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Diophantine equations

f1, . . . , fm ∈ Z[x1, . . . , xn],

X :











f1(x1, . . . , xn) = 0
... ... ...

fm(x1, . . . , xn) = 0.

Question: What is an interesting Diophantine

equation?

A “working definition”. A Diophantine equa-

tion is interesting if it reveals or suggests a rich

underlying mathematical structure.

(In other words, a Diophantine question is in-

teresting if it has an interesting answer...!)
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Some examples

Fermat, 1635: Pell’s equation x2 − ny2 = 1

has infinitely many solutions because the class

group of binary quadratic forms of discriminant

4n is finite.

Kummer, 1847: Fermat’s equation xn+yn =

zn has no non-zero solution for 2 < n < 37

because all primes p < 37 are regular.

Mazur, Frey, Serre, Ribet, Wiles, Taylor,

1994: Fermat’s equation xn + yn = zn has

no non-zero solution for all n > 2 because all

elliptic curves are modular.
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Elliptic Curves

An elliptic curve is an equation of the form

E : y2 = x3 + ax + b,

with ∆ := 4a3 − 27b2 6= 0.

If F is a field,

E(F ) := Mordell-Weil group of E over F .

Why elliptic curves?
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The addition law

Elliptic curves are algebraic groups.

x

y
 y  = x + a x + b2 3

P

Q

R

P+Q

The addition law on an elliptic curve
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Modularity

Let N = conductor of E.

a(p) :=

{

p + 1 − #E(Z/pZ) if p 6 |N ;
0,±1 if p|N.

a(mn) = a(m)a(n) if gcd(m, n) = 1,

a(pn) = a(p)a(pn−1) − pa(pn−2), if p 6 |N.

Generating series:

fE(z) =
∞
∑

n=1

a(n)e2πinz, z ∈ H,

H := Poincaré upper half-plane
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Modularity

Modularity: the series fE(z) satisfies a deep

symmetry property.

M0(N) := ring of 2× 2 integer matrices which

are upper triangular modulo N .

Γ0(N) := M0(N)×1 = units of determinant 1.

Theorem: The series fE is a modular form of

weight two on Γ0(N).

fE

(

az + b

cz + d

)

= (cz + d)2fE(z).

In particular, the differential form ωf := fE(z)dz

is defined on the quotient

X := Γ0(N)\H.
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Cycles and modularity

The Riemann surface X contains many natural

cycles, which convey a tremendous amount of

arithmetic information about E.

These cycles are indexed by the commutative

subrings of M0(N): orders in Q[ε], Q×Q, or in

a quadratic field.

Disc(R) := discriminant of R.

ΣD = Γ0(N)\{R ⊂ M0(N) with Disc(R) = D}.

GD := Equivalence classes of binary quadratic

forms of discriminant D.

The set ΣD, if non-empty, is equipped with an

action of the class group GD.
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The special cycles γR ⊂ X

Case 1. Disc(R) > 0. Then (R⊗Q)× has two

real fixed points τR, τ ′R ∈ R.

ΥR := geodesic from τR to τ ′R;

γR := R×
1 \ΥR

Case 2. Disc(R) < 0. Then (R ⊗ Q)× has a

single fixed point τR ∈ H.

γR := {τR}
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An (idealised) picture
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For each discriminant D, define:

γD =
∑

γR,

the sum being taken over a GD-orbit in ΣD.

Convention: γD = 0 if ΣD is empty.

Fact: The periods of ωf against γR and γD

convey alot of information about the arith-

metic of E over quadratic fields.
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Periods of ωf : the case D > 0

Theorem (Eichler, Shimura) The set

Λ :=

〈

∫

γR

ωf , R ∈ Σ>0

〉

⊂ C

is a lattice in C, which is commensurable with

the Weierstrass lattice of E.

Proof (Sketch)

1. Modular curves: X = Y0(N)(C), where

Y0(N) is an algebraic curve over Q, parametris-

ing elliptic curves over Q.

2. Eichler-Shimura: There exists an elliptic

curve Ef and a quotient map

Φf : Y0(N) −→ Ef

such that
∫

γR

ωf =
∫

Φ(γR)
ωEf

∈ ΛEf
.
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Hence,
∫

γR
ωf is a period of Ef .

