Rational points on elliptic
curves

and
cycles on Shimura varieties

Harvard-MIT-Brandeis-Northeastern
Joint Colloquium

Henri Darmon
McGill University
February 28, 2008

http://www.math.mcgill.ca/darmon
/slides/slides.html|



Diophantine equations

fla"'vfmGZ[x].a"'axn]v

fi(zy, .. 2n) =0
X s

fn-z(CU]_,.. <. 73377,) = 0.

Question: What is an interesting Diophantine
equation?

A ‘“‘working definition” . A Diophantine equa-
tion is interesting if it reveals or suggests a rich
underlying mathematical structure.

(In other words, a Diophantine question is in-
teresting if it has an interesting answer...!)



Some examples

Fermat, 1635: Pell's equation z2 — ny?2 =1
has infinitely many solutions because the class
group of binary quadratic forms of discriminant
4n is finite.

Kummer, 1847. Fermat's equation "+ y" =
z™ has no non-zero solution for 2 < n < 37
because all primes p < 37 are regular.

Mazur, Frey, Serre, Ribet, Wiles, Taylor,
1994: Fermat’'s equation ™ + y™ = 2™ has
no non-zero solution for all n > 2 because all
elliptic curves are modular.



Elliptic Curves

An elliptic curve is an equation of the form

E:yzzx?’—l—aaz—l—b,

with A = 443 — 27b2 £ 0.
If F'is a field,
E(F) := Mordell-Weil group of E over F.

Why elliptic curves?



T he addition law

Elliptic curves are algebraic groups.

y'=X+ax+b

T he addition law on an elliptic curve
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Modularity

Let N = conductor of E.

a(p) = { p+1—#E(Z/pZ) ifp IN;
| 0,+1 if p|N.

a(mn) = a(m)a(n) if gcd(m,n) =1,

a(p™) = a(p)a(p™~1) — pa(p™~2), if p JN.

Generating series:

oo

fe(z) = Y a(n)e’™,  zeH,

n=1

‘H = Poincaré upper half-plane



Modularity

Modularity: the series frp(z) satisfies a deep
symmetry property.

Mp(N) := ring of 2 x 2 integer matrices which
are upper triangular modulo N.

Mo(N) := Mg(N){ = units of determinant 1.

Theorem: The series fr is a modular form of
weight two on Mg(N).

i (500) = (e + 2 fp(2),

In particular, the differential form wy 1= fr(z)dz
is defined on the quotient

X = ro(N)\H.



Cycles and modularity
The Riemann surface X contains many natural

cycles, which convey a tremendous amount of
arithmetic information about E.

These cycles are indexed by the commutative
subrings of Mp(IN): orders in Q[e], Q x Q, or in
a quadratic field.

Disc(R) := discriminant of R.

> = Mo(N)\{R C Mg(N) with Disc(R) = D}.

G p = Equivalence classes of binary quadratic
forms of discriminant D.

The set 2 p, if non-empty, is equipped with an
action of the class group Gp.



The special cycles v C X

Case 1. Disc(R) > 0. Then (R®Q)* has two
real fixed points Tp, 7, € R.

TR := geodesic from 7 to Tp;

Yr = R{\TR

Case 2. Disc(R) < 0. Then (R® Q)* has a
single fixed point Tp € 'H.

YR ‘= {TR}




An (idealised) picture

For each discriminant D, define:

YD — ZWR)
the sum being taken over a Gp-orbit in 2 p.

Convention: vp =0 if > p is empty.

Fact: The periods of wy against yg and ~p
convey alot of information about the arith-
metic of E over quadratic fields.



Periods of W the case D >0

Theorem (Eichler, Shimura) The set

/\:=</ wp, R€Z>0>CC
TR

is a lattice in C, which is commensurable with
the Weierstrass lattice of E.

