ω = Period lattice attached to v(E).

Is there an explicit analytic formula for P, or rather, for

$$\log_E(v(P)) \in \mathbf{C}/\Omega$$
?

A point P for which such an explicit analytic recipe exists is called a Stark-Heegner point.

The prototype: Heegner Points

Modular parametrisation attached to E:

$$\Phi: \mathcal{H}/\Gamma_0(N) \longrightarrow E(\mathbf{C}).$$

 $K = \mathbf{Q}(\sqrt{-D}) \subset \mathbf{C}$ a quadratic imaginary field.

$$\log_E(\Phi(\tau)) = \int_{i\infty}^{\tau} 2\pi i f(z) dz = \sum_{n=1}^{\infty} \frac{a_n}{n} e^{2\pi i n \tau}.$$

Theorem. If τ belongs to $\mathcal{H} \cap K$, then $\Phi(\tau)$ belongs to $E(K^{ab})$.

This theorem produces a *systematic* and *well-behaved* collection of algebraic points on E defined over class fields of K.

Heegner points

Given $\tau \in \mathcal{H} \cap K$, let

$$F_{\tau}(x,y) = Ax^2 + Bxy + Cy^2$$

be the primitive binary quadratic form with

$$F_{\tau}(\tau, 1) = 0, \quad N|A.$$

Define $Disc(\tau) := Disc(F_{\tau})$.

$$\mathcal{H}^D := \{ \tau \text{ s.t. } \mathsf{Disc}(\tau) = D. \}.$$

 $H_D = \text{ring class field of } K \text{ attached to } D.$

Theorem 1. If τ belongs to \mathcal{H}^D , then $P_D := \Phi(\tau)$ belongs to $E(H_D)$.

2. (Gross-Zagier)

$$L'(E/K, \mathcal{O}_K, 1) = \hat{h}(P_D) \cdot (\text{period})$$

The Stark-Heegner conjecture

General setting: E defined over F;

K = auxiliary quadratic extension of F;

The Stark-Heegner points belong (conjecturally) to ring class fields of K.

So far, three contexts have been explored:

- 1. F = totally real field, K = ATR extension ("Almost Totally Real").
- 2. F = Q, K = real quadratic field
- 3. F = imaginary quadratic field.

(Trifkovic, Balasubramaniam, in progress).

ATR extensions

E of conductor 1 over a totally real field F,

 ω_E = associated Hilbert modular form on $(\mathcal{H}_1 \times \cdots \times \mathcal{H}_n)/\mathbf{SL}_2(\mathcal{O}_F)$.

K = quadratic ATR extension of F; ("Almost Totally Real"): v_1 complex, v_2, \ldots, v_n real.

D-Logan: A "modular parametrisation"

$$\Phi: \mathcal{H}/\mathbf{SL}_2(\mathcal{O}_F) \longrightarrow E(\mathbf{C})$$

is constructed, and $\Phi(\mathcal{H} \cap K) \stackrel{?}{\subset} E(K^{ab})$.

 Φ defined analytically from periods of ω_E .

- Experimental evidence (Logan);
- Replacing ω_E with a weight two Eisenstein series yields a conjectural *affirmative* answer to the **Stark Question** for K (work in progress with Charollois).

Real quadratic fields

Set-up: E has conductor N = pM, with $p \not| M$.

$$\mathcal{H}_p := \mathbf{C}_p - \mathbf{Q}_p$$
 (A *p*-adic analogue of \mathcal{H})

K= real quadratic field, embedded both in ${f R}$ and ${f C}_p.$

Motivation for \mathcal{H}_p : $\mathcal{H} \cap K = \emptyset$, but $\mathcal{H}_p \cap K$ need not be empty!

Goal: Define a p-adic "modular parametrisation"

$$\Phi: \mathcal{H}_p^D/\Gamma_0(M) \xrightarrow{?} E(H_D),$$

for *positive* discriminants D.

In defining Φ , I follow an approach suggested by *Dasgupta's thesis*.

Hida Theory

U=p-adic disc in \mathbf{Q}_p with $2 \in U$;

 $\mathcal{A}(U) = \text{ring of } p\text{-adic analytic functions on } U.$

Hida. There exists a unique q-expansion

$$f_{\infty} = \sum_{n=1}^{\infty} \underline{a}_n q^n, \quad \underline{a}_n \in \mathcal{A}(U),$$

such that $\forall k \geq 2$, $k \in \mathbb{Z}$, $k \equiv 2 \pmod{p-1}$,

$$f_k := \sum_{n=1}^{\infty} \underline{a}_n(k) q^n$$

is an eigenform of weight k on $\Gamma_0(N)$, and

$$f_2 = f_E$$
.

For k>2, f_k arises from a newform of level M, which we denote by f_k^{\dagger} .

