Rational points on elliptic curves

and
cycles on Shimura varieties

Harvard-MIT-Brandeis-Northeastern Joint Colloquium

Henri Darmon
McGill University
February 28, 2008

http://www.math.mcgill.ca/darmon /slides/slides.html

Diophantine equations

$$
\begin{aligned}
& f_{1}, \ldots, f_{m} \in \mathbf{Z}\left[x_{1}, \ldots, x_{n}\right], \\
& X:\left\{\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\vdots \quad \vdots \quad \vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)=0 .
\end{array}\right.
\end{aligned}
$$

Question: What is an interesting Diophantine equation?

A "working definition". A Diophantine equation is interesting if it reveals or suggests a rich underlying mathematical structure.
(In other words, a Diophantine question is interesting if it has an interesting answer...!)

Some examples

Fermat, 1635: Pell's equation $x^{2}-n y^{2}=1$ has infinitely many solutions because the class group of binary quadratic forms of discriminant $4 n$ is finite.

Kummer, 1847: Fermat's equation $x^{n}+y^{n}=$ z^{n} has no non-zero solution for $2<n<37$ because all primes $p<37$ are regular.

Mazur, Frey, Serre, Ribet, Wiles, Taylor, 1994: Fermat's equation $x^{n}+y^{n}=z^{n}$ has no non-zero solution for all $n>2$ because all elliptic curves are modular.

Elliptic Curves

An elliptic curve is an equation of the form

$$
E: y^{2}=x^{3}+a x+b
$$

with $\Delta:=4 a^{3}-27 b^{2} \neq 0$.

If F is a field,
$E(F):=$ Mordell-Weil group of E over F.

Why elliptic curves?

The addition law

Elliptic curves are algebraic groups.

The addition law on an elliptic curve

Modularity

Let $N=$ conductor of E.

$$
\begin{aligned}
& a(p):= \begin{cases}p+1-\# E(\mathbf{Z} / p \mathbf{Z}) & \text { if } p \nmid N ; \\
0, \pm 1 & \text { if } p \mid N .\end{cases} \\
& a(m n)=a(m) a(n) \text { if } \operatorname{gcd}(m, n)=1, \\
& a\left(p^{n}\right)=a(p) a\left(p^{n-1}\right)-p a\left(p^{n-2}\right), \text { if } p \nmid N .
\end{aligned}
$$

Generating series:

$$
f_{E}(z)=\sum_{n=1}^{\infty} a(n) e^{2 \pi i n z}, \quad z \in \mathcal{H}
$$

$\mathcal{H}:=$ Poincaré upper half-plane

Modularity

Modularity: the series $f_{E}(z)$ satisfies a deep symmetry property.
$M_{0}(N):=$ ring of 2×2 integer matrices which are upper triangular modulo N.
$\Gamma_{0}(N):=M_{0}(N)_{1}^{\times}=$units of determinant 1.

Theorem: The series f_{E} is a modular form of weight two on $\Gamma_{0}(N)$.

$$
f_{E}\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{2} f_{E}(z) .
$$

In particular, the differential form $\omega_{f}:=f_{E}(z) d z$ is defined on the quotient

$$
X:=\Gamma_{0}(N) \backslash \mathcal{H} .
$$

Cycles and modularity

The Riemann surface X contains many natural cycles, which convey a tremendous amount of arithmetic information about E.

These cycles are indexed by the commutative subrings of $M_{0}(N)$: orders in $\mathbf{Q}[\epsilon], \mathbf{Q} \times \mathbf{Q}$, or in a quadratic field.
$\operatorname{Disc}(R):=$ discriminant of R.
$\Sigma_{D}=\Gamma_{0}(N) \backslash\left\{R \subset M_{0}(N)\right.$ with $\left.\operatorname{Disc}(R)=D\right\}$.
$G_{D}:=$ Equivalence classes of binary quadratic forms of discriminant D.

The set Σ_{D}, if non-empty, is equipped with an action of the class group G_{D}.

The special cycles $\gamma_{R} \subset X$

Case 1. $\operatorname{Disc}(R)>0$. Then $(R \otimes \mathbf{Q})^{\times}$has two real fixed points $\tau_{R}, \tau_{R}^{\prime} \in \mathbf{R}$.
$\Upsilon_{R}:=$ geodesic from τ_{R} to $\tau_{R}^{\prime} ;$

$$
\gamma_{R}:=R_{1}^{\times} \backslash \Upsilon_{R}
$$

Case 2. $\operatorname{Disc}(R)<0$. Then $(R \otimes \mathbf{Q})^{\times}$has a single fixed point $\tau_{R} \in \mathcal{H}$.

$$
\gamma_{R}:=\left\{\tau_{R}\right\}
$$

An (idealised) picture

For each discriminant D, define:

$$
\gamma_{D}=\sum \gamma_{R},
$$

the sum being taken over a $G_{D^{-o r b i t}}$ in Σ_{D}.

