LMS-EPSRC Durham symposium

Automorphic forms and Galois representations

A p-adic Gross-Zagier formula
 for Garrett triple product L-functions

Henri Darmon
Joint work with Victor Rotger
(+ earlier work with Massimo Bertolini
and Kartik Prasanna.)
July 2011

The original Gross-Zagier formula

$f=$ eigenform of weight 2 on $\Gamma_{0}(N)$;
Example: f has rational fourier coefficients, hence corresponds to an elliptic curve E / \mathbb{Q}.
$K=$ quadratic imaginary field.
Heegner hypothesis: There is an ideal $\mathfrak{N} \subset \mathcal{O}_{K}$, with $\mathcal{O}_{K} / \mathfrak{N}=\mathbb{Z} / N \mathbb{Z}$.

Consequence: the sign in the functional equation of $L(f / K, s)$ is -1 , and therefore $L(f / K, 1)=0$.

BSD conjecture predicts that $\operatorname{rank}(E(K)) \geq 1$.

Heegner points

Let $A_{1}, \ldots, A_{h}=$ elliptic curves with CM by \mathcal{O}_{K}.
The pairs $\left(A_{1}, A_{1}[\mathfrak{N}]\right), \ldots,\left(A_{h}, A_{h}[\mathfrak{N}]\right)$ correspond to points

$$
P_{1}, \ldots, P_{h} \in X_{0}(N)(H)
$$

($H=$ Hilbert class field of K.)
Let $P_{K}:=$ Image of the divisor

$$
P_{1}+\cdots+P_{h}-h(\infty)
$$

in $E(K)$.

The Gross-Zagier formula

Theorem (Gross-Zagier)

In the setting above,

$$
L^{\prime}(E / K, 1)=C_{E, K} \times\left\langle P_{K}, P_{K}\right\rangle
$$

where

- $C_{E, K}$ is an explicit, non-zero "fudge factor";
- \langle,$\rangle is the Néron-Tate canonical height.$

In particular, the point P_{K} is of infinite order if and only if $L(E / K, s)$ has a simple zero at $s=1$.

p-adic analogues

Question: formulate p-adic analogues of the Gross-Zagier theorem, replacing the classical L-function $L(E / K, s)$ by a p-adic avatar.

General framework: Given an L-function like

$$
L(E / K, s)=L\left(V_{E, K}, s\right), \quad \text { where } V_{E, K}:=H_{\mathrm{et}}^{1}\left(E_{\bar{K}}, \mathbb{Q}_{p}\right)(1)
$$

realise $V_{E, K}$ as a specialisation of a p-adic family of p-adic representations of G_{K}, and interpolate the (critical) L-values that arise.

p-adic L-functions

One of the charms of the p-adic world is that it affords more room for p-adic variation of a p-adic Galois representation V :

- The family $V(n)$ of cyclotomic twists: the "cyclotomic variable" n corresponds to the variable s in the complex theory;
- The "weight variables" arising in Hida theory. These have no immediate counterpart in the complex setting.

Hida families

$\Lambda=\mathbb{Z}_{p}\left[\left[\mathbb{Z}_{p}^{\times}\right]\right] \simeq \mathbb{Z}_{p}[[T]]^{p-1}$: "extended" Iwasawa algebra.
Weight space: $W=\operatorname{hom}\left(\Lambda, \mathbb{C}_{p}\right) \subset \operatorname{hom}\left(\mathbb{Z}_{p}^{\times}, \mathbb{C}_{p}^{\times}\right)$.
The integers form a dense subset of W via $k \leftrightarrow\left(x \mapsto x^{k}\right)$.
Classical weights: $W_{\mathrm{cl}}:=\mathbb{Z}^{\geq 2} \subset W$.
If $\tilde{\Lambda}$ is a finite extension of Λ, let $\tilde{\mathcal{X}}=\operatorname{hom}\left(\tilde{\Lambda}, \mathbb{C}_{p}\right)$ and let

$$
\kappa: \tilde{\mathcal{X}} \longrightarrow W
$$

be the natural projection to weight space.
Classical points: $\tilde{\mathcal{X}}_{\mathrm{cl}}:=\left\{x \in \tilde{\mathcal{X}}\right.$ such that $\left.\kappa(x) \in W_{\mathrm{cl}}\right\}$.

