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Stark’s conjecture

K= number field.

v1, v2, . . . , vn = Archimedean place of K.

Assume: v2, . . . , vn real.

s(x) = sign(v2(x)) · · · sign(vn(x)).

ζ(K,A, s) = N(A)s
∑

x∈A/(O+
K)×

s(x)N(x)−s.

H = Narrow Hilbert class field of K.

ṽ1 : H −→ C extending v1 : K −→ C.

Conjecture (Stark) There exists u(A) ∈ O×H
such that

ζ′(K,A,0)
.
= log |ṽ1(u(A))|.

u(A) is called a Stark unit attached to H/K.
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Is there a stronger form?

Stark Question: Is there an explicit analytic

formula for ṽ1(u(A)), and not just its absolute

value?

Some evidence that the answer is “Yes”: Sczech-

Ren. (Also, ongoing work of Charollois-D.)

If ṽ1 is real,

ṽ1(u(A))
?
= ±exp(ζ′(K,A,0)).

If ṽ1 is complex, it is harder to recover ṽ1(u(A))

from its absolute value.

log(ṽ1(u(A))) = log |ṽ1(u(A))|+iθ(A) ∈ C/2πiZ.

Applications to Hilbert’s Twelfth problem ⇒
Explicit class field theory for K.

The Stark Question has an analogue for el-

liptic curves.
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Elliptic Curves

E= elliptic curve over K

L(E/K, s) = its Hasse-Weil L-function.

Birch and Swinnerton-Dyer Conjecture. If

L(E/K,1) = 0, then there exists P ∈ E(K)

such that

L′(E/K,1) = ĥ(P ) · ( explicit period).

Stark-Heegner Question: Fix v : K −→ C.

Ω = Period lattice attached to v(E).

Is there an explicit analytic formula for P , or

rather, for

logE(v(P )) ∈ C/Ω?

A point P for which such an explicit analytic

recipe exists is called a Stark-Heegner point.
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The prototype: Heegner Points

Modular parametrisation attached to E:

Φ : H/Γ0(N) −→ E(C).

K = Q(
√
−D) ⊂ C a quadratic imaginary field.

logE(Φ(τ)) =
∫ τ

i∞
2πif(z)dz =

∞∑
n=1

an

n
e2πinτ .

Theorem. If τ belongs to H ∩ K, then Φ(τ)

belongs to E(Kab).

This theorem produces a systematic and well-

behaved collection of algebraic points on E de-

fined over class fields of K.
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Heegner points

Given τ ∈ H ∩K, let

Fτ(x, y) = Ax2 + Bxy + Cy2

be the primitive binary quadratic form with

Fτ(τ,1) = 0, N |A.

Define Disc(τ) := Disc(Fτ).

HD := {τ s.t. Disc(τ) = D.}.

HD = ring class field of K attached to D.

Theorem 1. If τ belongs to HD, then

PD := Φ(τ) belongs to E(HD).

2. (Gross-Zagier)

L′(E/K,OK,1) = ĥ(PD) · (period)
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The Stark-Heegner conjecture

General setting: E defined over F ;

K = auxiliary quadratic extension of F ;

The Stark-Heegner points belong (conjecturally)

to ring class fields of K.

So far, three contexts have been explored:

1. F = totally real field, K = ATR extension

(“Almost Totally Real”).

2. F = Q, K = real quadratic field

3. F = imaginary quadratic field.

(Trifkovic, Balasubramaniam, in progress).
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ATR extensions

E of conductor 1 over a totally real field F ,

ωE = associated Hilbert modular form on
(H1 × · · · × Hn)/SL2(OF ).

K = quadratic ATR extension of F ; (“Almost
Totally Real”): v1 complex, v2, . . . , vn real.

D-Logan: A “modular parametrisation”

Φ : H/SL2(OF ) −→ E(C)

is constructed, and Φ(H∩K)
?
⊂ E(Kab).

Φ defined analytically from periods of ωE.

• Experimental evidence (Logan);

• Replacing ωE with a weight two Eisenstein
series yields a conjectural affirmative answer to
the Stark Question for K (work in progress
with Charollois).
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Real quadratic fields

E defined over Q, of conductor pM .

K = real quadratic field in which p is non-split.

⇒ p-adic construction of points on E over ring
class fields of K.