Convention: $\gamma_{D}=0$ if Σ_{D} is empty.

Fact: The periods of ω_{f} against γ_{R} and γ_{D} convey alot of information about the arithmetic of E over quadratic fields.

Periods of ω_{f} : the case $D>0$

Theorem (Eichler, Shimura) The set

$$
\wedge:=\left\langle\int_{\gamma_{R}} \omega_{f}, \quad R \in \Sigma_{>0}\right\rangle \subset \mathbf{C}
$$

is a lattice in C, which is commensurable with the Weierstrass lattice of E.

Proof (Sketch)

1. Modular curves: $X=Y_{0}(N)(C)$, where $Y_{0}(N)$ is an algebraic curve over \mathbf{Q}, parametrising elliptic curves over Q .
2. Eichler-Shimura: There exists an elliptic curve E_{f} and a quotient map

$$
\Phi_{f}: Y_{0}(N) \longrightarrow E_{f}
$$

such that

$$
\int_{\gamma_{R}} \omega_{f}=\int_{\Phi\left(\gamma_{R}\right)} \omega_{E_{f}} \in \wedge_{E_{f}} .
$$

Hence, $\int_{\gamma_{R}} \omega_{f}$ is a period of E_{f}.
The curves E_{f} and E are related by:

$$
a_{n}\left(E_{f}\right)=a_{n}(E) \text { for all } n \geq 1
$$

3. Isogeny conjecture for curves (Faltings): E_{f} is isogenous to E over Q.

Arithmetic information

Conjecture (BSD) Let $D>0$ be a fundamental discriminant. Then

$$
J_{D}:=\int_{\gamma_{D}} \omega_{f} \neq 0 \quad \text { iff } \quad \# E(\mathrm{Q}(\sqrt{D}))<\infty
$$

"The position of γ_{D} in the homology $H_{1}(X, \mathbf{Z})$ encodes an obstruction to the presence of rational points on $E(\mathbf{Q}(\sqrt{D}))$."

Gross-Zagier, Kolyvagin. If $J_{D} \neq 0$, then $E(\mathrm{Q}(\sqrt{D}))$ is finite.

Periods of ω_{f} : the case $D<0$
The γ_{R} are 0 -cycles, and their image in $H_{0}(X, \mathbf{Z})$ is constant (independent of R).

Hence we can produce many homologically trivial 0-cycles suppported on Σ_{D} :

$$
\Sigma_{D}^{0}:=\operatorname{ker}\left(\operatorname{Div}\left(\Sigma_{D}\right) \longrightarrow H_{0}(X, \mathbf{Z})\right)
$$

Extend $R \mapsto \gamma_{R}$ to $\Delta \in \Sigma_{D}^{0}$ by linearity.
$\gamma_{\Delta}^{\#}:=$ any smooth one-chain on X having γ_{Δ} as boundary,

$$
P_{\Delta}:=\int_{\gamma_{\Delta}^{\sharp}} \omega_{f} \in \mathbf{C} / \wedge_{f} \simeq E(\mathbf{C}) .
$$

CM points

CM point Theorem For all $\Delta \in \Sigma_{D}^{0}$, the point P_{Δ} belongs to $E\left(H_{D}\right) \otimes \mathbf{Q}$, where H_{D} is the Hilbert class field of $\mathbf{Q}(\sqrt{D})$.

Proof (Sketch)

1. Complex multiplication: If $R \in \Sigma_{D}$, the 0cycle γ_{R} is a point of $Y_{0}(N)(\mathbf{C})$ corresponding to an elliptic curve with complex multiplication by $\mathbf{Q}(\sqrt{D})$. Hence it is defined over H_{D}.
2. Explicit formula for $\Phi: \Phi\left(\gamma_{\Delta}\right)=P_{\Delta}$.

The systematic supply of algebraic points on E given by the CM point theorem is an essential tool in studying the arithmetic of E over K.

Generalisations?

Principle of functoriality: modularity admits many incarnations.

Simple example: quadratic base change.

Choose a fixed real quadratic field F, and consider E as an elliptic curve over this field.

Notation: $\left(v_{1}, v_{2}\right): F \longrightarrow \mathbf{R} \oplus \mathbf{R}, \quad x \mapsto\left(x_{1}, x_{2}\right)$.
Assumptions: $h^{+}(F)=1, N=1$.