Hida families, cont'd

Definition

A Hida family of tame level N is a triple $\left(\Lambda_{f}, \Omega_{f}, \underline{f}\right)$, where
(1) Λ_{f} is a finite extension of $\Lambda_{\text {; }}$
(2) $\Omega_{f} \subset \mathcal{X}_{f}:=\operatorname{hom}\left(\Lambda_{f}, \mathbb{C}_{p}\right)$ is a non-empty open subset (for the p-adic topology);
(3) $\underline{f}=\sum_{n} \mathbf{a}_{n} q^{n} \in \Lambda_{f}[[q]]$ is a formal q-series, such that $\underline{f}(x):=\sum_{n} x\left(\mathbf{a}_{n}\right) q^{n}$ is the q series of the ordinary p-stabilisation $f_{x}^{(p)}$ of a normalised eigenform, denoted f_{x}, of weight $\kappa(x)$ on $\Gamma_{1}(N)$, for all $x \in \Omega_{f, \mathrm{cl}}:=\Omega_{f} \cap \mathcal{X}_{f, \mathrm{cl}}$.

Hida's theorem

$f=$ normalised eigenform of weight $k \geq 2$ on $\Gamma_{1}(N)$.
$p \nmid N$ an ordinary prime for f (i.e., $a_{p}(f)$ is a p-adic unit).

Theorem (Hida)

There exists a Hida family $\left(\Lambda_{f}, \Omega_{f}, \underline{f}\right)$ and a classical point $x_{0} \in \Omega_{f, \mathrm{cl}}$ satisfying

$$
\kappa\left(x_{0}\right)=k, \quad f_{x_{0}}=f
$$

As x varies over $\Omega_{f, c l}$, the specialisations f_{x} give rise to a " p-adically coherent" collection of classical newforms on $\Gamma_{1}(N)$, and one can hope to construct p-adic L-functions by interpolating classical special values attached to these eigenforms.

Back to Gross-Zagier: Rankin L-functions

Key insight in Gross-Zagier's evaluation of $L(f / K, s)$: it is a Rankin convolution L-series:

$$
L(f / K, s)=L\left(f \otimes \theta_{K}, s\right)
$$

where θ_{K} is a weight one theta series attached to K.
We obtain p-adic analogues of $L\left(f \otimes \theta_{K}, s\right)$ by considering p-adic L-functions arising from the Hida families \underline{f} and $\underline{\theta}_{K}$ satisfying

$$
f_{x_{0}}=f, \quad \theta_{K, y_{0}}=\theta_{K}, \quad \text { for some } x_{0} \in \Omega_{f, \mathrm{cl}}, \quad y_{0} \in \Omega_{\theta, \mathrm{c}} .
$$

p-adic variants of $L\left(f \otimes \theta_{\chi}, s\right)$

Two different p-adic L-functions arise naturally.
(1) The first, denoted

$$
L_{p}^{f}\left(\underline{f} \otimes \underline{\theta}_{K}, x, y, s\right): \Omega_{f} \times \Omega_{\theta} \times W \longrightarrow \mathbb{C}_{p}
$$

interpolates the critical values

$$
\frac{L\left(f_{x} \otimes \theta_{y}, s\right)}{*\left\langle f_{x}, f_{x}\right\rangle} \in \overline{\mathbb{Q}}, \quad \kappa(y) \leq s \leq \kappa(x)-1 ;
$$

(2) The second, denoted $L_{p}^{\theta}(\underline{f} \otimes \underline{\theta}, x, y, s)$, interpolates the critical values

$$
\frac{L\left(f_{x} \otimes \theta_{y}, s\right)}{*\left\langle\theta_{y}, \theta_{y}\right\rangle}, \quad \kappa(x) \leq s \leq \kappa(y)-1
$$

Perrin-Riou's p-adic Gross-Zagier formula

The p-adic L-function $L_{p}^{f}\left(\underline{f} \otimes \underline{\theta}_{K}, x, y, s\right)$, evaluated at $\left(x_{0}, y_{0}, 1\right)$, is equal to a simple multiple of $L\left(f \otimes \theta_{K}, 1\right)$ since $\left(x_{0}, y_{0}, 1\right)$ lies in the range of classical interpolation defining it.

In the setting of the Gross-Zagier formula, this special value is therefore 0 .

