p-adic Modular Forms and Arithmetic
A conference in honor of Haruzo Hida's 60th birthday

Hida's p-adic Rankin L-functions and syntomic regulators
 of Beilinson-Flach elements

Henri Darmon

UCLA, June 18, 2012

(Joint with Massimo Bertolini and Victor Rotger)

Also based on earlier work with Bertolini and Kartik Prasanna

Preliminaries

Rankin L-series are attached to a pair

$$
f \in S_{k}\left(\Gamma_{1}\left(N_{f}\right), \chi_{f}\right), \quad g \in S_{\ell}\left(\Gamma_{1}\left(N_{g}\right), \chi_{g}\right)
$$

of cusp forms,

$$
f=\sum_{n=1}^{\infty} a_{n}(f) q^{n}, \quad g=\sum_{n=1}^{\infty} a_{n}(g) q^{n}
$$

Hecke polynomials $\left(p \nmid N:=\operatorname{lcm}\left(N_{f}, N_{g}\right)\right)$

$$
\begin{aligned}
& x^{2}-a_{p}(f) x+\chi_{f}(p) p^{k-1}=\left(x-\alpha_{p}(f)\right)\left(x-\beta_{p}(f)\right) \\
& x^{2}-a_{p}(g) x+\chi_{g}(p) p^{\ell-1}=\left(x-\alpha_{p}(g)\right)\left(x-\beta_{p}(g)\right)
\end{aligned}
$$

Rankin L-series, definition

Incomplete Rankin L-series:

$$
\begin{aligned}
L_{N}(f \otimes g, s)^{-1}= & \prod_{p \nmid N}\left(1-\alpha_{p}(f) \alpha_{p}(g) p^{-s}\right)\left(1-\alpha_{p}(f) \beta_{p}(g) p^{-s}\right) \\
& \times\left(1-\beta_{p}(f) \alpha_{p}(g) p^{-s}\right)\left(1-\beta_{p}(f) \beta_{p}(g) p^{-s}\right)
\end{aligned}
$$

This definition, completed by a description of Euler factors at the "bad primes", yields the Rankin L-series

$$
L(f \otimes g, s)=L\left(V_{f} \otimes V_{g}, s\right)
$$

where V_{f}, V_{g} are the Deligne representations attached to f and g.

Rankin L-series, integral representation

Assume for simplicity that $k=\ell=2$.
Non-holomorphic Eisenstein series of weight 0 :

$$
E_{\chi}(z, s)=\sum_{(m, n) \in N \mathbb{Z} \times \mathbb{Z}}^{\prime} \chi^{-1}(n) y^{s}|m z+n|^{-2 s}
$$

Theorem (Shimura)

Let $\chi:=\left(\chi_{f} \chi_{g}\right)^{-1}$. Then

$$
L(f \otimes g, s)=\frac{(4 \pi)^{s}}{\Gamma(s)}\left\langle\bar{f}(z), E_{\chi}(z, s-1) g(z)\right\rangle_{\Gamma_{0}(N)}
$$

This is proved using the Rankin-Selberg method.

Rankin L-series, properties

The non-holomorphic Eisenstein series have analytic continuation to $s \in \mathbb{C}$ and satisfy a functional equation under $s \leftrightarrow 1-s$.

Shimura's integral representation for $L(f \otimes g, s)$ leads to its analytic continuation, with a functional equation

$$
L(f \otimes g, s) \leftrightarrow L(f \otimes g, 3-s)
$$

Goal of Beilinson's formula: Give a geometric interpretation for $L(f \otimes g, s)$ at the "near central point" $s=2$.

This geometric interpretation involves the higher Chow groups of $X_{0}(N) \times X_{0}(N)$.

Higher Chow groups

Let $S=$ smooth proper surface over a field K.