Counting points mod \mathfrak{p} yields $\mathfrak{n} \mapsto a(\mathfrak{n}) \in \mathbf{Z}$, on the integral ideals of \mathcal{O}_{F}.

Problem: To package these coefficients into a modular generating series.

Modularity

Generating series

$$
G\left(z_{1}, z_{2}\right):=\sum_{n \gg 0} a((n)) e^{2 \pi i\left(\frac{n_{1}}{d_{1}} z_{1}+\frac{n_{2}}{d_{2}} z_{2}\right)},
$$

where $d:=$ totally positive generator of the different of F.

Theorem: (Doi-Naganuma, Shintani).
$G\left(\gamma_{1} z_{1}, \gamma_{2} z_{2}\right)=\left(c_{1} z_{1}+d_{2}\right)^{2}\left(c_{2} z_{2}+d_{2}\right)^{2} G\left(z_{1}, z_{2}\right)$,
for all

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathbf{S L}_{2}\left(\mathcal{O}_{F}\right) .
$$

Geometric formulation

The differential form

$$
\alpha_{G}:=G\left(z_{1}, z_{2}\right) d z_{1} d z_{2}
$$

is a holomorphic (hence closed) 2-form defined on the quotient

$$
X_{F}:=\mathrm{SL}_{2}\left(\mathcal{O}_{F}\right) \backslash(\mathcal{H} \times \mathcal{H})
$$

It is better to work with the harmonic form

$$
\omega_{G}:=G\left(z_{1}, z_{2}\right) d z_{1} d z_{2}+G\left(\epsilon_{1} z_{1}, \epsilon_{2} \bar{z}_{2}\right) d z_{1} d \overline{z_{2}}
$$

where $\epsilon \in \mathcal{O}_{F}^{\times}$satisfies $\epsilon_{1}>0, \epsilon_{2}<0$.
ω_{G} is a closed two-form on the four-dimensional manifold X_{F}.

Question: What do the periods of ω_{G}, against various natural cycles on X_{F}, "know" about the arithmetic of E over F ?

Cycles on the four-manifold X_{F}

The natural cycles on the four-manifold X_{F} are now indexed by commutative \mathcal{O}_{F}-subalgebras of $M_{2}\left(\mathcal{O}_{F}\right)$, i.e., by \mathcal{O}_{F}-orders in quadratic extensions of F.
$D:=\operatorname{Disc}(R):=$ relative discriminant of R over F.

There are now three cases to consider.

1. $D_{1}, D_{2}>0$: the totally real case.
2. $D_{1}, D_{2}<0$: the complex multiplication (CM) case.
3. $D_{1}<0, D_{2}>0$: the "almost totally real" (ATR) case.

The special cycles $\gamma_{R} \subset X_{F}$

Case 1. $\operatorname{Disc}(R) \gg 0$. Then, for $j=1,2$,
($\left.R \otimes v_{j} \mathbf{R}\right)^{\times}$has two fixed points $\tau_{j}, \tau_{j}^{\prime} \in \mathbf{R}$.
Let $\Upsilon_{j}:=$ geodesic from τ_{j} to τ_{j}^{\prime};

$$
\gamma_{R}:=R_{1}^{\times} \backslash\left(\Upsilon_{1} \times \Upsilon_{2}\right)
$$

Case 2. $\operatorname{Disc}(R) \ll 0$. Then, for $j=1,2$,
$\left(R \otimes v_{j} \mathbf{R}\right)^{\times}$has a single fixed point $\tau_{j} \in \mathcal{H}$.

$$
\gamma_{R}:=\left\{\left(\tau_{1}, \tau_{2}\right)\right\}
$$

The ATR case

Case 3. $D_{1}<0, D_{2}>0$. Then
($\left.R \otimes v_{1} \mathbf{R}\right)^{\times}$has a unique fixed point $\tau_{1} \in \mathcal{H}$.
($\left.R \otimes_{v_{2}} \mathbf{R}\right)^{\times}$has two fixed points $\tau_{2}, \tau_{2}^{\prime} \in \mathbf{R}$.

Let $\Upsilon_{2}:=$ geodesic from τ_{2} to τ_{2}^{\prime};

$$
\gamma_{R}:=R_{1}^{\times} \backslash\left(\left\{\tau_{1}\right\} \times \Upsilon_{2}\right)
$$

The cycle γ_{R} is a closed one-cycle in X_{F}.

It is called an ATR cycle.