Theorem (Perrin-Riou)

$$
\frac{d}{d s} L_{p}^{f}\left(\underline{f} \otimes \underline{\theta}_{\chi}, x_{0}, y_{0}, s\right)_{s=1}=* \times\left\langle P_{K}, P_{K}\right\rangle_{p}
$$

where \langle,\rangle_{p} is the cyclotomic p-adic height on $E(K)$.

Nekovar: analogue for forms of higher weight.

A second p-adic Gross-Zagier formula

The p-adic L-function $L_{p}^{\theta}\left(\underline{f} \otimes \underline{\theta}_{K}, x, y, s\right)$, evaluated at $(x, y, s)=\left(x_{0}, y_{0}, 1\right)$, is not directly related to the associated classical value, since $\left(x_{0}, y_{0}, 1\right)$ now lies outside the range of classical interpolation.

Theorem (Bertolini-Prasanna-D)

$$
L_{p}^{\theta}\left(\underline{f} \otimes \underline{\theta}_{K}, x_{0}, y_{0}, 1\right)=* \times \log _{p}^{2}\left(P_{K}\right)
$$

where $\log _{p}: E\left(\overline{\mathbb{Q}}_{p}\right) \longrightarrow \overline{\mathbb{Q}}_{p}$ is the p-adic formal group logarithm.

Massimo Bertolini, Kartik Prasanna, HD. Generalised Heegner cycles and p-adic Rankin L-series, submitted.
(http://www.math.mcgill.ca/darmon/pub/pub.html)

Diagonal cycles

The Gross-Zagier formula admits a higher dimensional analogue, relating
(1) Null homologous codimension 2 diagonal cycles in the product of three modular curves;
(2) Garrett-Rankin L-functions attached to the convolution of three modular forms.

Goal of the work with Rotger: Prove the counterpart of the p-adic formula of Bertolini-Prasanna-D in this setting.

The Garrett-Rankin triple convolution of eigenforms

Definition

A triple of eigenforms

$$
f \in S_{k}\left(\Gamma_{0}\left(N_{f}\right), \varepsilon_{f}\right), \quad g \in S_{\ell}\left(\Gamma_{0}\left(N_{g}\right), \varepsilon_{g}\right), \quad h \in S_{m}\left(\Gamma_{0}\left(N_{h}\right), \varepsilon_{h}\right)
$$

is said to be self-dual if

$$
\varepsilon_{f} \varepsilon_{g} \varepsilon_{h}=1
$$

in particular, $k+\ell+m$ is even.

A 'Heegner-type" hypothesis

Triple product L-function $L(f \otimes g \otimes h, s)$ has a functional equation

$$
\begin{gathered}
\Lambda(f \otimes g \otimes h, s)=\epsilon(f, g, h) \wedge(f \otimes g \otimes h, k+\ell+m-2-s) . \\
\epsilon(f, g, h)= \pm 1, \quad \epsilon(f, g, h)=\prod_{q \mid N \infty} \epsilon_{q}(f, g, h) .
\end{gathered}
$$

Key assumption: $\epsilon_{q}(f, g, h)=1$, for all $q \mid N$.
This assumption is satisfied when, for example:

- $\operatorname{gcd}\left(N_{f}, N_{g}, N_{h}\right)=1$, or,
- $N_{f}=N_{g}=N_{h}=N$ and $a_{p}(f) a_{p}(g) a_{p}(h)=-1$ for all $p \mid N$.

Diagonal cycles on triple products of Kuga-Sato varieties.

Hence, for (f, g, h) balanced, $L(f \otimes g \otimes h, c)=0 .\left(c=\frac{k+\ell+m-2}{2}\right)$

$$
k=r_{1}+2, \quad \ell=r_{2}+2, \quad m=r_{3}+2, \quad r=\frac{r_{1}+r_{2}+r_{3}}{2} .
$$

$\mathcal{E}^{r}(N)=r$-fold Kuga-Sato variety over $X_{1}(N) ; \operatorname{dim}=r+1$.

$$
V=\mathcal{E}^{r_{1}}\left(N_{f}\right) \times \mathcal{E}^{r_{2}}\left(N_{g}\right) \times \mathcal{E}^{r_{3}}\left(N_{h}\right), \quad \operatorname{dim} V=2 r+3 .
$$

Generalised Gross-Kudla-Schoen cycle: there is an essentially unique interesting way of embedding $\mathcal{E}^{r}(N)$ as a null-homologous cycle in V.

Cf. Rotger, D. Notes for the AWS, Chapter 7.