Heegner points for real quadratic fields

Definition. If $\tau \in \mathcal{H}_p/\Gamma_0(M)$, let $\gamma_\tau \in \Gamma_0(M)$ be a generator for $\operatorname{Stab}_{\Gamma_0(M)}(\tau)$.

Choose $r \in \mathbf{P_1}(\mathbf{Q})$, and consider the "Shimura period" attached to τ and f_k^{\dagger} :

$$J_{\tau}^{\dagger}(k) := \Omega_E^{-1} \int_r^{\gamma_{\tau}r} (z - \tau)^{k-2} f_k^{\dagger}(z) dz.$$

This does not depend on r.

Proposition. There exist $\lambda_k \in \mathbf{C}^{\times}$ such that $\lambda_2 = 1$ and

$$J_{\tau}(k) := \lambda_k^{-1} (a_p(k)^2 - 1) J_{\tau}^{\dagger}(k)$$

takes values in $\bar{\mathbf{Q}} \subset \mathbf{C}_p$ and extends to a p-adic analytic function of $k \in U$.

The definition of Φ

Note: $J_{\tau}(2) = 0$. We define:

$$\log_E \Phi(\tau) := \frac{d}{dk} J_{\tau}(k)|_{k=2}.$$

There are more precise formulae giving $\Phi(\tau)$ itself, and not just its formal group logarithm.

Conjecture 1. If τ belongs to \mathcal{H}_p^D , then $P_D := \Phi(\tau)$ belongs to $E(H_D)$.

2. ("Gross-Zagier")

$$L'(E/K, \mathcal{O}_K, 1) = \hat{h}(P_D) \cdot (\text{period})$$

Computational Issues

The definition of Φ is well-suited to *numerical* calculations. (Green (2000), Pollack (2004)).

Magma package shp: software for calculating Stark-Heegner points on elliptic curves of prime conductor.

http://www.math.mcgill.ca/darmon/programs/shp/shp.html

H. Darmon and R. Pollack. The efficient calculation of Stark-Heegner points via overconvergent modular symbols. Israel Math Journal, submitted.

The *key new idea* in this efficient algorithm is the theory of *overconvergent modular symbols* developed by Stevens and Pollack.

Numerical examples

$$E = X_0(11) : y^2 + y = x^3 - x^2 - 10x - 20.$$

$$> \text{HP,P,hD} := \text{stark_heegner_points}(\text{E,8,Qp});$$

$$\text{The discriminant D} = 8 \text{ has class number 1}$$

$$\text{Computing point attached to quadratic form (1,2,-1)}$$

$$\text{Stark-Heegner point (over Cp)} = (-2088624084707821, 1566468063530870w + 2088624084707825) + O(11^{15})}$$

$$\text{This point is close to } [9/2, 1/8(7s - 4), 1]$$

$$(9/2 : 1/8(7s - 4) : 1) \text{ is a global point on E(K)}.$$

A second example

```
E = 37A : y^2 + y = x^3 - x, \quad D = 1297.
> ,,hD := stark_heegner_points(E,1297,Qp);
The discriminant D = 1297 has class number 11
1 Computing point for quadratic form (1,35,-18)
2 Computing point for quadratic form (-4,33,13)
3 Computing point for quadratic form (16,9,-19)
4 Computing point for quadratic form (-6,25,28)
5 Computing point for quadratic form (-8,23,24)
6 Computing point for quadratic form (2,35,-9)
7 Computing point for quadratic form (9,35,-2)
8 Computing point for quadratic form (12,31,-7)
9 Computing point for quadratic form (-3,31,28)
10 Computing point for quadratic form (12,25,-14)
11 Computing point for quadratic form (14,17,-18)
Sum of the Stark-Heegner points (over Cp) =
(0:-1:1)) + (37^{100})
This p-adic point is close to [0, -1, 1]
(0:-1:1) is indeed a global point on E(K).
```

Polynomial hD satisfied by the x-ccordinates:

$$961x^{11}$$
 - $4035x^{10} - 3868x^9 + 19376x^8 + 13229x^7$
- $27966x^6 - 21675x^5 + 11403x^4 + 11859x^3$
+ $1391x^2 - 369x - 37$

> G := GaloisGroup(hD);

Permutation group G acting on a set of cardinality 11

> #G;

22

A theoretical result

$$\chi: G_D := \operatorname{Gal}(H_D/K) \longrightarrow \pm 1$$

$$\zeta(K, \chi, s) = L(s, \chi_1)L(s, \chi_2).$$

$$P(\chi) := \sum_{\sigma \in G_D} \chi(\sigma)\Phi(\tau^{\sigma}), \quad \tau \in \mathcal{H}_p^D.$$

 $H(\chi) := \text{extension of } K \text{ cut out by } \chi.$

Theorem (Bertolini, D).