The curves Ef and E are related by:

an(Ef) = an(E) for all n ≥ 1.

3. Isogeny conjecture for curves (Faltings):

Ef is isogenous to E over Q.
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Arithmetic information

Conjecture (BSD) Let D > 0 be a fundamen-

tal discriminant. Then

JD :=

∫

γD

ωf 6= 0 iff #E(Q(
√

D)) < ∞.

“The position of γD in the homology H1(X, Z)

encodes an obstruction to the presence of ra-

tional points on E(Q(
√

D)). ”

Gross-Zagier, Kolyvagin. If JD 6= 0, then

E(Q(
√

D)) is finite.
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Periods of ωf : the case D < 0

The γR are 0-cycles, and their image in H0(X, Z)

is constant (independent of R).

Hence we can produce many homologically triv-

ial 0-cycles suppported on ΣD:

Σ0
D := ker(Div(ΣD) −→ H0(X, Z)).

Extend R 7→ γR to ∆ ∈ Σ0
D by linearity.

γ#
∆ := any smooth one-chain on X having γ∆

as boundary,

P∆ :=

∫

γ
]
∆

ωf ∈ C/Λf ' E(C).
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CM points

CM point Theorem For all ∆ ∈ Σ0
D, the point

P∆ belongs to E(HD) ⊗ Q, where HD is the

Hilbert class field of Q(
√

D).

Proof (Sketch)

1. Complex multiplication: If R ∈ ΣD, the 0-

cycle γR is a point of Y0(N)(C) corresponding

to an elliptic curve with complex multiplication

by Q(
√

D). Hence it is defined over HD.

2. Explicit formula for Φ: Φ(γ∆) = P∆.

The systematic supply of algebraic points on E

given by the CM point theorem is an essential

tool in studying the arithmetic of E over K.
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Generalisations?

Principle of functoriality: modularity admits

many incarnations.

Simple example: quadratic base change.

Choose a fixed real quadratic field F , and

consider E as an elliptic curve over this field.

Notation: (v1, v2) : F −→ R⊕R, x 7→ (x1, x2).

Assumptions: h+(F ) = 1, N = 1.

Counting points mod p yields n 7→ a(n) ∈ Z, on

the integral ideals of OF .

Problem: To package these coefficients into

a modular generating series.
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Modularity

Generating series

G(z1, z2) :=
∑

n>>0

a((n))e
2πi
(

n1
d1

z1+
n2
d2

z2

)

,

where d := totally positive generator of the

different of F .

Theorem: (Doi-Naganuma, Shintani).

G(γ1z1, γ2z2) = (c1z1+d2)
2(c2z2+d2)

2G(z1, z2),

for all

γ =

(

a b
c d

)

∈ SL2(OF ).
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Geometric formulation

The differential form

αG := G(z1, z2)dz1dz2

is a holomorphic (hence closed) 2-form defined

on the quotient

XF := SL2(OF )\(H×H).

It is better to work with the harmonic form

ωG := G(z1, z2)dz1dz2 + G(ε1z1, ε2z̄2)dz1dz̄2,

where ε ∈ O×
F satisfies ε1 > 0, ε2 < 0.

ωG is a closed two-form on the four-dimensional

manifold XF .

Question: What do the periods of ωG, against

various natural cycles on XF , “know” about

the arithmetic of E over F?
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Cycles on the four-manifold XF

The natural cycles on the four-manifold XF are

now indexed by commutative OF -subalgebras

of M2(OF ), i.e., by OF -orders in quadratic ex-

tensions of F .

D := Disc(R) := relative discriminant of R

over F .

There are now three cases to consider.

1. D1, D2 > 0: the totally real case.

2. D1, D2 < 0: the complex multiplication

(CM) case.

3. D1 < 0, D2 > 0: the “almost totally real”

(ATR) case.
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The special cycles γR ⊂ XF

Case 1. Disc(R) >> 0. Then, for j = 1,2,

(R ⊗vj R)× has two fixed points τj, τ
′
j ∈ R.