Definition of $\Delta_{k, \ell, m}$

Let A, B, C be subsets of $\{1, \ldots, r\}$ of sizes r_{1}, r_{2} and r_{3}, such that each $1 \leq i \leq r$ belongs to precisely two of A, B and C.

$$
\begin{gathered}
\mathcal{E}^{r} \longrightarrow \mathcal{E}^{r_{1}} \times \mathcal{E}^{r_{2}} \times \mathcal{E}^{r_{3}} \\
\left(x, P_{1}, \ldots, P_{r}\right) \mapsto\left(\left(x,\left(P_{j}\right)_{j \in A}\right),\left(x,\left(P_{j}\right)_{j \in B}\right),\left(x,\left(P_{j}\right)_{j \in C}\right)\right)
\end{gathered}
$$

Fact: If $k, \ell, m>2$, the image of \mathcal{E}^{r} is a null-homologous cycle.

$$
\Delta_{k, \ell, m}=\mathcal{E}^{r} \subset V, \quad \Delta \in \mathrm{CH}^{r+2}(V)
$$

Gross-Kudla-Schoen cycle: $(k, \ell, m)=(2,2,2)$:

$$
\Delta=X_{123}-X_{12}-X_{13}-X_{23}+X_{1}+X_{2}+X_{3}
$$

Diagonal cycles and L-series

Gross-Kudla. The height of the (f, g, h)-isotypic component $\Delta^{f, g, h}$ of the diagonal cycle Δ should be related to the central critical derivative

$$
L^{\prime}(f \otimes g \otimes h, r+2)
$$

Work of Yuan-Zhang-Zhang represents substantial progress in this direction, when $r_{1}=r_{2}=r_{3}=0$.

For more general (k, ℓ, m), there are (at present) no such archimedean results in the literature.

p-adic Abel-Jacobi maps

Complex Abel-Jacobi map (Griffiths, Weil):

$$
\begin{gathered}
\mathrm{AJ}: \mathrm{CH}^{r+2}(V)_{0} \longrightarrow \\
=\frac{H_{\mathrm{dR}}^{2 r+3}(V / \mathbb{C})}{\mathrm{Fil}^{r+2} H_{\mathrm{dR}}^{2 r+3}(V / \mathbb{C})+H_{B}^{2 r+3}(V(\mathbb{C}), \mathbb{Z})} \\
=\frac{\mathrm{Fil}^{r+2} H_{\mathrm{dR}}^{2 r+3}(V / \mathbb{C})^{\vee}}{H_{2 r+3}(V(\mathbb{C}), \mathbb{Z})} . \\
\operatorname{AJ}(\Delta)(\omega)=\int_{\partial^{-1} \Delta} \omega .
\end{gathered}
$$

p-adic Abel-Jacobi map:

$$
\mathrm{AJ}_{p}: \mathrm{CH}^{r+2}\left(V / \mathbb{Q}_{p}\right)_{0} \longrightarrow \mathrm{Fil}^{r+2} H_{\mathrm{dR}}^{2 r+3}\left(V / \mathbb{Q}_{p}\right)^{\vee} .
$$

Goal: relate $\mathrm{AJ}_{p}(\Delta)$ to Rankin triple product p-adic L-functions, \equiv

Triple product p-adic Rankin L-functions

They interpolate the central critical values

$$
\frac{L\left(\underline{f}_{x} \otimes \underline{g}_{y} \otimes \underline{h}_{z}, c\right)}{\Omega\left(f_{x}, g_{y}, h_{z}\right)} \in \overline{\mathbb{Q}} .
$$

Four distinct regions of interpolation in $\Omega_{f, \mathrm{cl}} \times \Omega_{g, \mathrm{cl}} \times \Omega_{h, \mathrm{cl}}$:
(1) $\Sigma_{f}=\{(x, y, z): \kappa(x) \geq \kappa(y)+\kappa(z)\} . \Omega=*\left\langle f_{x}, f_{x}\right\rangle^{2}$.
(2) $\Sigma_{g}=\{(x, y, z): \kappa(y) \geq \kappa(x)+\kappa(z)\} . \Omega=*\left\langle g_{y}, g_{y}\right\rangle^{2}$.
(3) $\Sigma_{h}=\{(x, y, z): \kappa(z) \geq \kappa(x)+\kappa(y)\} . \Omega=*\left\langle h_{z}, h_{z}\right\rangle^{2}$.
(9) $\Sigma_{\text {bal }}=\left(\mathbb{Z}^{\geq 2}\right)^{3}-\Sigma_{f}-\Sigma_{g}-\Sigma_{h}$. $\Omega\left(f_{x}, h_{y}, g_{z}\right)=*\left\langle f_{x}, f_{x}\right\rangle^{2}\left\langle g_{y}, g_{y}\right\rangle^{2}\left\langle h_{z}, h_{z}\right\rangle^{2}$.