Proof (Sketch)

1. Modular curves: X = Yp(N)(C), where
Yo(N) is an algebraic curve over Q, parametris-
ing elliptic curves over Q.

2. Eichler-Shimura: There exists an elliptic
curve Ef and a quotient map

be : Yo(N) — Ef
such that

[YR I /CD(’YR) wep € Moy

10



Hence, f’Ywa is a period of Ey.

The curves Ef and E are related by:

an(Er) = an(FE) for all n > 1.

3. Isogeny conjecture for curves (Faltings):
E is isogenous to E over Q.
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Arithmetic information

Conjecture (BSD) Let D > 0 be a fundamen-
tal discriminant. Then

Jp 1= [mwf;ﬁo iff  #E(Q(VD)) < .

“The position of vp in the homology H1(X,Z)
encodes an obstruction to the presence of ra-

tional points on E(Q(v/D)). "

Gross-Zagier, Kolyvagin. If Jp # 0, then
E(Q(V/D)) is finite.
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Periods of Wt the case D <0

The vp are 0-cycles, and their image in Hp(X,Z)
is constant (independent of R).

Hence we can produce many homologically triv-
ilal O-cycles suppported on > p:

59 := ker(Div(Zp) — Ho(X,Z)).

Extend R — i to A € =% by linearity.

WX = any smooth one-chain on X having ya

as boundary,

Pa = [, wy € C/Ap = B(O).
Y

A
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CM points

CM point Theorem For all A € =9, the point
PA belongs to E(Hp) ® Q, where Hp is the
Hilbert class field of Q(v/D).

Proof (Sketch)

1. Complex multiplication: If R € > p, the O-
cycle vg is a point of Yg(IN)(C) corresponding
to an elliptic curve with complex multiplication
by Q(v/D). Hence it is defined over Hp.

2. Explicit formula for ®: d(yp) = Pa.

T he systematic supply of algebraic points on E
given by the CM point theorem is an essential
tool in studying the arithmetic of £ over K.
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Generalisations?

Principle of functoriality: modularity admits
many incarnations.

Simple example: quadratic base change.

Choose a fixed real quadratic field F', and
consider E as an elliptic curve over this field.

Notation: (v{,v5) : F — R®R, z+~ (x1,x2).
Assumptions: hT(F) =1, N =1.

Counting points mod p vields n+— a(n) € Z, on
the integral ideals of Op.

Problem: To package these coefficients into
a modular generating series.
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Modularity

Generating series

i DL n2
G(z1,22) == Y a((n))e mi(@+g),
n>>0
where d := totally positive generator of the

different of F.

Theorem: (Doi-Naganuma, Shintani).

G(y121,7222) = (c121+d2)?(cozo+d2)2G (21, 22),

for all

v = (fj 2) € SLo(Op).
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Geometric formulation

The differential form

g . — G(zl, 22)d21d22

is @ holomorphic (hence closed) 2-form defined
on the quotient

Xp = SLQ(OF)\(H X H)
It is better to work with the harmonic form
wg ‘= G(21,22)dz1dzo + G(e121, €022)dz1d2o,

where ¢ € Oy, satisfies €1 > 0, ex < 0.

we 1S a closed two-form on the four-dimensional
manifold Xg.

Question: What do the periods of wg, against
various natural cycles on Xpg, “know’” about
the arithmetic of E over F7
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Cycles on the four-manifold Xp

The natural cycles on the four-manifold X are
now indexed by commutative Og-subalgebras
of M>(Op), i.e., by Op-orders in quadratic ex-
tensions of F.

D := Disc(R) := relative discriminant of R
over F'.

There are now three cases to consider.
1. D1,D> > 0: the totally real case.

2. Dq,D> < 0: the complex multiplication
(CM) case.

3. D1 <0,Dy > 0: the “almost totally real”
(ATR) case.
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The special cycles v C Xr
Case 1. Disc(R) >> 0. Then, for j =1,2,
(R ®v,; R)* has two fixed points Tj,TJ/- c R.

