Stark-Heegner points: a status report

Invited talk
Midwest Number Theory Conference
University of Chicago, Chicago
October 23-24 2004

Stark's conjecture

$K=$ number field.
$v_{1}, v_{2}, \ldots, v_{n}=$ Archimedean place of K.

Assume: v_{2}, \ldots, v_{n} real.

$$
\begin{gathered}
s(x)=\operatorname{sign}\left(v_{2}(x)\right) \cdots \operatorname{sign}\left(v_{n}(x)\right) . \\
\zeta(K, \mathcal{A}, s)=\mathrm{N}(\mathcal{A})^{s} \sum_{x \in \mathcal{A} /\left(\mathcal{O}_{K}^{+}\right)^{\times}} s(x) \mathrm{N}(x)^{-s} .
\end{gathered}
$$

$H=$ Narrow Hilbert class field of K.
$\tilde{v}_{1}: H \longrightarrow \mathbf{C}$ extending $v_{1}: K \longrightarrow \mathbf{C}$.
Conjecture (Stark) There exists $u(\mathcal{A}) \in \mathcal{O}_{H}^{\times}$ such that

$$
\zeta^{\prime}(K, \mathcal{A}, 0) \doteq \log \left|\tilde{v}_{1}(u(\mathcal{A}))\right| .
$$

$u(\mathcal{A})$ is called a Stark unit attached to H / K.

Is there a stronger form?

Stark Question: Is there an explicit analytic formula for $\tilde{v}_{1}(u(\mathcal{A}))$, and not just its absolute value?

Some evidence that the answer is "Yes" : SczechRen. (Also, ongoing work of Charollois-D.)

If \tilde{v}_{1} is real,

$$
\tilde{v}_{1}(u(\mathcal{A})) \stackrel{?}{=} \pm \exp \left(\zeta^{\prime}(K, \mathcal{A}, 0)\right)
$$

If \tilde{v}_{1} is complex, it is harder to recover $\tilde{v}_{1}(u(\mathcal{A}))$ from its absolute value. $\log \left(\tilde{v}_{1}(u(\mathcal{A}))\right)=\log \left|\tilde{v}_{1}(u(\mathcal{A}))\right|+i \theta(\mathcal{A}) \in \mathbf{C} / 2 \pi i \mathbf{Z}$.

Applications to Hilbert's Twelfth problem \Rightarrow Explicit class field theory for K.

The Stark Question has an analogue for elliptic curves.

Elliptic Curves

$E=$ elliptic curve over K
$L(E / K, s)=$ its Hasse-Weil L-function.
Birch and Swinnerton-Dyer Conjecture. If $L(E / K, 1)=0$, then there exists $P \in E(K)$ such that

$$
L^{\prime}(E / K, 1)=\widehat{h}(P) \cdot(\text { explicit period })
$$

Stark-Heegner Question: Fix $v: K \longrightarrow \mathbf{C}$.
$\Omega=$ Period lattice attached to $v(E)$.
Is there an explicit analytic formula for P, or rather, for

$$
\log _{E}(v(P)) \in \mathbf{C} / \Omega ?
$$

A point P for which such an explicit analytic recipe exists is called a Stark-Heegner point.

The prototype: Heegner Points

Modular parametrisation attached to E:

$$
\begin{gathered}
\Phi: \mathcal{H} / \Gamma_{0}(N) \longrightarrow E(\mathbf{C}) \\
K=\mathrm{Q}(\sqrt{-D}) \subset \mathrm{C} \text { a quadratic imaginary field. } \\
\log _{E}(\Phi(\tau))=\int_{i \infty}^{\tau} 2 \pi i f(z) d z=\sum_{n=1}^{\infty} \frac{a_{n}}{n} e^{2 \pi i n \tau}
\end{gathered}
$$

Theorem. If τ belongs to $\mathcal{H} \cap K$, then $\Phi(\tau)$ belongs to $E\left(K^{\mathrm{ab}}\right)$.

This theorem produces a systematic and wellbehaved collection of algebraic points on E defined over class fields of K.