Resulting p-adic L-functions: $L_{p}^{f}(\underline{f} \otimes \underline{g} \otimes \underline{h}), L_{p}^{g}(\underline{f} \otimes \underline{g} \otimes \underline{h})$, and $L_{p}^{h}(\underline{f} \otimes \underline{g} \otimes \underline{h})$ respectively.

Garrett's formula

Let (f, g, h) be an unbalanced triple of eigenforms

$$
k=\ell+m+2 n, \quad n \geq 0 .
$$

Theorem (Garrett, Harris-Kudla)

The central critical value $L(f, g, h, c)$ is a simple multiple of

$$
\begin{gathered}
\left\langle f, g \delta_{m}^{n} h\right\rangle^{2}, \quad \text { where } \\
\delta_{k}=\frac{1}{2 \pi i}\left(\frac{d}{d \tau}+\frac{k}{\tau-\bar{\tau}}\right): S_{k}\left(\Gamma_{1}(N)\right)^{!} \longrightarrow S_{k+2}\left(\Gamma_{1}(N)\right)^{!}
\end{gathered}
$$

is the Shimura-Maass operator on "nearly holomorphic" modular forms, and

$$
\delta_{m}^{n}:=\delta_{m+2 n-2} \cdots \delta_{m+2} \delta_{m}
$$

The p-adic L-function

Theorem (Hida, Harris-Tilouine)

There exists a (unique) element $\mathscr{L}_{p}{ }^{f}(\underline{f}, \underline{g}, \underline{h}) \in \operatorname{Frac}\left(\Lambda_{f}\right) \otimes \Lambda_{g} \otimes \Lambda_{h}$ such that, for all $(x, y, z) \in \Sigma_{f}$, with $(k, \ell, m):=(\kappa(x), \kappa(y), \kappa(z))$ and $k=\ell+m+2 n$,

$$
\mathscr{L}_{p}^{f}(\underline{f}, \underline{g}, \underline{h})(x, y, z)=\frac{\mathscr{E}\left(f_{x}, g_{y}, h_{z}\right)}{\mathscr{E}\left(f_{x}\right)} \frac{\left\langle f_{x}, g_{y} \delta_{m}^{n} h_{z}\right\rangle}{\left\langle f_{x}, f_{x}\right\rangle},
$$

where, after setting $c=\frac{k+\ell+m-2}{2}$,

$$
\begin{aligned}
\mathscr{E}\left(f_{x}, g_{y}, h_{z}\right):= & \left(1-\beta_{f_{x}} \alpha_{g_{y}} \alpha_{h_{z}} p^{-c}\right) \times\left(1-\beta_{f_{x}} \alpha_{g_{y}} \beta_{h_{z}} p^{-c}\right) \\
& \times\left(1-\beta_{f_{x}} \beta_{g_{y}} \alpha_{h_{z}} p^{-c}\right) \times\left(1-\beta_{f_{x}} \beta_{g_{y}} \beta_{h_{z}} p^{-c}\right), \\
\mathscr{E}\left(f_{x}\right):= & \left(1-\beta_{f_{x}}^{2} p^{-k}\right) \times\left(1-\beta_{f_{x}}^{2} p^{1-k}\right) .
\end{aligned}
$$

More notations

$\omega_{f}=(2 \pi i)^{r_{1}+1} f(\tau) d w_{1} \cdots d w_{r_{1}} d \tau \in \mathrm{Fir}^{r_{1}+1} H_{\mathrm{dR}}^{r_{1}+1}\left(\mathcal{E}^{r_{1}}\right)$.
$\eta_{f} \in H_{\mathrm{dR}}^{r_{1}+1}\left(\mathcal{E}^{r_{1}} / \overline{\mathbb{Q}}_{p}\right)=$ representative of the f-isotypic part on which Frobenius acts as a p-adic unit, normalised so that