Definition

The Higher Chow group $\mathrm{CH}^{2}(S, 1)$ is the first homology of the Gersten complex

$$
K_{2}(K(S)) \xrightarrow{\partial} \oplus z \subset S K(Z)^{\times \text {div }} \oplus P_{P \in S} \mathbb{Z}
$$

So an element of $\mathrm{CH}^{2}(S, 1)$ is described by a formal linear combination of pairs $\left(Z_{j}, u_{j}\right)$ where the Z_{j} are curves in S, and u_{j} is a rational function on Z_{j}.

Beilinson-Flach elements

These are distinguished elements in $\mathrm{CH}^{2}(S, 1)$ arising when
(1) $S=X_{1}(N) \times X_{1}(N)$ is a product of modular curves;
(2) $Z=\Delta \simeq X_{1}(N)$ is the diagonal;
(3) $u \in \mathbb{C}(\Delta)^{\times}$is a modular unit.

Lemma

For all modular units $u \in \mathbb{C}(\Delta)^{\times}$, there is an element of the form

$$
\Delta_{u}=(\Delta, u)+\sum_{i} \lambda_{i}\left(P_{j} \times X_{1}(N), u_{i}\right)+\sum_{j} \eta_{j}\left(X_{1}(N) \times Q_{j}, v_{j}\right)
$$

which belongs to $\mathrm{CH}^{2}(S, 1) \otimes \mathbb{Q}$. It is called the Beilinson-Flach element associated to the pair (Δ, u).

Modular units

Manin-Drinfeld: the group $\mathcal{O}_{Y_{1}(N)}^{\times} / \mathbb{C}^{\times}$has "maximal possible rank", namely $\#\left(X_{1}(N)-Y_{1}(N)\right)-1$.

The logarithmic derivative gives a surjective map

$$
\text { dlog : } \mathcal{O}_{Y_{1}(N)}^{\times} \otimes \mathbb{Q} \longrightarrow \operatorname{Eis}_{2}\left(\Gamma_{1}(N), \mathbb{Q}\right)
$$

to the space of weight two Eisenstein series with coefficients in \mathbb{Q}.
Let $u_{\chi} \in \mathcal{O}_{Y_{1}(N)}^{\times} \otimes \mathbb{Q}_{\chi}$ be the modular unit characterised by

$$
\begin{gathered}
\operatorname{dog} u_{\chi}=E_{2, \chi}, \\
E_{2, \chi}(z)=2^{-1} L(\chi,-1)+\sum_{n=1}^{\infty} \sigma_{\chi}(n) q^{n}, \quad \sigma_{\chi}(n)=\sum_{d \mid n} \chi(d) d .
\end{gathered}
$$

Complex regulators

The complex regulator is the map

$$
\operatorname{reg}_{\mathbb{C}}: \mathrm{CH}^{2}(S, 1) \longrightarrow\left(\mathrm{Fil}^{1} H_{\mathrm{dR}}^{2}(S / \mathbb{C})\right)^{\vee}
$$

defined by

$$
\operatorname{reg}_{\mathbb{C}}((Z, u))(\omega)=\frac{1}{2 \pi i} \int_{Z^{\prime}} \omega \log |u|
$$

where

- ω is a smooth two-form on S whose associated class in $H_{\mathrm{dR}}^{2}(S / \mathbb{C})$ belongs to Fil^{1};
- $Z^{\prime}=$ locus in Z where u is regular.

Beilinson's formula

Theorem (Beilinson)

For cusp forms f and g of weight 2 and characters χ_{f} and χ_{g},

$$
L(f \otimes g, 2)=C_{\chi} \times \operatorname{reg}_{\mathbb{C}}\left(\Delta_{u_{\chi}}\right)\left(\bar{\omega}_{f} \wedge \omega_{g}\right)
$$

where

$$
\begin{gathered}
C_{\chi}=16 \pi^{3} N^{-2} \tau\left(\chi^{-1}\right) \\
\chi=\left(\chi_{f} \chi_{g}\right)^{-1}
\end{gathered}
$$

A p-adic Beilinson formula?

Such a formula should relate:
(1) The value at $s=2$ of certain p-adic L-series attached to f and g;
(2) The images of Beilinson-Flach elements under certain p-adic syntomic regulators, in the spirit of Coleman-de Shalit, Besser.

