Rational points on elliptic curves

and

cycles on Shimura varieties

Harvard-MIT-Brandeis-Northeastern Joint Colloquium

> Henri Darmon McGill University February 28, 2008

http://www.math.mcgill.ca/darmon /slides/slides.html

Diophantine equations

$$f_1, \dots, f_m \in \mathbf{Z}[x_1, \dots, x_n],$$
$$X : \begin{cases} f_1(x_1, \dots, x_n) = 0\\ \vdots & \vdots & \vdots\\ f_m(x_1, \dots, x_n) = 0. \end{cases}$$

Question: What is an *interesting* Diophantine equation?

A "working definition". A Diophantine equation is *interesting* if it reveals or suggests a rich underlying mathematical structure.

(In other words, a Diophantine question is interesting if it has an interesting answer...!)

Some examples

Fermat, 1635: Pell's equation $x^2 - ny^2 = 1$ has infinitely many solutions because the class group of binary quadratic forms of discriminant 4n is finite.

Kummer, 1847: Fermat's equation $x^n + y^n = z^n$ has no non-zero solution for 2 < n < 37 because all primes p < 37 are *regular*.

Mazur, Frey, Serre, Ribet, Wiles, Taylor, 1994: Fermat's equation $x^n + y^n = z^n$ has no non-zero solution for all n > 2 because all elliptic curves are *modular*.

Elliptic Curves

An elliptic curve is an equation of the form

$$E: y^2 = x^3 + ax + b,$$

with $\Delta := 4a^3 - 27b^2 \neq 0$.

If F is a field,

E(F) := Mordell-Weil group of E over F.

Why elliptic curves?

The addition law

Elliptic curves are algebraic groups.

The addition law on an elliptic curve

Modularity

Let
$$N = conductor$$
 of E .

$$a(p) := \begin{cases} p+1 - \#E(\mathbb{Z}/p\mathbb{Z}) & \text{if } p \not|N; \\ 0, \pm 1 & \text{if } p|N. \end{cases}$$

$$a(mn) = a(m)a(n) \text{ if } \gcd(m, n) = 1,$$

$$a(p^n) = a(p)a(p^{n-1}) - pa(p^{n-2}), \text{ if } p \not|N.$$

Generating series:

$$f_E(z) = \sum_{n=1}^{\infty} a(n) e^{2\pi i n z}, \quad z \in \mathcal{H},$$

 $\mathcal{H} :=$ Poincaré upper half-plane

Modularity

Modularity: the series $f_E(z)$ satisfies a deep symmetry property.

 $M_0(N) :=$ ring of 2 × 2 integer matrices which are *upper triangular* modulo N.

 $\Gamma_0(N) := M_0(N)_1^{\times} =$ units of determinant 1.

Theorem: The series f_E is a modular form of weight two on $\Gamma_0(N)$.

$$f_E\left(\frac{az+b}{cz+d}\right) = (cz+d)^2 f_E(z).$$

In particular, the differential form $\omega_f := f_E(z)dz$ is defined on the quotient

$$X := \Gamma_0(N) \backslash \mathcal{H}.$$

Cycles and modularity

The Riemann surface X contains many natural cycles, which convey a tremendous amount of arithmetic information about E.

These cycles are indexed by the commutative subrings of $M_0(N)$: orders in $\mathbf{Q}[\epsilon]$, $\mathbf{Q} \times \mathbf{Q}$, or in a quadratic field.

Disc(R) := discriminant of R.

 $\Sigma_D = \Gamma_0(N) \setminus \{ R \subset M_0(N) \text{ with } \text{Disc}(R) = D \}.$

 $G_D :=$ Equivalence classes of binary quadratic forms of discriminant D.

The set Σ_D , if non-empty, is equipped with an action of the class group G_D .

The special cycles $\gamma_R \subset X$

Case 1. Disc(R) > 0. Then $(R \otimes \mathbf{Q})^{\times}$ has *two* real fixed points $\tau_R, \tau'_R \in \mathbf{R}$.