$$
\left\langle\omega_{f}, \eta_{f}\right\rangle=1
$$

Lemma

If (k, ℓ, m) is balanced, then the $\left(f_{k}, g_{\ell}, h_{m}\right)$-isotypic part of the $\overline{\mathbb{Q}}_{p}$ vector space $\mathrm{Fil}^{r+2} H_{\mathrm{dR}}^{2 r+2}\left(V / \overline{\mathbb{Q}}_{p}\right)$ is generated by the classes of
$\omega_{f_{k}} \otimes \omega_{g_{\ell}} \otimes \omega_{h_{m}}, \quad \eta_{f_{k}} \otimes \omega_{g_{\ell}} \otimes \omega_{h_{m}}, \quad \omega_{f_{k}} \otimes \eta_{g_{\ell}} \otimes \omega_{h_{m}}, \quad \omega_{f_{k}} \otimes \omega_{g_{\ell}} \otimes \eta_{h_{m}}$.

A p-adic Gross-Kudla formula

Given $\left(x_{0}, y_{0}, z_{0}\right) \in \Sigma_{\text {bal }}$, write $(f, g, h)=\left(f_{x_{0}}, g_{y_{0}}, h_{z_{0}}\right)$, and $(k, \ell, m)=\left(\kappa\left(x_{0}\right), \kappa\left(y_{0}\right), \kappa\left(z_{0}\right)\right)$.

Recall that $\operatorname{sign}(L(f \otimes g \otimes h, s))=-1$, hence $L(f \otimes g \otimes h, c)=0$.
Theorem (Rotger-D)
$\mathscr{L}_{p}{ }^{f}\left(\underline{f} \otimes \underline{g} \otimes \underline{h}, x_{0}, y_{0}, z_{0}\right)=\frac{\mathscr{E}(f, g, h)}{\mathscr{E}(f)} \times \mathrm{AJ}_{p}\left(\Delta_{k, \ell, m}\right)\left(\eta_{f} \otimes \omega_{g} \otimes \omega_{h}\right)$, and likewise for $\mathscr{L}_{p}{ }^{g}$ and $\mathscr{L}_{p}{ }^{h}$.

Conclusion: The Abel-Jacobi image of $\Delta_{k, \ell, m}$ encodes the special values of the three distinct p-adic L-functions attached to $(\underline{f}, \underline{g}, \underline{h})$ at the points in $\Sigma_{\text {bal }}$.

A few words on the proof

Assume $(k, \ell, m)=(2,2,2), \quad N_{f}=N_{g}=N_{h}=N$.
Step 1. A formula for $\mathrm{A}_{p}(\Delta)\left(\eta_{f} \otimes \omega_{g} \otimes \omega_{h}\right)$.

$$
\mathcal{A} \subset X_{0}(N)\left(\mathbb{C}_{p}\right)=\text { ordinary locus; }
$$

$\mathcal{W}_{\epsilon}=$ "wide open neighbourhood" of $\mathcal{A}, \quad \epsilon>0$.

$$
\mathcal{A} \subset \mathcal{W}_{\epsilon} \subset X_{0}(N)\left(\mathbb{C}_{p}\right) .
$$

The cohomology of X over \mathbb{C}_{p}

$$
H_{\mathrm{dR}}^{1}(X / K)=\frac{\Omega_{\operatorname{mer}}^{1}(X / K)^{\prime \prime}}{d K(X)} ;
$$

Fact: Restriction induces an isomorphism

$$
H_{\mathrm{dR}}^{1}\left(X / \mathbb{C}_{p}\right) \longrightarrow \frac{\Omega_{\mathrm{rig}}^{1}\left(\mathcal{W}_{\epsilon} / \mathbb{C}_{p}\right)^{\prime \prime}}{d \mathcal{O}_{\mathcal{W}_{\epsilon}}}
$$

Action of Frobenius on $H_{d R}^{1}$: "canonical" lift of Frobenius

$$
\Phi: \Omega^{1}\left(\mathcal{W}_{\epsilon}\right) \longrightarrow \Omega^{1}\left(\mathcal{W}_{\epsilon / p}\right)
$$

The recipe for $\mathrm{AJ}_{p}(\Delta)$

This builds on ideas arising in Coleman's p-adic integration theory.

$$
\Phi=\Phi_{1} \Phi_{2}=\text { Frobenius on } \mathcal{W}_{\epsilon} \times \mathcal{W}_{\epsilon} \subset X \times X
$$