Heegner points

Given $\tau \in \mathcal{H} \cap K$, let

$$
F_{\tau}(x, y)=A x^{2}+B x y+C y^{2}
$$

be the primitive binary quadratic form with

$$
F_{\tau}(\tau, 1)=0, \quad N \mid A .
$$

Define $\operatorname{Disc}(\tau):=\operatorname{Disc}\left(F_{\tau}\right)$.

$$
\mathcal{H}^{D}:=\{\tau \text { s.t. } \operatorname{Disc}(\tau)=D .\} .
$$

$H_{D}=$ ring class field of K attached to D.
Theorem 1. If τ belongs to \mathcal{H}^{D}, then $P_{D}:=\Phi(\tau)$ belongs to $E\left(H_{D}\right)$.
2. (Gross-Zagier)

$$
L^{\prime}\left(E / K, \mathcal{O}_{K}, 1\right)=\widehat{h}\left(P_{D}\right) \cdot(\text { period })
$$

The Stark-Heegner conjecture

General setting: E defined over F;
$K=$ auxiliary quadratic extension of F;

The Stark-Heegner points belong (conjecturally) to ring class fields of K.

So far, three contexts have been explored:

1. $F=$ totally real field, $K=$ ATR extension ("Almost Totally Real").
2. $F=\mathrm{Q}, K=$ real quadratic field
3. $F=$ imaginary quadratic field.
(Trifkovic, Balasubramaniam, in progress).

ATR extensions

E of conductor 1 over a totally real field F,
$\omega_{E}=$ associated Hilbert modular form on
$\left(\mathcal{H}_{1} \times \cdots \times \mathcal{H}_{n}\right) / \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right)$.
$K=$ quadratic ATR extension of F; ("Almost Totally Real"): v_{1} complex, v_{2}, \ldots, v_{n} real.

D-Logan: A "modular parametrisation"

$$
\Phi: \mathcal{H} / \mathrm{SL}_{2}\left(\mathcal{O}_{F}\right) \longrightarrow E(\mathrm{C})
$$

is constructed, and $\Phi(\mathcal{H} \cap K) \stackrel{?}{\subset} E\left(K^{\mathrm{ab}}\right)$.
Φ defined analytically from periods of ω_{E}.

- Experimental evidence (Logan);
- Replacing ω_{E} with a weight two Eisenstein series yields a conjectural affirmative answer to the Stark Question for K (work in progress with Charollois).

Real quadratic fields

E defined over \mathbf{Q}, of conductor $p M$.
$K=$ real quadratic field in which p is non-split.
$\Rightarrow p$-adic construction of points on E over ring class fields of K.

Advantages of a p-adic context:

1. The setting is more basic.
2. More tools at our disposal:

- Iwasawa Theory
- p-adic uniformisation
- Hida Theory
- Overconvergent modular forms
- Deformations of Galois representations...

Real quadratic fields

Set-up: E has conductor $N=p M$, with $p \nmid M$.
$\mathcal{H}_{p}:=\mathbf{C}_{p}-\mathbf{Q}_{p}(\mathrm{~A} p$-adic analogue of $\mathcal{H})$
$K=$ real quadratic field, embedded both in \mathbf{R} and \mathbf{C}_{p}.

Motivation for $\mathcal{H}_{p}: \mathcal{H} \cap K=\emptyset$, but $\mathcal{H}_{p} \cap K$ need not be empty!

Goal: Define a p-adic "modular parametrisation"

$$
\Phi: \mathcal{H}_{p}^{D} / \Gamma_{0}(M) \xrightarrow{?} E\left(H_{D}\right),
$$

for positive discriminants D.

In defining Φ, I follow an approach suggested by Dasgupta's thesis.

Hida Theory

$$
U=p \text {-adic disc in } \mathbf{Q}_{p} \text { with } 2 \in U
$$

$\mathcal{A}(U)=$ ring of p-adic analytic functions on U.