 $\Upsilon_R :=$ geodesic from τ_R to τ'_R ;

Case 2. Disc(R) < 0. Then $(R \otimes \mathbf{Q})^{\times}$ has a single fixed point $\tau_R \in \mathcal{H}$.

$$\gamma_R := \{\tau_R\}$$

An (idealised) picture

For each discriminant *D*, define:

$$\gamma_D = \sum \gamma_R,$$

the sum being taken over a G_D -orbit in Σ_D .

Convention: $\gamma_D = 0$ if Σ_D is empty.

Fact: The periods of ω_f against γ_R and γ_D convey alot of information about the arithmetic of *E* over quadratic fields.

Periods of ω_f : the case D > 0

Theorem (Eichler, Shimura) The set

$$\Lambda := \left\langle \int_{\gamma_R} \omega_f, \quad R \in \Sigma_{>0} \right\rangle \subset \mathbf{C}$$

is a lattice in C, which is commensurable with the Weierstrass lattice of E.

Proof (Sketch)

1. Modular curves: $X = Y_0(N)(\mathbf{C})$, where $Y_0(N)$ is an algebraic curve over \mathbf{Q} , parametrising elliptic curves over \mathbf{Q} .

2. **Eichler-Shimura**: There exists an elliptic curve E_f and a quotient map

$$\Phi_f: Y_0(N) \longrightarrow E_f$$

such that

$$\int_{\gamma_R} \omega_f = \int_{\Phi(\gamma_R)} \omega_{E_f} \in \Lambda_{E_f}.$$

10

Hence, $\int_{\gamma_R} \omega_f$ is a *period* of E_f .

The curves E_f and E are related by:

$$a_n(E_f) = a_n(E)$$
 for all $n \ge 1$.

3. Isogeny conjecture for curves (Faltings): E_f is isogenous to E over \mathbf{Q} .

Arithmetic information

Conjecture (BSD) Let D > 0 be a fundamental discriminant. Then

 $J_D := \int_{\gamma_D} \omega_f \neq 0 \quad \text{iff} \quad \#E(\mathbf{Q}(\sqrt{D})) < \infty.$

"The position of γ_D in the homology $H_1(X, \mathbb{Z})$ encodes an *obstruction* to the presence of rational points on $E(\mathbb{Q}(\sqrt{D}))$."

Gross-Zagier, Kolyvagin. If $J_D \neq 0$, then $E(\mathbf{Q}(\sqrt{D}))$ is finite.

Periods of ω_f : the case D < 0

The γ_R are 0-cycles, and their image in $H_0(X, \mathbb{Z})$ is *constant* (independent of R).

Hence we can produce many homologically trivial 0-cycles supported on Σ_D :

$$\Sigma_D^0 := \ker(\operatorname{Div}(\Sigma_D) \longrightarrow H_0(X, \mathbf{Z})).$$

Extend $R \mapsto \gamma_R$ to $\Delta \in \Sigma_D^0$ by linearity.

 $\gamma_{\Delta}^{\#}$:= any smooth one-chain on X having γ_{Δ} as boundary,

$$P_{\Delta} := \int_{\gamma_{\Delta}^{\sharp}} \omega_f \in \mathbf{C}/\Lambda_f \simeq E(\mathbf{C}).$$

CM points

CM point Theorem For all $\Delta \in \Sigma_D^0$, the point P_{Δ} belongs to $E(H_D) \otimes \mathbf{Q}$, where H_D is the Hilbert class field of $\mathbf{Q}(\sqrt{D})$.

Proof (Sketch)

1. Complex multiplication: If $R \in \Sigma_D$, the 0cycle γ_R is a point of $Y_0(N)(\mathbf{C})$ corresponding to an elliptic curve with complex multiplication by $\mathbf{Q}(\sqrt{D})$. Hence it is defined over H_D .

2. Explicit formula for Φ : $\Phi(\gamma_{\Delta}) = P_{\Delta}$.

The systematic supply of *algebraic* points on E given by the CM point theorem is an *essential* tool in studying the arithmetic of E over K.

Generalisations?