Hida's p-adic Rankin L-series

To define $L_{p}(f \otimes g, s)$, the obvious approach is to interpolate the values

$$
L(f \otimes g, \chi, j), \quad \chi \text { a Dirichlet character, } \quad j \in \mathbb{Z}
$$

Difficulty: none of these (χ, j) are critical in the sense of Deligne.
Hida's solution: "enlarge" the domain of definition of $L_{p}(f, g, s)$ by allowing f and g to vary in p-adic families.

Hida families

Iwasawa algebra: $\Lambda=\mathbb{Z}_{p}\left[\left[1+p \mathbb{Z}_{p}\right]\right] \simeq \mathbb{Z}_{p}[[T]]$:
Weight space: $\Omega:=\operatorname{hom}\left(\Lambda, \mathbb{C}_{p}\right) \subset \operatorname{hom}\left(\left(1+p \mathbb{Z}_{p}\right)^{\times}, \mathbb{C}_{p}^{\times}\right)$.
The integers form a dense subset of Ω via $k \leftrightarrow\left(x \mapsto x^{k}\right)$.
Classical weights: $\Omega_{\mathrm{cl}}:=\mathbb{Z}^{\geq 2} \subset \Omega$.
If $\tilde{\Lambda}$ is a finite flat extension of Λ, let $\tilde{\mathcal{X}}=\operatorname{hom}\left(\tilde{\Lambda}, \mathbb{C}_{p}\right)$ and let

$$
\kappa: \tilde{\mathcal{X}} \longrightarrow \Omega
$$

be the natural projection to weight space.
Classical points: $\tilde{\mathcal{X}}_{\mathrm{cl}}:=\left\{x \in \tilde{\mathcal{X}}\right.$ such that $\left.\kappa(x) \in \Omega_{\mathrm{cl}}\right\}$.

Hida families, cont'd

Definition

A Hida family of tame level N is a triple $\left(\Lambda_{f}, \Omega_{f}, \underline{f}\right)$, where
(1) Λ_{f} is a finite flat extension of Λ;
(2) $\Omega_{f} \subset \mathcal{X}_{f}:=\operatorname{hom}\left(\Lambda_{f}, \mathbb{C}_{p}\right)$ is a non-empty open subset (for the p-adic topology);
(3) $\underline{f}=\sum_{n} \mathbf{a}_{n} q^{n} \in \Lambda_{f}[[q]]$ is a formal q-series, such that $\underline{f}(x):=\sum_{n} x\left(\mathbf{a}_{n}\right) q^{n}$ is the q series of the ordinary p-stabilisation $f_{x}^{(p)}$ of a normalised eigenform, denoted f_{x}, of weight $\kappa(x)$ on $\Gamma_{1}(N)$, for all $x \in \Omega_{f, \mathrm{cl}}:=\Omega_{f} \cap \mathcal{X}_{f, \mathrm{cl}}$.

Hida's theorem

$f=$ normalised eigenform of weight $k \geq 1$ on $\Gamma_{1}(N)$.
$p \nmid N$ an ordinary prime for f (i.e., $a_{p}(f)$ is a p-adic unit).

Theorem (Hida)

There exists a Hida family $\left(\Lambda_{f}, \Omega_{f}, \underline{f}\right)$ and a classical point $x_{0} \in \Omega_{f, \mathrm{cl}}$ satisfying

$$
\kappa\left(x_{0}\right)=k, \quad f_{x_{0}}=f
$$

As x varies over $\Omega_{f, c l}$, the specialisations f_{x} give rise to a " p-adically coherent" collection of classical newforms on $\Gamma_{1}(N)$, and one can hope to construct p-adic L-functions by interpolating classical special values attached to these eigenforms.