Hida. There exists a unique q-expansion

$$
f_{\infty}=\sum_{n=1}^{\infty} \underline{a}_{n} q^{n}, \quad \underline{a}_{n} \in \mathcal{A}(U),
$$

such that $\forall k \geq 2, k \in \mathbf{Z}, k \equiv 2(\bmod p-1)$,

$$
f_{k}:=\sum_{n=1}^{\infty} \underline{a}_{n}(k) q^{n}
$$

is an eigenform of weight k on $\Gamma_{0}(N)$, and

$$
f_{2}=f_{E}
$$

For $k>2, f_{k}$ arises from a newform of level M, which we denote by f_{k}^{\dagger}.

Heegner points for real quadratic fields

Definition. If $\tau \in \mathcal{H}_{p} / \Gamma_{0}(M)$, let $\gamma_{\tau} \in \Gamma_{0}(M)$ be a generator for $\operatorname{Stab}_{\Gamma_{0}(M)}(\tau)$.

Choose $r \in \mathbf{P}_{1}(\mathbf{Q})$, and consider the "Shimura period" attached to τ and f_{k}^{\dagger} :

$$
J_{\tau}^{\dagger}(k):=\Omega_{E}^{-1} \int_{r}^{\gamma_{\tau} r}(z-\tau)^{k-2} f_{k}^{\dagger}(z) d z .
$$

This does not depend on r.
Proposition. There exist $\lambda_{k} \in \mathbf{C}^{\times}$such that $\lambda_{2}=1$ and

$$
J_{\tau}(k):=\lambda_{k}^{-1}\left(a_{p}(k)^{2}-1\right) J_{\tau}^{\dagger}(k)
$$

takes values in $\overline{\mathbf{Q}} \subset \mathbf{C}_{p}$ and extends to a p-adic anaytic function of $k \in U$.

The definition of Φ

Note: $J_{\tau}(2)=0$. We define:

$$
\log _{E} \Phi(\tau):=\left.\frac{d}{d k} J_{\tau}(k)\right|_{k=2} .
$$

There are more precise formulae giving $\Phi(\tau)$ itself, and not just its formal group logarithm.

Conjecture 1. If τ belongs to \mathcal{H}_{p}^{D}, then $P_{D}:=\Phi(\tau)$ belongs to $E\left(H_{D}\right)$.
2. ("Gross-Zagier")

$$
L^{\prime}\left(E / K, \mathcal{O}_{K}, 1\right)=\widehat{h}\left(P_{D}\right) \cdot(\text { period })
$$

Computational Issues

The definition of Φ is well-suited to numerical calculations. (Green (2000), Pollack (2004)).

Magma package shp: software for calculating Stark-Heegner points on elliptic curves of prime conductor.
http://www.math.mcgill.ca/darmon/programs/shp/shp.html
H. Darmon and R. Pollack. The efficient calculation of Stark-Heegner points via overconvergent modular symbols. Israel Math Journal, submitted.

The key new idea in this efficient algorithm is the theory of overconvergent modular symbols developped by Stevens and Pollack.

Numerical examples

$$
E=X_{0}(11): y^{2}+y=x^{3}-x^{2}-10 x-20 .
$$

> HP,P,hD := stark_heegner_points(E,8,Qp);
The discriminant $\mathrm{D}=8$ has class number 1
Computing point attached to quadratic form (1,2,-1)
Stark-Heegner point (over Cp) $=$
$(-2088624084707821,1566468063530870 w+$ $2088624084707825)+O\left(11^{15}\right)$

This point is close to $[9 / 2,1 / 8(7 s-4), 1]$
$(9 / 2: 1 / 8(7 s-4): 1)$ is a global point on $E(K)$.