Advantages of a p-adic context:

1. The setting is more basic.

2. More tools at our disposal:

• Iwasawa Theory

• p-adic uniformisation

• Hida Theory

• Overconvergent modular forms

• Deformations of Galois representations...
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Real quadratic fields

Set-up: E has conductor N = pM , with p 6 |M .

Hp := Cp −Qp (A p-adic analogue of H)

K = real quadratic field, embedded both in R

and Cp.

Motivation for Hp: H∩K = ∅, but Hp∩K need

not be empty!

Goal: Define a p-adic “modular parametrisa-

tion”

Φ : HD
p /Γ0(M)

?−→ E(HD),

for positive discriminants D.

In defining Φ, I follow an approach suggested

by Dasgupta’s thesis.

9



Hida Theory

U = p-adic disc in Qp with 2 ∈ U ;

A(U) = ring of p-adic analytic functions on U .

Hida. There exists a unique q-expansion

f∞ =
∞∑

n=1

anqn, an ∈ A(U),

such that ∀k ≥ 2, k ∈ Z, k ≡ 2 (mod p− 1),

fk :=
∞∑

n=1

an(k)q
n

is an eigenform of weight k on Γ0(N), and

f2 = fE.

For k > 2, fk arises from a newform of level

M , which we denote by f
†
k.
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Heegner points for
real quadratic fields

Definition. If τ ∈ Hp/Γ0(M), let γτ ∈ Γ0(M)

be a generator for StabΓ0(M)(τ).

Choose r ∈ P1(Q), and consider the “Shimura

period” attached to τ and f
†
k:

J†τ(k) := Ω−1
E

∫ γτr

r
(z − τ)k−2f

†
k(z)dz.

This does not depend on r.

Proposition. There exist λk ∈ C× such that

λ2 = 1 and

Jτ(k) := λ−1
k (ap(k)

2 − 1)J†τ(k)

takes values in Q̄ ⊂ Cp and extends to a p-adic

anaytic function of k ∈ U .
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The definition of Φ

Note: Jτ(2) = 0. We define:

logE Φ(τ) :=
d

dk
Jτ(k)|k=2.

There are more precise formulae giving Φ(τ)

itself, and not just its formal group logarithm.

Conjecture 1. If τ belongs to HD
p , then

PD := Φ(τ) belongs to E(HD).

2. (“Gross-Zagier”)

L′(E/K,OK,1) = ĥ(PD) · (period)
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Computational Issues

The definition of Φ is well-suited to numerical

calculations. (Green (2000), Pollack (2004)).

Magma package shp: software for calculat-

ing Stark-Heegner points on elliptic curves of

prime conductor.

http://www.math.mcgill.ca/darmon/programs/shp/shp.html

H. Darmon and R. Pollack. The efficient cal-

culation of Stark-Heegner points via overcon-

vergent modular symbols. Israel Math Journal,

submitted.

The key new idea in this efficient algorithm is

the theory of overconvergent modular symbols

developped by Stevens and Pollack.
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Numerical examples

E = X0(11) : y2 + y = x3 − x2 − 10x− 20.

> HP,P,hD := stark heegner points(E,8,Qp);

The discriminant D = 8 has class number 1

Computing point attached to quadratic form (1,2,-1)

Stark-Heegner point (over Cp) =

(−2088624084707821,1566468063530870w +
2088624084707825) + O(1115)

This point is close to [9/2,1/8(7s− 4),1]

(9/2 : 1/8(7s− 4) : 1) is a global point on E(K).
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A second example

E = 37A : y2 + y = x3 − x, D = 1297.

> ,,hD := stark heegner points(E,1297,Qp);

The discriminant D = 1297 has class number 11

1 Computing point for quadratic form (1,35,-18)

2 Computing point for quadratic form (-4,33,13)

3 Computing point for quadratic form (16,9,-19)

4 Computing point for quadratic form (-6,25,28)

5 Computing point for quadratic form (-8,23,24)

6 Computing point for quadratic form (2,35,-9)

7 Computing point for quadratic form (9,35,-2)

8 Computing point for quadratic form (12,31,-7)

9 Computing point for quadratic form (-3,31,28)

10 Computing point for quadratic form (12,25,-14)

11 Computing point for quadratic form (14,17,-18)

Sum of the Stark-Heegner points (over Cp) =

(0 : −1 : 1)) + (37100)

This p-adic point is close to [0,−1,1]

(0 : −1 : 1) is indeed a global point on E(K).
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Polynomial hD satisfied by the x-ccordinates:

961x11 − 4035x10 − 3868x9 + 19376x8 + 13229x7

− 27966x6 − 21675x5 + 11403x4 + 11859x3

+ 1391x2 − 369x− 37

> G := GaloisGroup(hD);

Permutation group G acting on a set of cardinality 11

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

(1, 10)(2, 9)(3, 8)(4, 7)(5, 6)

> #G;

22
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A theoretical result

χ : GD := Gal(HD/K) −→ ±1

ζ(K, χ, s) = L(s, χ1)L(s, χ2).