Let T; := geodesic from 7; to 77;

CN

g = R{\(11 X 1)

Case 2. Disc(R) << 0. Then, for j =1,2,

(R Ro; R)”* has a single fixed point T; € H.

Yr = {(71,72)}
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The ATR case
Case 3. D1 <0,D5 > 0. Then
(R ®v; R)* has a unique fixed point 1 € H.
(R ®v, R)™ has two fixed points 5,75 € R.

Let 15 := geodesic from 15 to 75;

Yr = R{\({11} x 1)

The cycle v is a closed one-cycle in Xp.

It is called an ATR cycle.
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An (idealised) picture

R, Ry

Cycles on the four-manifold X g
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Periods of wg: the case D >> 0

Conjecture (Oda) The set

/\G = </ CUG, R E Z>>O> C C
YR
is a lattice in C which is commensurable with
the Weierstrass lattice of E.
Conjecture (BSD) Let D := Disc(K/F) >> 0.
Then

I :=/ wa#0  iff  #E(K) < oo
YD

“The position of vp in Ho(Xp,Z) encodes an
obstruction to the presence of rational points

on E(F(vVD)). "

22



Periods of wg;: the ATR case

Theorem: The cycles v are homologically
trivial (after tensoring with Q).

This is because H{(Xpr,Q) = 0.

Given Re > p, let

72& ;= any smooth two-chain on X having yr

as boundary.
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The conjecture on ATR points
Assume still that D1 < 0, D> > 0.
ATR points conjecture. If R € 2 p, then the
point Pr belongs to E(Hp) ® Q, where Hp is

the Hilbert class field of F(v/D).

Question: Understand the process whereby
the one-dimensional ATR cycles vp on X lead
to the construction of algebraic points on E.

Several potential applications:

a) Construction of algebraic points, and Euler
systems attached to elliptic curves.

b) “Explicit” construction of class fields.
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p-adic methods

Difficulty: One wants to relate a complex an-
alytic invariant — the complex periods Prp — to
an arithmetic one — points on E over abelian
extensions of Q(v/D).

Simplification of the original question:

1. Replace the complex analytic periods by
certain p-adic periods.

Advantage:. These are easier to relate to p-
adic Galois cohomology (“Selmer groups’ ).

2. Replace the elliptic curve E by the multi-
plicative group.

Advantage: The connection between Selmer
groups and rational/integral points (i.e., units)
IS better understood.

Work in progress: Dasgupta, Pollack.
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Algebraic cycles

Replace “"ATR cycles on the Hilbert modular
surface Xg'' by algebraic cycles on a higher-
dimensional Shimura variety.

Basic example (Bertolini, Prasanna):

Let K =Q(v/-7), E=C/Oy,

W = (uni)versal elliptic curve over Xg(7),

X =W x E (a “Calabi-Yau threefold")

null-homologous,
CH?(X)g = { codimension two / ~.
algebraic cycles on X
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“Exotic modular parametrisation’:

®: CH?(X)y — E.

Theorem (Bertolini, Prasanna, D). The group
®d(CHo(X)o(K3P)) is a subgroup of E(K3P) of
infinite rank, and gives rise to an Euler system
of algebraic points on E.

The points in E(K?23P) are tied to a rich geo-

metric structure: an infinite collection of curves
on a specific Calabi-Yau threefold.
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A final question.

Vague Definition: A point P € E(Q) is said
to be modular if there exists: a Shimura(-like)
variety X, an exotic modular parametrisation

®: CH (X))o — E,
and a “modular” cycle A € CH"(X), such that
P=)X\d(A), forsome )€ Q.

Question. Given E, what points in E(Q) are
modular?

Very optimistic: All algebraic points on E are
modular.

Optimistic: All algebraic points on E satisfying
a suitable “rank one hypothesis’ are modular.

LLegitimate question: Find a simple character-
isation of the modular points.

28