Let Υj := geodesic from τj to τ ′j;

γR := R×
1 \(Υ1 × Υ2)

Case 2. Disc(R) << 0. Then, for j = 1,2,

(R ⊗vj R)× has a single fixed point τj ∈ H.

γR := {(τ1, τ2)}
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The ATR case

Case 3. D1 < 0, D2 > 0. Then

(R ⊗v1 R)× has a unique fixed point τ1 ∈ H.

(R ⊗v2 R)× has two fixed points τ2, τ ′2 ∈ R.

Let Υ2 := geodesic from τ2 to τ ′2;

γR := R×
1 \({τ1} × Υ2)

The cycle γR is a closed one-cycle in XF .

It is called an ATR cycle.
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An (idealised) picture
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Cycles on the four-manifold XF
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Periods of ωG: the case D >> 0

Conjecture (Oda) The set

ΛG :=

〈

∫

γR

ωG, R ∈ Σ>>0

〉

⊂ C

is a lattice in C which is commensurable with

the Weierstrass lattice of E.

Conjecture (BSD) Let D := Disc(K/F ) >> 0.

Then

JD :=

∫

γD

ωG 6= 0 iff #E(K) < ∞.

“The position of γD in H2(XF ,Z) encodes an

obstruction to the presence of rational points

on E(F (
√

D)). ”
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Periods of ωG: the ATR case

Theorem: The cycles γR are homologically

trivial (after tensoring with Q).

This is because H1(XF ,Q) = 0.

Given R ∈ ΣD, let

γ#
R := any smooth two-chain on XF having γR

as boundary.

PR :=
∫

γ
]
R

ωG ∈ C/ΛG ' E(C).
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The conjecture on ATR points

Assume still that D1 < 0, D2 > 0.

ATR points conjecture. If R ∈ ΣD, then the

point PR belongs to E(HD) ⊗ Q, where HD is

the Hilbert class field of F (
√

D).

Question: Understand the process whereby

the one-dimensional ATR cycles γR on XF lead

to the construction of algebraic points on E.

Several potential applications:

a) Construction of algebraic points, and Euler

systems attached to elliptic curves.

b) “Explicit” construction of class fields.
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p-adic methods

Difficulty: One wants to relate a complex an-

alytic invariant – the complex periods PR – to

an arithmetic one – points on E over abelian

extensions of Q(
√

D).

Simplification of the original question:

1. Replace the complex analytic periods by

certain p-adic periods.

Advantage: These are easier to relate to p-

adic Galois cohomology (“Selmer groups”).

2. Replace the elliptic curve E by the multi-

plicative group.

Advantage: The connection between Selmer

groups and rational/integral points (i.e., units)

is better understood.

Work in progress: Dasgupta, Pollack.
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Algebraic cycles

Replace “ATR cycles on the Hilbert modular

surface XF” by algebraic cycles on a higher-

dimensional Shimura variety.

Basic example (Bertolini, Prasanna):

Let K = Q(
√
−7), E = C/OK,

W = (uni)versal elliptic curve over X0(7),

X = W × E (a “Calabi-Yau threefold”)

CH2(X)0 =











null-homologous,
codimension two
algebraic cycles on X











/ ' .
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“Exotic modular parametrisation”:

Φ : CH2(X)0 −→ E.

Theorem (Bertolini, Prasanna, D). The group

Φ(CH2(X)0(K
ab)) is a subgroup of E(Kab) of

infinite rank, and gives rise to an Euler system

of algebraic points on E.

The points in E(Kab) are tied to a rich geo-

metric structure: an infinite collection of curves

on a specific Calabi-Yau threefold.
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A final question.

Vague Definition: A point P ∈ E(Q̄) is said

to be modular if there exists: a Shimura(-like)

variety X, an exotic modular parametrisation

Φ : CHr(X)0 −→ E,

and a “modular” cycle ∆ ∈ CHr(X), such that

P = λΦ(∆), for some λ ∈ Q.

Question. Given E, what points in E(Q̄) are

modular?

Very optimistic: All algebraic points on E are

modular.

Optimistic: All algebraic points on E satisfying

a suitable “rank one hypothesis” are modular.

Legitimate question: Find a simple character-

isation of the modular points.
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