Principle of functoriality: modularity admits many incarnations.

Simple example: quadratic base change.

Choose a fixed real quadratic field F, and consider E as an elliptic curve over this field.

Notation: (v_1, v_2) : $F \longrightarrow \mathbb{R} \oplus \mathbb{R}$, $x \mapsto (x_1, x_2)$.

Assumptions: $h^+(F) = 1$, N = 1.

Counting points mod \mathfrak{p} yields $\mathfrak{n} \mapsto a(\mathfrak{n}) \in \mathbb{Z}$, on the integral ideals of \mathcal{O}_F .

Problem: To package these coefficients into a *modular generating series.*

Modularity

Generating series

$$G(z_1, z_2) := \sum_{n >>0} a((n)) e^{2\pi i \left(\frac{n_1}{d_1} z_1 + \frac{n_2}{d_2} z_2\right)},$$

where d := totally positive generator of the different of F.

Theorem: (Doi-Naganuma, Shintani).

 $G(\gamma_1 z_1, \gamma_2 z_2) = (c_1 z_1 + d_2)^2 (c_2 z_2 + d_2)^2 G(z_1, z_2),$ for all

$$\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbf{SL}_2(\mathcal{O}_F).$$

Geometric formulation

The differential form

$$\alpha_G := G(z_1, z_2) dz_1 dz_2$$

is a *holomorphic* (hence closed) 2-form defined on the quotient

$$X_F := \mathbf{SL}_2(\mathcal{O}_F) \setminus (\mathcal{H} \times \mathcal{H}).$$

It is better to work with the harmonic form

$$\omega_G := G(z_1, z_2) dz_1 dz_2 + G(\epsilon_1 z_1, \epsilon_2 \overline{z}_2) dz_1 d\overline{z}_2,$$

where $\epsilon \in \mathcal{O}_F^{\times}$ satisfies $\epsilon_1 > 0, \ \epsilon_2 < 0.$

 ω_G is a closed two-form on the four-dimensional manifold X_F .

Question: What do the periods of ω_G , against various natural cycles on X_F , "know" about the arithmetic of E over F?

Cycles on the four-manifold X_F

The natural cycles on the four-manifold X_F are now indexed by commutative \mathcal{O}_F -subalgebras of $M_2(\mathcal{O}_F)$, i.e., by \mathcal{O}_F -orders in quadratic extensions of F.

D := Disc(R) := relative discriminant of Rover F.

There are now *three cases* to consider.

1. $D_1, D_2 > 0$: the totally real case.

2. $D_1, D_2 < 0$: the complex multiplication (CM) case.

3. $D_1 < 0, D_2 > 0$: the "almost totally real" (ATR) case.

$$\gamma_R := R_1^{\times} \setminus (\Upsilon_1 \times \Upsilon_2)$$

Case 2. Disc(R) << 0. Then, for j = 1, 2,

 $(R \otimes_{v_j} \mathbf{R})^{\times}$ has a single fixed point $\tau_j \in \mathcal{H}$.

$$\gamma_R := \{(\tau_1, \tau_2)\}$$

The ATR case

Case 3. $D_1 < 0, D_2 > 0$. Then

 $(R \otimes_{v_1} \mathbf{R})^{\times}$ has a unique fixed point $\tau_1 \in \mathcal{H}$.

 $(R \otimes_{v_2} \mathbf{R})^{\times}$ has two fixed points $\tau_2, \tau'_2 \in \mathbf{R}$.

Let $\Upsilon_2 :=$ geodesic from τ_2 to τ'_2 ;

$$\gamma_R := R_1^{\times} \setminus (\{\tau_1\} \times \Upsilon_2)$$

The cycle γ_R is a closed one-cycle in X_F .

It is called an ATR cycle.

An (idealised) picture

Cycles on the four-manifold X_F

Periods of ω_G : the case D >> 0

Conjecture (Oda) The set

$$\Lambda_G := \left\langle \int_{\gamma_R} \omega_G, \quad R \in \Sigma_{>>0} \right\rangle \subset \mathbf{C}$$

is a lattice in \mathbf{C} which is commensurable with the Weierstrass lattice of E.