Hida's p-adic Rankin L-functions

They should interpolate critical values of the form

$$
\frac{L\left(f_{x} \otimes g_{y}, j\right)}{\Omega\left(f_{x}, g_{y}, j\right)} \in \overline{\mathbb{Q}}, \quad(x, y, j) \in \Omega_{f, \mathrm{cl}} \times \Omega_{g, \mathrm{cl}} \times \mathbb{Z}
$$

Proposition

The special value $L\left(f_{x} \otimes g_{y}, j\right)$ is critical if and only if either:

- $\kappa(y) \leq j \leq \kappa(x)-1$; then $\Omega\left(f_{x}, g_{y}, j\right)=*\left\langle f_{x}, f_{x}\right\rangle$.
- $\kappa(x) \leq j \leq \kappa(y)-1$; then $\Omega\left(f_{x}, g_{y}, j\right)=*\left\langle g_{y}, g_{y}\right\rangle$.

Let $\Sigma_{f}, \Sigma_{g} \subset \Omega_{f} \times \Omega_{g} \times \Omega$ be the two sets of critical points.
Note that they are both dense in the p-adic domain.

Hida's p-adic Rankin L-functions

Theorem (Hida)

There are two (a priori quite distinct) p-adic L-functions,

$$
L_{p}^{f}(\underline{f} \otimes \underline{g}), \quad L_{p}^{g}(\underline{f} \otimes \underline{g}): \quad \Omega_{f} \times \Omega_{g} \times \Omega \longrightarrow \mathbb{C}_{p}
$$

interpolating the algebraic parts of $L\left(f_{x} \otimes g_{y}, j\right)$ for (x, y, j) belonging to Σ_{f} and Σ_{g} respectively.

p-adic regulators

$$
\begin{gathered}
\mathrm{CH}^{2}(S / \mathbb{Z}, 1) \xrightarrow[f]{\mathrm{reg}_{\mathrm{et}}} H_{f}^{1}\left(\mathbb{Q}, H_{\mathrm{et}}^{2}\left(\bar{S}, \mathbb{Q}_{p}\right)(2)\right) \\
\mathrm{CH}^{2}\left(S / \mathbb{Z}_{p}, 1\right) \xrightarrow[\mathrm{reg}_{\mathrm{et}}]{ } H_{f}^{1}\left(\mathbb{Q}_{p}, H_{\mathrm{et}}^{2}\left(\bar{S}, \mathbb{Q}_{p}\right)(2)\right) \\
\| \log _{p} \\
\mathrm{Fil}^{1}{ }_{H_{\mathrm{dR}}^{2}\left(S / \mathbb{Q}_{p}\right) \vee}
\end{gathered}
$$

The dotted arrow is called the p-adic regulator and denoted reg ${ }_{p}$.

Syntomic regulators

Coleman-de Shalit, Besser: A direct, p-adic analytic description of the p-adic regulator in terms of Coleman's theory of p-adic integration.

The p-adic Beilinson formula: the set-up

$\underline{f}=$ Hida family of tame level N specialising to the weight two cusp form $f \in S_{2}\left(\Gamma_{0}(N), \chi_{f}\right)$ at $x_{0} \in \Omega_{f}$.
$\underline{g}=$ Hida family of tame level N specialising to the weight two cusp form $g \in S_{2}\left(\Gamma_{0}(N), \chi_{g}\right)$ at $y_{0} \in \Omega_{g}$.
$\chi=\left(\chi_{f} \chi_{g}\right)^{-1}$.
$\eta_{f}^{\text {ur }}=$ unique class in $H_{\mathrm{dR}}^{1}\left(X_{0}(N) / \mathbb{C}_{p}\right)^{f}$ which is in the unit root subspace for Frobenius and satisfies $\left\langle\omega_{f}, \eta_{f}^{\text {ur }}\right\rangle=1$.