If
$$a_p(E)\chi_1(p) = -\text{sign}(L(E,\chi_1,s))$$
, then

- 1. $\log_E P(\chi) = \log_E \tilde{P}(\chi)$, with $\tilde{P}(\chi) \in E(H(\chi))$.
- 2. The point $\tilde{P}(\chi)$ is of infinite order, if and only if $L'(E/K, \chi, 1) \neq 0$.

The proof rests on an idea of Kronecker ("Kronecker's solution of Pell's equation in terms of the Dedekind eta-function").

Kronecker's Solution of Pell's Equation

D = negative discriminant.

Replace $\mathcal{H}_p^D/\Gamma_0(N)$ by $\mathcal{H}^D/\mathbf{SL}_2(\mathbf{Z})$.

Replace Φ by

$$\eta^*(\tau) := |D|^{-1/4} \sqrt{\text{Im}(\tau)} |\eta(\tau)|^2.$$

 $\chi=$ genus character of $\mathbf{Q}(\sqrt{D})$, associated to

$$D = D_1 D_2, \quad D_1 > 0, \quad D_2 < 0.$$

Theorem (Kronecker, 1865).

$$\prod_{\sigma \in G_D} \eta^*(\tau^{\sigma})^{\chi(\sigma)} = \epsilon^{2h_1 h_2 / w_2},$$

where

 $h_j = \text{class number of } \mathbf{Q}(\sqrt{D_j}).$

 $\epsilon =$ Fundamental unit of $\mathcal{O}_{D_1}^{\times}$.

Kronecker's Proof

Three key ingredients:

1. Kronecker limit formula:

$$\zeta'(K,\chi,0) = \sum_{\sigma \in G_D} \chi(\sigma) \log \eta^*(\tau^{\sigma}).$$

2. Factorisation Formula:

$$\zeta(K,\chi,s) = L(s,\chi_{D_1})L(s,\chi_{D_2}).$$

In particular

$$\zeta'(K,\chi,0) = L'(0,\chi_{D_1})L(0,\chi_{D_2}).$$

3. Dirichlet's Formula.

$$L'(0,\chi_{D_1}) = h_1 \log(\epsilon), \quad L(0,\chi_{D_2}) = 2h_2/w_2.$$

Note: Complex multiplication is not used!

The Stark-Heegner setting

Assume $\chi =$ trivial character.

$$P_K =$$
 "trace" to K of P_D .

1. A "Kronecker limit formula"

$$\frac{d^2}{dk^2}L_p(f_k/K, k/2) = \frac{1}{4}\log_p(P_K + a_p(E)\bar{P}_K)^2.$$

If $a_p(E) = -\text{sign}(L(E/\mathbf{Q}, s))$, then

$$\frac{d^2}{dk^2} L_p(f_k/K, k/2) = \log_p(P_K)^2.$$

2. Factorisation formula:

$$L_p(f_k/K, k/2) = L_p(f_k, k/2)L_p(f_k, \chi_D, k/2).$$

 $L_p(f_k, k/2) =$ specialisation to the critical line s = k/2 of $L_p(f_k, k, s)$ (Mazur's two-variable p-adic L-function.)

An analogue of Dirichlet's Formula

Suppose $a_p = -\text{sign}(L(E/\mathbf{Q}, s)) = 1$.

Theorem over Q (Bertolini, D)

The function $L_p(f_k,k/2)$ vanishes to order ≥ 2 at k=2, and there exists $P_{\mathbf{Q}} \in E(\mathbf{Q}) \otimes \mathbf{Q}$ such that

1.
$$\frac{d^2}{dk^2}L_p(f_k, k/2) = -\log^2(P_Q)$$
.

2. $P_{\mathbf{Q}}$ is of infinite order iff $L'(E/\mathbf{Q}, 1) \neq 0$.

Proof of theorem over Q

Introduce a suitable auxiliary imaginary quadratic field K.

A "Kronecker limit formula"

$$\frac{d^2}{dk^2} L_p(f_k/K, k/2) = \log_p(P_K)^2,$$

where P_K is a *Heegner point* arising from a Shimura curve parametrisation.

Key Ingredients: Cerednik-Drinfeld Theorem.

M. Bertolini and H. Darmon, Heegner points, p-adic L-functions and the Cerednik-Drinfeld uniformisation, Invent. Math. **131** (1998).

M. Bertolini and H. Darmon, *Hida families and rational points on elliptic curves*, in preparation.

End of Proof

We now use the factorisation formula

$$L_p''(f_k/K, k/2) = L_p''(f_k, k/2) L_p(f_k, \chi_D, 1)$$
 to conclude.

The structure of the argument

Heegner points + Cerednik-Drinfeld

- \Rightarrow Theorem for K imaginary quadratic
- \Rightarrow Theorem for Q
- \Rightarrow Theorem for K real quadratic.

This argument seems to shed no light on the rationality of the Stark-Heegner point P_D (unless the class group has exponent two).