Conjecture (BSD) Let D := Disc(K/F) >> 0. Then

$$J_D := \int_{\gamma_D} \omega_G \neq 0$$
 iff $\#E(K) < \infty$.

"The position of γ_D in $H_2(X_F, \mathbb{Z})$ encodes an obstruction to the presence of rational points on $E(F(\sqrt{D}))$."

Periods of ω_G : the ATR case

Theorem: The cycles γ_R are homologically trivial (after tensoring with **Q**).

This is because $H_1(X_F, \mathbf{Q}) = 0$.

Given $R \in \Sigma_D$, let

 $\gamma_R^{\#}$:= any smooth two-chain on X_F having γ_R as boundary.

$$P_R := \int_{\gamma_R^{\sharp}} \omega_G \in \mathbf{C} / \Lambda_G \simeq E(\mathbf{C}).$$

The conjecture on ATR points

Assume still that $D_1 < 0$, $D_2 > 0$.

ATR points conjecture. If $R \in \Sigma_D$, then the point P_R belongs to $E(H_D) \otimes \mathbf{Q}$, where H_D is the Hilbert class field of $F(\sqrt{D})$.

Question: Understand the process whereby the one-dimensional ATR cycles γ_R on X_F lead to the construction of *algebraic points* on *E*.

Several potential applications:

a) Construction of algebraic points, and *Euler* systems attached to elliptic curves.

b) "Explicit" construction of class fields.

p-adic methods

Difficulty: One wants to relate a *complex analytic* invariant – the complex periods P_R – to an *arithmetic one* – points on E over abelian extensions of $\mathbf{Q}(\sqrt{D})$.

Simplification of the original question:

1. Replace the complex analytic periods by certain *p*-adic periods.

Advantage: These are easier to relate to *p*-adic Galois cohomology ("Selmer groups").

2. Replace the elliptic curve E by the *multiplicative group*.

Advantage: The connection between Selmer groups and rational/integral points (i.e., *units*) is better understood.

Work in progress: Dasgupta, Pollack.

Algebraic cycles

Replace "ATR cycles on the Hilbert modular surface X_F " by *algebraic cycles* on a higher-dimensional Shimura variety.

Basic example (Bertolini, Prasanna):

Let
$$K = \mathbf{Q}(\sqrt{-7}), E = \mathbf{C}/\mathcal{O}_K$$
,

 $W = (uni)versal elliptic curve over X_0(7),$

 $X = W \times E$ (a "Calabi-Yau threefold")

$$\mathsf{CH}^2(X)_0 = \left\{ \begin{array}{l} \text{null-homologous,} \\ \text{codimension two} \\ \text{algebraic cycles on } X \end{array} \right\} / \simeq .$$

"Exotic modular parametrisation":

$$\Phi: \mathsf{CH}^2(X)_0 \longrightarrow E.$$

Theorem (Bertolini, Prasanna, D). The group $\Phi(CH_2(X)_0(K^{ab}))$ is a subgroup of $E(K^{ab})$ of *infinite rank*, and gives rise to an *Euler system* of algebraic points on *E*.

The points in $E(K^{ab})$ are tied to a rich geometric structure: an infinite collection of curves on a specific Calabi-Yau threefold.

A final question.

Vague Definition: A point $P \in E(\overline{\mathbf{Q}})$ is said to be *modular* if there exists: a Shimura(-like) variety X, an exotic modular parametrisation

 $\Phi: \mathsf{CH}^r(X)_0 \longrightarrow E,$

and a "modular" cycle $\Delta \in CH^r(X)$, such that

 $P = \lambda \Phi(\Delta)$, for some $\lambda \in \mathbf{Q}$.

Question. Given *E*, what points in $E(\bar{\mathbf{Q}})$ are modular?

Very optimistic: All algebraic points on *E* are modular.

Optimistic: All algebraic points on E satisfying a suitable "rank one hypothesis" are modular.

Legitimate question: Find a simple characterisation of the modular points.