The p-adic Beilinson formula

Theorem (Bertolini, Rotger, D)

$$
\begin{aligned}
& L_{p}^{f}(\underline{f}, \underline{g})\left(x_{0}, y_{0}, 2\right)=\frac{\mathcal{E}(f, g, 2)}{\mathcal{E}(f) \mathcal{E}^{*}(f)} \times \operatorname{reg}_{p}\left(\Delta_{u_{\chi}}\right)\left(\eta_{f}^{\mathrm{ur}} \wedge \omega_{g}\right), \\
& L_{p}^{g}(\underline{f}, \underline{g})\left(x_{0}, y_{0}, 2\right)=\frac{\mathcal{E}(g, f, 2)}{\mathcal{E}(g) \mathcal{E}^{*}(g)} \times \operatorname{reg}_{p}\left(\Delta_{u_{\chi}}\right)\left(\omega_{f} \wedge \eta_{g}^{\mathrm{ur}}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\mathcal{E}(f, g, 2)= & \left(1-\beta_{p}(f) \alpha_{p}(g) p^{-2}\left(1-\beta_{p}(f) \beta_{p}(g) p^{-2}\right)\right. \\
& \times\left(1-\beta_{p}(f) \alpha_{p}(g) \chi(p) p^{-1}\right)\left(1-\beta_{p}(f) \beta_{p}(g) \chi(p) p^{-1}\right) \\
\mathcal{E}(f)=1- & \beta_{p}(f)^{2} \chi_{f}^{-1}(p) p^{-2}, \quad \mathcal{E}^{*}(f)=1-\beta_{p}(f)^{2} \chi_{f}^{-1}(p) p^{-1} .
\end{aligned}
$$

Arithmetic applications: Dasgupta's formula

In his work on the \mathcal{L}-invariant for the symmetric square, Dasgupta is led to study $L_{p}^{\text {Hida }}(\underline{f}, \underline{f})$ when $\underline{f}=\underline{g}$, and its restriction $L_{p}^{\text {Hida }}(\underline{f}, \underline{f})(x, x, j)$ to the diagonal in $\Omega_{f} \times \Omega_{f}$.

This restriction has no critical values.
The "Artin formalism" for p-adic L-functions suggests that it should factor into a product of
(1) the Coates-Schmidt p-adic L-function $L_{p}^{\mathrm{CS}}\left(\operatorname{Sym}^{2}(\underline{f})\right)(x, j)$, which does have critical points;
(2) the Kubota-Leopoldt p-adic L-function $L_{p}^{\mathrm{KL}}\left(\chi_{f}, j+1-\kappa(x)\right)$.

Dasgupta's formula

Theorem (Dasgupta)

$$
L_{p}^{\text {Hida }}(\underline{f}, \underline{f})(x, x, j)=L_{p}^{\mathrm{CS}}\left(\operatorname{Sym}^{2}(\underline{f})\right)(x, j) \times L_{p}^{\mathrm{KL}}\left(\chi_{f}, j+1-\kappa(x)\right) .
$$

Theorem (Gross)

Let χ be an even Dirichlet character, K an imaginary quadratic field in which p splits.

$$
L_{p}^{\mathrm{Katz}}\left(\chi_{\mid K}, s\right)=L_{p}^{\mathrm{KL}}\left(\chi \epsilon_{K} \omega, s\right) L_{p}^{\mathrm{KL}}\left(\chi^{-1}, 1-s\right)
$$

The role of elliptic units in Gross' proof is played by Beilinson-Flach elements (and associated units) in Dasgupta's argument.

For more, see Samit's lecture tomorrow!

Euler systems of "Garrett-Rankin-Selberg type"

There is a strong parallel between:
(1) Beilinson-Kato elements in $\mathrm{CH}^{2}\left(X_{1}(N), 2\right)$, or in $K_{2}\left(X_{1}(N)\right) \otimes \mathbb{Q}$, formed from pairs of modular units;
(2) Beilinson-Flach elements in $\mathrm{CH}^{2}\left(X_{1}(N)^{2}, 1\right)$, or in $K_{1}\left(X_{1}(N) \times X_{1}(N)\right) \otimes \mathbb{Q}$, formed from modular units supported on the diagonal;
(3) Gross-Kudla Schoen diagonal cycles in $\mathrm{CH}^{2}\left(X_{1}(N)^{3}\right)_{0}$ formed from the principal diagonal in the triple product of modular curves.