There exists a polynomial P such that

$$
P(\Phi)\left(\left[\omega_{f} \otimes \omega_{h}\right]\right)=0
$$

hence there exists $\xi_{g, h, P} \in \Omega_{\text {rig }}^{1}\left(\mathcal{W}_{\epsilon} \times \mathcal{W}_{\epsilon}\right)$, satisfying

$$
d \xi_{g, h, P}=P(\Phi)\left(\omega_{g} \otimes \omega_{h}\right),
$$

which is well-defined up to closed forms in $\Omega_{\text {rig }}^{1}\left(\mathcal{W}_{\epsilon} \times \mathcal{W}_{\epsilon}\right)$.

$$
\delta: X \hookrightarrow X \times X, \quad \delta_{1}: X \hookrightarrow X \times\{\infty\} \subset X \times X, \quad \delta_{2}: X \hookrightarrow\{\infty\} \times X
$$

$$
\rho_{g, h, P}:=\delta^{*} \xi_{g, h P}-\delta_{1}^{*} \xi_{g, h, P}-\delta_{2}^{*} \xi_{g, h, P}
$$

is an element of $\Omega_{\text {rig }}^{1}\left(\mathcal{W}_{\epsilon}\right)$, which is well-defined modulo exact one-forms.

The recipe for $\mathrm{AJ}_{p}(\Delta)$, cont'd

Suppose that $\Phi\left(\eta_{f}\right)=\alpha \eta_{f}$, and let $\beta=p / \alpha$.
Main formula:

$$
\mathrm{AJ}_{P}(\Delta)\left(\eta_{f} \otimes \omega_{g} \otimes \omega_{h}\right)=\frac{1}{P(\beta)}\left\langle\eta_{f}, \rho_{g, h, P}\right\rangle .
$$

Remarks

1. Can assume all roots of P are Weil numbers of weight 2 , hence $P(\beta) \neq 0$.
2. The final result does not depend on P.

Explicit calculation

$$
P(x)=\left(x-\alpha_{g} \alpha_{h}\right)\left(x-\alpha_{g} \beta_{h}\right)\left(x-\beta_{g} \alpha_{h}\right)\left(x-\beta_{g} \beta_{h}\right)
$$

To solve

$$
d \xi=P\left(\Phi_{1} \Phi_{2}\right) \omega_{g} \omega_{h}
$$

we use
$P\left(\Phi_{1} \Phi_{2}\right)=A\left(\Phi_{1}, \Phi_{2}\right)\left(\Phi_{1}-\alpha_{g}\right)\left(\Phi_{1}-\beta_{g}\right)+B\left(\Phi_{1}, \Phi_{2}\right)\left(\Phi_{2}-\alpha_{h}\right)\left(\Phi_{2}-\beta_{h}\right)$,
which implies that

$$
P\left(\Phi_{1} \Phi_{2}\right)\left(\omega_{g} \omega_{h}\right)=A\left(\Phi_{1}, \Phi_{2}\right) \omega_{g}^{[p]} \omega_{h}+B\left(\Phi_{1}, \Phi_{2}\right) \omega_{g} \omega_{h}^{[p]}
$$

where

$$
\omega_{g}^{[p]}=\sum_{p \nmid n} a_{n} q^{n} \frac{d q}{q}
$$

Explicit calculation

$$
\xi_{g, h, P}=A\left(\Phi_{1}, \Phi_{2}\right) G \omega_{h}+B\left(\Phi_{1}, \Phi_{2}\right) \omega_{g} H
$$

where

$$
G=\sum_{p \nmid n} \frac{a_{n}}{n} q^{n}, \quad H=\sum_{p \nmid n} \frac{b_{n}}{n} q^{n} .
$$

$G, H=p$-adic (overconvergent) modular forms of weight 0 .

$$
\begin{aligned}
\mathrm{AJ}_{p}(\Delta)\left(\eta_{f} \omega_{g} \omega_{h}\right)= & \left\langle\eta_{f}, A\left(\Phi_{1}, \Phi_{2}\right) G \omega_{h}\right\rangle+\left\langle\eta_{f}, B\left(\Phi_{1}, \Phi_{2}\right) \omega_{g} H\right) \\
& =\equiv(f, g, h)\left\langle\eta_{f}, G \omega_{h}\right\rangle
\end{aligned}
$$

Where $\equiv(f, g, h)$ is a (a priori complicated!) polynomial in $a_{p}(f), a_{p}(g), a_{p}(h)$. This follows from a tedious, but elementary, calculation.