A second example

$E=37 A: y^{2}+y=x^{3}-x, \quad D=1297$.
$>$,,hD := stark_heegner_points(E,1297,Qp);
The discriminant $\mathrm{D}=1297$ has class number 11
1 Computing point for quadratic form ($1,35,-18$)
2 Computing point for quadratic form $(-4,33,13)$
3 Computing point for quadratic form ($16,9,-19$)
4 Computing point for quadratic form $(-6,25,28)$
5 Computing point for quadratic form $(-8,23,24)$
6 Computing point for quadratic form $(2,35,-9)$
7 Computing point for quadratic form ($9,35,-2$)
8 Computing point for quadratic form ($12,31,-7$)
9 Computing point for quadratic form ($-3,31,28$)
10 Computing point for quadratic form ($12,25,-14$)
11 Computing point for quadratic form (14,17,-18)
Sum of the Stark-Heegner points (over Cp) $=$
(0 : -1:1)) $+\left(37^{100}\right)$
This p-adic point is close to $[0,-1,1]$
($0:-1: 1$) is indeed a global point on $E(K)$.

Polynomial hD satisfied by the x-ccordinates:

$$
\begin{aligned}
& \begin{aligned}
961 x^{11} & -4035 x^{10}-3868 x^{9}+19376 x^{8}+13229 x^{7} \\
& -27966 x^{6}-21675 x^{5}+11403 x^{4}+11859 x^{3} \\
& +1391 x^{2}-369 x-37
\end{aligned} \\
& >G:=\text { GaloisGroup(hD); } \\
& \text { Permutation group } G \text { acting on a set of cardinality } 11 \\
& \begin{array}{l}
(1,2,3,4,5,6,7,8,9,10,11)
\end{array} \\
& (1,10)(2,9)(3,8)(4,7)(5,6) \\
& >\# \text { G; }
\end{aligned}
$$

22

A theoretical result

$$
\begin{gathered}
\chi: G_{D}:=\operatorname{Gal}\left(H_{D} / K\right) \longrightarrow \pm 1 \\
\zeta(K, \chi, s)=L\left(s, \chi_{1}\right) L\left(s, \chi_{2}\right) . \\
P(\chi):=\sum_{\sigma \in G_{D}} \chi(\sigma) \Phi\left(\tau^{\sigma}\right), \quad \tau \in \mathcal{H}_{p}^{D} .
\end{gathered}
$$

$H(\chi):=$ extension of K cut out by χ.
Theorem (Bertolini, D).
If $a_{p}(E) \chi_{1}(p)=-\operatorname{sign}\left(L\left(E, \chi_{1}, s\right)\right)$, then

1. $\log _{E} P(\chi)=\log _{E} \widetilde{P}(\chi)$, with $\widetilde{P}(\chi) \in E(H(\chi))$.
2. The point $\tilde{P}(\chi)$ is of infinite order, if and only if $L^{\prime}(E / K, \chi, 1) \neq 0$.

The proof rests on an idea of Kronecker ("Kronecker's solution of Pell's equation in terms of the Dedekind eta-function").

Kronecker's Solution of Pell's Equation

$D=$ negative discriminant.
Replace $\mathcal{H}_{p}^{D} / \Gamma_{0}(N)$ by $\mathcal{H}^{D} / \mathrm{SL}_{2}(\mathbf{Z})$.
Replace Φ by

$$
\eta^{*}(\tau):=|D|^{-1 / 4} \sqrt{\operatorname{Im}(\tau)}|\eta(\tau)|^{2}
$$

$\chi=$ genus character of $\mathrm{Q}(\sqrt{D})$, associated to

$$
D=D_{1} D_{2}, \quad D_{1}>0, \quad D_{2}<0
$$

Theorem (Kronecker, 1865).

$$
\prod_{\sigma \in G_{D}} \eta^{*}\left(\tau^{\sigma}\right)^{\chi(\sigma)}=\epsilon^{2 h_{1} h_{2} / w_{2}}
$$

where
$h_{j}=$ class number of $\mathbf{Q}\left(\sqrt{D_{j}}\right)$.
$\epsilon=$ Fundamental unit of $\mathcal{O}_{D_{1}}^{\times}$.