The first two can be viewed as "degenerate cases" of the last.

p-adic formulae

1. (Kato-Brunault-Gealy, M. Niklas, Bertolini-D):

$$
L_{p}^{\mathrm{MS}}\left(f, \chi_{1}, 2\right) L_{p}^{\mathrm{MS}}\left(f, \chi_{2}, 1\right) \leftrightarrow \operatorname{reg}_{p}\left\{u_{\chi_{1}}, u_{\chi_{1}, \chi_{2}}\right\}\left(\eta_{f}^{\mathrm{ur}}\right)
$$

$L_{p}^{\mathrm{MS}}=$ Mazur-Swinnerton-Dyer L-function.
2. (Bertolini-Rotger-D)

$$
L_{p}^{f, \text { Hida }}(f \otimes g, 2) \leftrightarrow \operatorname{reg}_{p}\left(\Delta_{\chi}\right)\left(\eta_{f}^{\mathrm{ur}} \wedge \omega_{g}\right)
$$

$L_{p}^{f, \text { Hida }}=$ Hida's Rankin p-adic L-function;
3. (Rotger-D)

$$
L_{p}^{f, \mathrm{HT}}(\underline{f} \otimes \underline{g} \otimes \underline{h}, 2) \leftrightarrow \mathrm{AJ}_{p}\left(\Delta_{G K S}\right)\left(\eta_{f}^{\mathrm{ur}} \wedge \omega_{g} \wedge \omega_{h}\right)
$$

$L_{p}^{f, \mathrm{HT}}=$ Harris-Tilouine's triple product p-adic L-function.

Complex formulae

All of the formulae of the previous slide admit complex analogues:

- The first two are due to Beilinson;
- The last, which relates heights of diagonal cycles to central critical derivatives of Garrett-Rankin triple product L-series, is due to Gross-Kudla and Wei-Zhang-Zhang. (But here the analogy is less immediate.)

On the importance of p-adic formulae

p-adic formulae enjoy the following advantages over their complex analogues:
(1) the p-adic regulators and Abel-Jacobi maps factor through their counterparts in p-adic étale cohomology, which yield arithmetically interesting global cohomology classes with p-adic coefficients.
(2) The p-adic formulae can be subjected to variation in p-adic families, yielding global classes with values in p-adic representations for which the geometric construction ceases to be available.

Beilinson-Kato classes

Beilinson elements: $\left\{u_{\chi}, u_{\chi_{1}, \chi_{2}}\right\} \in K_{2}\left(X_{1}(N)\right)\left(\mathbb{Q}_{\chi_{1}}\right) \otimes F$,

$$
\operatorname{dlog} u_{\chi}=E_{2}(1, \chi), \quad \operatorname{dlog} u_{\chi_{1}, \chi_{2}}=E_{2}\left(\chi_{1}, \chi_{2}\right) .
$$

étale regulator:

$$
\begin{aligned}
\operatorname{reg}_{\mathrm{et}}: K_{2}\left(X_{1}(N)\right)\left(\mathbb{Q}_{\chi_{1}}\right) & \longrightarrow H_{\mathrm{et}}^{2}\left(X_{1}(N)_{\mathbb{Q}_{\chi_{1}}}, \mathbb{Q}_{p}(2)\right) \\
& \longrightarrow H^{1}\left(\mathbb{Q}_{\chi_{1}}, H_{\mathrm{et}}^{1}\left(\overline{X_{1}(N)}, \mathbb{Q}_{p}(2)\right)\right) .
\end{aligned}
$$

Beilinson-Kato class:

$$
\begin{aligned}
\kappa\left(f, E_{2}(1, \chi), E_{2}\left(\chi_{1}, \chi_{2}\right)\right):= & \operatorname{reg}_{\text {et }}\left(\left\{u_{\chi}, u_{\chi_{1}, \chi_{2}}\right\}\right)^{f} \in H^{1}\left(\mathbb{Q}_{\chi_{1}}, V_{f}(2)\right) \\
& \left.\stackrel{\text { res }}{\leftarrow} H^{1}\left(\mathbb{Q}, V_{f}(2)\left(\chi_{1}^{-1}\right)\right)\right) .
\end{aligned}
$$