End of the proof

$$
\begin{aligned}
\left\langle\eta_{f}, G \omega_{h}\right\rangle & =\left\langle\eta_{f}, d^{-1} \omega_{g}^{[p]} \omega_{h}\right\rangle \\
& =\lim _{x \rightarrow x_{0}}\left\langle\eta_{f_{x}^{(p)}}, d^{\frac{k(x)-4}{2}} \omega_{g}^{[p]} \omega_{h}\right\rangle \\
& =\lim _{x \rightarrow x_{0}}\left\langle\eta_{f_{x}^{(p)}}, e\left(d^{\frac{\kappa(x)-4}{2}} \omega_{g}^{[p]} \omega_{h}\right)\right\rangle \\
& =\lim _{x \rightarrow x_{0}}\left\langle f_{x}^{(p)},\left(\delta^{\frac{\kappa(x)-4}{2}} \omega_{g}^{[p]} \omega_{h}\right)\right\rangle\left\langle\bar{f}_{x}^{(p)}, f_{x}^{(p)}\right\rangle^{-1} \\
& \left.=\lim _{x \rightarrow x_{0}} \mathcal{E}\left(f_{x}, g, h\right)\left\langle\bar{f}_{x}, \delta^{\frac{\kappa(x)-4}{2}} \omega_{g} \omega_{h}\right)\right\rangle\left\|f_{x}\right\|^{-1} \\
& =\lim _{x \rightarrow x_{0}} \mathscr{L}_{p}^{f}(\underline{f}, \underline{g}, \underline{h})\left(x, y_{0}, z_{0}\right) \\
& =\mathscr{L}_{p}^{f}(\underline{f}, \underline{g}, \underline{h})\left(x_{0}, y_{0}, z_{0}\right) .
\end{aligned}
$$

p-adic heights and derivatives of L-series

One could also envisage a fourth type of p-adic L-series

$$
L_{p}^{\text {bal }}(\underline{f} \otimes \underline{g} \otimes \underline{h}): \Omega_{f} \times \Omega_{g} \times \Omega_{h} \times W \longrightarrow \mathbb{C}_{p}
$$

interpolating
$L\left(f_{x}, g_{y}, h_{z}, s\right), \quad(x, y, z) \in \Sigma_{\text {bal }}, \quad 1 \leq s \leq \kappa(x)+\kappa(y)+\kappa(z)-3$.
(But not their square roots...)
This p-adic L-function is not (to our knowledge) available in the literature.

p-adic heights and derivatives of L-series, cont'd

Under the hypothesis

$$
\epsilon_{q}(f, g, h)=1, \quad \text { for all } q \mid N
$$

that was imposed on the local signs, we see

$$
L_{p}^{\text {bal }}(\underline{f}, \underline{g}, \underline{h})(x, y, z, c)=0, \quad \text { for all }(x, y, z) \in \Sigma_{\text {bal }}
$$

because $L\left(f_{x}, g_{y}, h_{z}, c\right)=0$.
Expectation:

$$
\frac{d}{d s} L_{p}^{\mathrm{bal}}(\underline{f}, \underline{g}, \underline{h})(x, y, z, s)_{s=c} \stackrel{?}{=} * \times \mathrm{ht}_{p}\left(\Delta_{f_{x}, g_{y}, h_{z}}\right)
$$

p-adic heights and derivatives of L-series, cont'd

The just-alluded to formula for $\frac{d}{d s} L_{p}^{\text {bal }}(\underline{f}, \underline{g}, \underline{h})(x, y, z, c)$ would be a "more direct"
(1) p-adic counterpart of Gross-Kudla/Yuan-Zhang-Zhang,
(2) "diagonal cycles" counterpart of Perrin-Riou/Nekovar's p-adic Gross-Zagier formulae.

Final comments

The p-adic Gross-Zagier formula for $\mathscr{L}_{p}^{f}(\underline{f}, \underline{g}, \underline{h}), \mathscr{L}_{p}^{g}(\underline{f}, \underline{g}, \underline{h})$ and $\mathscr{L}_{p}^{h}(\underline{f}, \underline{g}, \underline{h})$
(1) admits proofs that are relatively simple;
(2) seems well-adapted to studying the Euler system properties of p-adic families of diagonal cycles.

Thank you for your attention.