Kronecker's Proof

Three key ingredients:

1. Kronecker limit formula:

$$
\zeta^{\prime}(K, \chi, 0)=\sum_{\sigma \in G_{D}} \chi(\sigma) \log \eta^{*}\left(\tau^{\sigma}\right)
$$

2. Factorisation Formula:

$$
\zeta(K, \chi, s)=L\left(s, \chi_{D_{1}}\right) L\left(s, \chi_{D_{2}}\right)
$$

In particular

$$
\zeta^{\prime}(K, \chi, 0)=L^{\prime}\left(0, \chi_{D_{1}}\right) L\left(0, \chi_{D_{2}}\right) .
$$

3. Dirichlet's Formula.

$$
L^{\prime}\left(0, \chi_{D_{1}}\right)=h_{1} \log (\epsilon), \quad L\left(0, \chi_{D_{2}}\right)=2 h_{2} / w_{2}
$$

Note: Complex multiplication is not used!

The Stark-Heegner setting

Assume $\chi=$ trivial character.
$P_{K}=$ "trace" to K of P_{D}.

1. A "Kronecker limit formula"

$$
\frac{d^{2}}{d k^{2}} L_{p}\left(f_{k} / K, k / 2\right)=\frac{1}{4} \log _{p}\left(P_{K}+a_{p}(E) \bar{P}_{K}\right)^{2}
$$

If $a_{p}(E)=-\operatorname{sign}(L(E / \mathbf{Q}, s)$, then

$$
\frac{d^{2}}{d k^{2}} L_{p}\left(f_{k} / K, k / 2\right)=\log _{p}\left(P_{K}\right)^{2}
$$

2. Factorisation formula:

$$
L_{p}\left(f_{k} / K, k / 2\right)=L_{p}\left(f_{k}, k / 2\right) L_{p}\left(f_{k}, \chi_{D}, k / 2\right) .
$$

$L_{p}\left(f_{k}, k / 2\right)=$ specialisation to the critical line $s=k / 2$ of $L_{p}\left(f_{k}, k, s\right)$ (Mazur's two-variable p-adic L-function.)

An analogue of Dirichlet's Formula

Suppose $a_{p}=-\operatorname{sign}(L(E / \mathbf{Q}, s))=1$.

Theorem over Q (Bertolini, D)

The function $L_{p}\left(f_{k}, k / 2\right)$ vanishes to order ≥ 2 at $k=2$, and there exists $P_{\mathbf{Q}} \in E(\mathbf{Q}) \otimes \mathbf{Q}$ such that

1. $\frac{d^{2}}{d k^{2}} L_{p}\left(f_{k}, k / 2\right)=-\log ^{2}\left(P_{\mathbf{Q}}\right)$.
2. $P_{\mathbf{Q}}$ is of infinite order iff $L^{\prime}(E / \mathbf{Q}, 1) \neq 0$.

Proof of theorem over Q

Introduce a suitable auxiliary imaginary quadratic field K.

A "Kronecker limit formula"

$$
\frac{d^{2}}{d k^{2}} L_{p}\left(f_{k} / K, k / 2\right)=\log _{p}\left(P_{K}\right)^{2}
$$

where P_{K} is a Heegner point arising from a Shimura curve parametrisation.

Key Ingredients: Cerednik-Drinfeld Theorem.
M. Bertolini and H. Darmon, Heegner points, p-adic L-functions and the Cerednik-Drinfeld uniformisation, Invent. Math. 131 (1998).
M. Bertolini and H. Darmon, Hida families and rational points on elliptic curves, in preparation.

End of Proof

We now use the factorisation formula

$$
L_{p}^{\prime \prime}\left(f_{k} / K, k / 2\right)=L_{p}^{\prime \prime}\left(f_{k}, k / 2\right) L_{p}\left(f_{k}, \chi_{D}, 1\right)
$$

to conclude.

The structure of the argument

Heegner points + Cerednik-Drinfeld
\Rightarrow Theorem for K imaginary quadratic
\Rightarrow Theorem for \mathbf{Q}
\Rightarrow Theorem for K real quadratic.

This argument seems to shed no light on the rationality of the Stark-Heegner point P_{D} (unless the class group has exponent two).