Beilinson-Flach classes

étale regulator:

$$
\begin{aligned}
\text { reg }_{\mathrm{et}}: K_{1}\left(X_{1}(N)^{2}\right) & \longrightarrow H_{\mathrm{et}}^{3}\left(X_{1}(N)^{2}, \mathbb{Q}_{p}(2)\right) \\
& \left.\longrightarrow H^{1}\left(\mathbb{Q}, H_{\mathrm{et}}^{2}\left(\overline{X_{1}(N)}\right)^{2}, \mathbb{Q}_{p}(2)\right)\right) . \\
& \longrightarrow H^{1}\left(\mathbb{Q}, H_{\mathrm{et}}^{1}\left(X_{1}(N), \mathbb{Q}_{p}\right)^{\otimes 2}(2)\right)
\end{aligned}
$$

Beilinson-Flach class:

$$
\kappa\left(f, g, E_{2}(\chi)\right):=\operatorname{reg}_{e t}\left(\Delta_{\chi}\right)^{f, g} \in H^{1}\left(\mathbb{Q}, V_{f} \otimes V_{g}(2)\right)
$$

Gross-Kudla-Schoen diagonal classes

étale Abel-Jacobi map:

$$
\begin{aligned}
\mathrm{AJ}_{\mathrm{et}}: \mathrm{CH}^{2}\left(X_{1}(N)^{3}\right)_{0} & \longrightarrow H_{\mathrm{et}}^{4}\left(X_{1}(N)^{3}, \mathbb{Q}_{p}(2)\right)_{0} \\
& \longrightarrow H^{1}\left(\mathbb{Q}, H_{\mathrm{et}}^{3}\left({\overline{X_{1}}(N)}^{3}, \mathbb{Q}_{p}(2)\right)\right) \\
& \longrightarrow H^{1}\left(\mathbb{Q}, H_{\mathrm{et}}^{1}\left(X_{1}(N), \mathbb{Q}_{p}\right)^{\otimes 3}(2)\right)
\end{aligned}
$$

Gross-Kudla Schoen class:

$$
\kappa(f, g, h):=\mathrm{AJ}_{\mathrm{et}}(\Delta)^{f, g, h} \in H^{1}\left(\mathbb{Q}, V_{f} \otimes V_{g} \otimes V_{h}(2)\right) .
$$

A p-adic family of global classes

Theorem (Rotger-D)

Let $\underline{f}, \underline{g}, \underline{h}$ be three Hida families. There is a Λ-adic cohomology class

$$
\kappa(f, \underline{g}, \underline{h}) \in H^{1}\left(\mathbb{Q}, V_{f} \otimes\left(\underline{V}_{g} \otimes_{\wedge} \underline{V}_{h}\right)_{1}\right)
$$

where $\underline{V}_{g}, \underline{V}_{h}=$ Hida's Λ-adic representations attached to \underline{f} and g, satisfying, for all "weight two" points $(y, z) \in \Omega_{g} \times \Omega_{h}$,

$$
\log _{p} \kappa\left(f, g_{y}, h_{z}\right)\left(\eta_{f}^{\mathrm{ur}} \wedge \omega_{g_{y}} \wedge \omega_{h_{z}}\right) \leftrightarrow L_{p}^{f, \mathrm{HT}}(f, \underline{g}, \underline{h})(y, z, 2)
$$

This Λ-adic class generalises Kato's class, which one recovers when \underline{g} and \underline{h} are families of Eisenstein series.

Kato's reciprocity law

Kato's idea: Specialise the Λ-adic cohomology class $\kappa\left(f, \underline{E}(\chi), \underline{E}\left(\chi_{1}, \chi_{2}\right)\right)$ to Eisenstein series of weight one.

$$
\kappa_{\text {kato }}\left(f, \chi_{1}, \chi_{2}\right):=\kappa\left(f, E_{1}(1, \chi), E_{1}\left(\chi_{1}, \chi_{2}\right)\right) .
$$

Theorem (Kato)

The class $\kappa_{\text {Kato }}\left(f, \chi_{1}, \chi_{2}\right)$ is cristalline if and only if $L\left(f, \chi_{1}, 1\right) L\left(f, \chi_{2}, 1\right)=0$.