P (χ) :=
∑

σ∈GD

χ(σ)Φ(τσ), τ ∈ HD
p .

H(χ) := extension of K cut out by χ.

Theorem (Bertolini, D).

If ap(E)χ1(p) = −sign(L(E, χ1, s)), then

1. logE P (χ) = logE P̃ (χ), with P̃ (χ) ∈ E(H(χ)).

2. The point P̃ (χ) is of infinite order, if and
only if L′(E/K, χ,1) 6= 0.

The proof rests on an idea of Kronecker (“Kro-
necker’s solution of Pell’s equation in terms of
the Dedekind eta-function”).
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Kronecker’s Solution of Pell’s
Equation

D = negative discriminant.

Replace HD
p /Γ0(N) by HD/SL2(Z).

Replace Φ by

η∗(τ) := |D|−1/4
√

Im(τ)|η(τ)|2.

χ = genus character of Q(
√

D), associated to

D = D1D2, D1 > 0, D2 < 0.

Theorem (Kronecker, 1865).∏
σ∈GD

η∗(τσ)χ(σ) = ε2h1h2/w2,

where

hj = class number of Q(
√

Dj).

ε = Fundamental unit of O×D1
.
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Kronecker’s Proof

Three key ingredients:

1. Kronecker limit formula:

ζ′(K, χ,0) =
∑

σ∈GD

χ(σ) log η∗(τσ).

2. Factorisation Formula:

ζ(K, χ, s) = L(s, χD1
)L(s, χD2

).

In particular

ζ′(K, χ,0) = L′(0, χD1
)L(0, χD2

).

3. Dirichlet’s Formula.

L′(0, χD1
) = h1 log(ε), L(0, χD2

) = 2h2/w2.

Note: Complex multiplication is not used!

19



The Stark-Heegner setting

Assume χ = trivial character.

PK = “trace” to K of PD.

1. A “Kronecker limit formula”

d2

dk2
Lp(fk/K, k/2) =

1

4
logp(PK + ap(E)P̄K)2.

If ap(E) = −sign(L(E/Q, s), then

d2

dk2
Lp(fk/K, k/2) = logp(PK)2.

2. Factorisation formula:

Lp(fk/K, k/2) = Lp(fk, k/2)Lp(fk, χD, k/2).

Lp(fk, k/2) = specialisation to the critical line

s = k/2 of Lp(fk, k, s) (Mazur’s two-variable

p-adic L-function.)
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An analogue of Dirichlet’s Formula

Suppose ap = −sign(L(E/Q, s)) = 1.

Theorem over Q (Bertolini, D)

The function Lp(fk, k/2) vanishes to order ≥ 2

at k = 2, and there exists PQ ∈ E(Q)⊗Q such

that

1. d2

dk2Lp(fk, k/2) = − log2(PQ).

2. PQ is of infinite order iff L′(E/Q,1) 6= 0.
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Proof of theorem over Q

Introduce a suitable auxiliary imaginary quadratic

field K.

A “Kronecker limit formula”

d2

dk2
Lp(fk/K, k/2) = logp(PK)2,

where PK is a Heegner point arising from a

Shimura curve parametrisation.

Key Ingredients: Cerednik-Drinfeld Theorem.

M. Bertolini and H. Darmon, Heegner points,

p-adic L-functions and the Cerednik-Drinfeld

uniformisation, Invent. Math. 131 (1998).

M. Bertolini and H. Darmon, Hida families and

rational points on elliptic curves, in prepara-

tion.
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End of Proof

We now use the factorisation formula

L′′p(fk/K, k/2) = L′′p(fk, k/2)Lp(fk, χD,1)

to conclude.

The structure of the argument

Heegner points + Cerednik-Drinfeld

⇒ Theorem for K imaginary quadratic

⇒ Theorem for Q

⇒ Theorem for K real quadratic.

This argument seems to shed no light on the

rationality of the Stark-Heegner point PD (un-

less the class group has exponent two).
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