An (idealised) picture

Cycles on the four-manifold X_{F}

Periods of ω_{G} : the case $D \gg 0$

Conjecture (Oda) The set

$$
\wedge_{G}:=\left\langle\int_{\gamma_{R}} \omega_{G}, \quad R \in \Sigma_{\gg 0}\right\rangle \subset \mathbf{C}
$$

is a lattice in C which is commensurable with the Weierstrass lattice of E.

Conjecture (BSD) Let $D:=\operatorname{Disc}(K / F) \gg 0$.
Then

$$
J_{D}:=\int_{\gamma_{D}} \omega_{G} \neq 0 \quad \text { iff } \quad \# E(K)<\infty .
$$

"The position of γ_{D} in $H_{2}\left(X_{F}, \mathbf{Z}\right)$ encodes an obstruction to the presence of rational points on $E(F(\sqrt{D}))$."

Periods of ω_{G} : the ATR case

Theorem: The cycles γ_{R} are homologically trivial (after tensoring with Q).

This is because $H_{1}\left(X_{F}, \mathbf{Q}\right)=0$.

Given $R \in \Sigma_{D}$, let
$\gamma_{R}^{\#}:=$ any smooth two-chain on X_{F} having γ_{R} as boundary.

$$
P_{R}:=\int_{\gamma_{R}^{\sharp}} \omega_{G} \in \mathbf{C} / \Lambda_{G} \simeq E(\mathbf{C}) .
$$

The conjecture on ATR points

Assume still that $D_{1}<0, D_{2}>0$.

ATR points conjecture. If $R \in \Sigma_{D}$, then the point P_{R} belongs to $E\left(H_{D}\right) \otimes \mathbf{Q}$, where H_{D} is the Hilbert class field of $F(\sqrt{D})$.

Question: Understand the process whereby the one-dimensional ATR cycles γ_{R} on X_{F} lead to the construction of algebraic points on E.

Several potential applications:
a) Construction of algebraic points, and Euler systems attached to elliptic curves.
b) "Explicit" construction of class fields.

p-adic methods

Difficulty: One wants to relate a complex analytic invariant - the complex periods P_{R} - to an arithmetic one - points on E over abelian extensions of $\mathrm{Q}(\sqrt{D})$.

Simplification of the original question:

1. Replace the complex analytic periods by certain p-adic periods.

Advantage: These are easier to relate to p adic Galois cohomology ("Selmer groups").
2. Replace the elliptic curve E by the multiplicative group.

Advantage: The connection between Selmer groups and rational/integral points (i.e., units) is better understood.

Work in progress: Dasgupta, Pollack.

Algebraic cycles

Replace "ATR cycles on the Hilbert modular surface X_{F} " by algebraic cycles on a higherdimensional Shimura variety.

Basic example (Bertolini, Prasanna):
Let $K=\mathbf{Q}(\sqrt{-7}), E=\mathbf{C} / \mathcal{O}_{K}$,
$W=($ uni $)$ versal elliptic curve over $X_{0}(7)$,
$X=W \times E$ (a "Calabi-Yau threefold")

$$
\mathrm{CH}^{2}(X)_{0}=\left\{\begin{array}{l}
\text { null-homologous, } \\
\text { codimension two } \\
\text { algebraic cycles on } X
\end{array}\right\} / \simeq .
$$

"Exotic modular parametrisation":

$$
\Phi: \mathrm{CH}^{2}(X)_{0} \longrightarrow E .
$$

Theorem (Bertolini, Prasanna, D). The group $\Phi\left(\mathrm{CH}_{2}(X)_{0}\left(K^{\mathrm{ab}}\right)\right)$ is a subgroup of $E\left(K^{\mathrm{ab}}\right)$ of infinite rank, and gives rise to an Euler system of algebraic points on E.

The points in $E\left(K^{\mathrm{ab}}\right)$ are tied to a rich geometric structure: an infinite collection of curves on a specific Calabi-Yau threefold.

A final question.

Vague Definition: A point $P \in E(\overline{\mathbf{Q}})$ is said to be modular if there exists: a Shimura(-like) variety X, an exotic modular parametrisation

$$
\Phi: \mathrm{CH}^{r}(X)_{0} \longrightarrow E,
$$

and a "modular" cycle $\Delta \in \mathrm{CH}^{r}(X)$, such that

$$
P=\lambda \Phi(\Delta), \quad \text { for some } \lambda \in \mathbf{Q}
$$

Question. Given E, what points in $E(\overline{\mathbf{Q}})$ are modular?

Very optimistic: All algebraic points on E are modular.

Optimistic: All algebraic points on E satisfying a suitable "rank one hypothesis" are modular.

Legitimate question: Find a simple characterisation of the modular points.