Corollary

Let E be an elliptic curve over \mathbb{Q} and χ a Dirichlet character. If $L\left(E, \chi_{1}, 1\right) \neq 0$, then hom $(\mathbb{C}(\chi), E(\overline{\mathbb{Q}}) \otimes \mathbb{C})=0$.

Reciprocity law for diagonal cycles

One can likewise consider the specialisations of $\kappa(f, \underline{g}, \underline{h})$ when \underline{g} and \underline{h} are evaluated at points of weight one.

Theorem (Rotger-D)
Let $(y, z) \in \Omega_{g} \times \Omega_{h}$ be points with $\operatorname{wt}(y)=\mathrm{wt}(z)=1$. The class $\kappa\left(f, g_{y}, h_{z}\right)$ is cristalline if and only if $L\left(f \otimes g_{y} \otimes h_{z}, 1\right)=0$.

Corollary

Let E be an elliptic curve over \mathbb{Q} and ρ_{1}, ρ_{2} odd irreducible two-dimensional Galois representations. If $L\left(E, \rho_{1} \otimes \rho_{2}, 1\right) \neq 0$, then $\operatorname{hom}\left(\rho_{1} \otimes \rho_{2}, E(\overline{\mathbb{Q}}) \otimes \mathbb{C}\right)=0$.

Reciprocity laws for Beilinson-Flach elements

When \underline{g} is cuspidal and only \underline{h} is a family of Eisenstein series, the
 elements should satisfy similar reciprocity laws (details are still to be worked out).

BSD application (Bertolini, Rotger, in progress):

$$
L(E, \rho, 1) \neq 0 \Rightarrow \operatorname{hom}(\rho, E(\overline{\mathbb{Q}}) \otimes \mathbb{C})=0
$$

The work of Loeffler-Zerbes

In their article
"Iwasawa Theory and p-adic L-functions over \mathbb{Z}_{p}^{2}-extensions",
David Loeffler and Sarah Zerbes construct a generalisation of Perrin-Riou's "big dual exponential map" for the two-variable \mathbb{Z}_{p}-extension of an imaginary quadratic field K :

$$
\log _{V, K}: H_{\mathrm{Iw}}^{1}(K, V):=\left(\lim _{\leftarrow} H^{1}\left(K_{n}, T\right)\right)_{\mathbb{Q}_{p}} \longrightarrow \mathbb{D}_{\text {cris }}(V) \otimes \tilde{\Lambda}_{K}
$$

They then conjecture, following Perrin-Riou, a construction of the two-variable p-adic L-function attached to V / K as the image under $\log _{V, K}$ of a suitable norm-compatible system of global classes.

The work of Lei-Loeffler-Zerbes

Goal: Construct this conjectured global class using the Beilinson-Flach family $\kappa(f, g, \underline{E})$, when g is a family of theta-series attached to K.

A rough classification of Euler systems

The Euler systems that have been most studied so far fall into two broad categories:

1. The Euler system of Heegner points, and its "degenerate cases", elliptic units and circular units. (Cf. work with Bertolini, Prasanna, and in Francesc Castella's ongoing PhD thesis.) Cycles on $U(2) \times U(1)$.
2. Euler systems of Garrett-Rankin-Selberg type: diagonal cycles and the "degenerate settings" of the Beilinson-Flach and Beilinson-Kato elements. Cycles on $S O(4) \times S O(3)$.
3. Other settings? p-adic families of cycles on $U(n) \times U(n-1)$?

Le mot de la fin

In further developments of the theory of Euler systems, the notion of p-adic deformations of automorphic forms and their associated Galois representations pioneered by Hida is clearly destined to play a central role.

