Stark-Heegner points: a status report

Invited talk Midwest Number Theory Conference University of Chicago, Chicago October 23-24 2004

Stark's conjecture

K = number field.

 $v_1, v_2, \ldots, v_n =$ Archimedean place of K.

Assume: v_2, \ldots, v_n real.

$$s(x) = \operatorname{sign}(v_2(x)) \cdots \operatorname{sign}(v_n(x)).$$

$$\zeta(K, \mathcal{A}, s) = \mathsf{N}(\mathcal{A})^s \sum_{x \in \mathcal{A}/(\mathcal{O}_K^+)^{\times}} s(x) \mathsf{N}(x)^{-s}.$$

H = Narrow Hilbert class field of K.

 $\tilde{v}_1 : H \longrightarrow \mathbf{C}$ extending $v_1 : K \longrightarrow \mathbf{C}$.

Conjecture (Stark) There exists $u(\mathcal{A}) \in \mathcal{O}_H^{\times}$ such that

$$\zeta'(K, \mathcal{A}, 0) \doteq \log |\tilde{v}_1(u(\mathcal{A}))|.$$

 $u(\mathcal{A})$ is called a *Stark unit* attached to H/K.

Is there a stronger form?

Stark Question: Is there an *explicit analytic* formula for $\tilde{v}_1(u(\mathcal{A}))$, and not just its *absolute* value?

Some evidence that the answer is "Yes": Sczech-Ren. (Also, ongoing work of Charollois-D.)

If \tilde{v}_1 is real,

$$\tilde{v}_1(u(\mathcal{A})) \stackrel{?}{=} \pm \exp(\zeta'(K,\mathcal{A},0)).$$

If \tilde{v}_1 is complex, it is harder to recover $\tilde{v}_1(u(\mathcal{A}))$ from its absolute value.

 $\log(\tilde{v}_1(u(\mathcal{A}))) = \log |\tilde{v}_1(u(\mathcal{A}))| + i\theta(\mathcal{A}) \in \mathbb{C}/2\pi i\mathbb{Z}.$

Applications to Hilbert's Twelfth problem \Rightarrow Explicit class field theory for K.

The **Stark Question** has an analogue for elliptic curves.

Elliptic Curves

E = elliptic curve over K

L(E/K, s) = its Hasse-Weil *L*-function.

Birch and Swinnerton-Dyer Conjecture. If L(E/K, 1) = 0, then there exists $P \in E(K)$ such that

 $L'(E/K, 1) = \hat{h}(P) \cdot (\text{ explicit period}).$

Stark-Heegner Question: Fix $v : K \longrightarrow C$.

 Ω = Period lattice attached to v(E).

Is there an *explicit analytic formula* for P, or rather, for

$$\log_E(v(P)) \in \mathbf{C}/\Omega$$
?

A point *P* for which such an explicit analytic recipe exists is called a *Stark-Heegner point*.

The prototype: Heegner Points

Modular parametrisation attached to E:

 $\Phi: \mathcal{H}/\Gamma_0(N) \longrightarrow E(\mathbf{C}).$

 $K = \mathbf{Q}(\sqrt{-D}) \subset \mathbf{C}$ a quadratic imaginary field.

$$\log_E(\Phi(\tau)) = \int_{i\infty}^{\tau} 2\pi i f(z) dz = \sum_{n=1}^{\infty} \frac{a_n}{n} e^{2\pi i n\tau}$$

Theorem. If τ belongs to $\mathcal{H} \cap K$, then $\Phi(\tau)$ belongs to $E(K^{ab})$.

This theorem produces a systematic and wellbehaved collection of algebraic points on E defined over class fields of K.

Heegner points

Given $\tau \in \mathcal{H} \cap K$, let

$$F_{\tau}(x,y) = Ax^2 + Bxy + Cy^2$$

be the primitive binary quadratic form with

$$F_{\tau}(\tau, 1) = 0, \quad N|A.$$

Define $Disc(\tau) := Disc(F_{\tau})$.

$$\mathcal{H}^D := \{ \tau \text{ s.t. } \mathsf{Disc}(\tau) = D. \}.$$

 H_D = ring class field of K attached to D.

Theorem 1. If τ belongs to \mathcal{H}^D , then $P_D := \Phi(\tau)$ belongs to $E(H_D)$.

2. (Gross-Zagier)
$$L'(E/K, \mathcal{O}_K, 1) = \hat{h}(P_D) \cdot (\text{period})$$

The Stark-Heegner conjecture

General setting: E defined over F;

K = auxiliary quadratic extension of F;

The Stark-Heegner points belong (*conjecturally*) to ring class fields of K.

So far, three contexts have been explored:

1. F = totally real field, K = ATR extension("Almost Totally Real").

2. $F = \mathbf{Q}, K = \text{real quadratic field}$

3. F = imaginary quadratic field.

(Trifkovic, Balasubramaniam, in progress).

ATR extensions

 ${\cal E}$ of conductor 1 over a totally real field ${\cal F}$,

 ω_E = associated Hilbert modular form on $(\mathcal{H}_1 \times \cdots \times \mathcal{H}_n)/\mathrm{SL}_2(\mathcal{O}_F).$

K = quadratic ATR extension of F; ("Almost Totally Real"): v_1 complex, v_2, \ldots, v_n real.

D-Logan: A "modular parametrisation"

$$\Phi: \mathcal{H}/\mathbf{SL}_2(\mathcal{O}_F) \longrightarrow E(\mathbf{C})$$

is constructed, and $\Phi(\mathcal{H} \cap K) \stackrel{?}{\subset} E(K^{ab})$.

 Φ defined analytically from periods of ω_E .

• Experimental evidence (Logan);

• Replacing ω_E with a weight two Eisenstein series yields a conjectural *affirmative* answer to the **Stark Question** for K (work in progress with Charollois).

7

Real quadratic fields

E defined over \mathbf{Q} , of conductor pM.

K = real quadratic field in which p is non-split.

 \Rightarrow *p*-adic construction of points on *E* over ring class fields of *K*.

Advantages of a *p*-adic context:

- 1. The setting is more basic.
- 2. More tools at our disposal:
- Iwasawa Theory
- *p*-adic uniformisation
- Hida Theory
- Overconvergent modular forms
- Deformations of Galois representations...

Real quadratic fields

Set-up: *E* has conductor N = pM, with $p \not| M$.

 $\mathcal{H}_p := \mathbf{C}_p - \mathbf{Q}_p$ (A *p*-adic analogue of \mathcal{H})

K = real quadratic field, embedded both in \mathbf{R} and \mathbf{C}_p .

Motivation for \mathcal{H}_p : $\mathcal{H} \cap K = \emptyset$, but $\mathcal{H}_p \cap K$ need not be empty!

Goal: Define a *p*-adic "modular parametrisation"

$$\Phi: \mathcal{H}_p^D/\Gamma_0(M) \xrightarrow{?} E(H_D),$$

for *positive* discriminants D.

In defining Φ , I follow an approach suggested by *Dasgupta's thesis*.

Hida Theory

U = p-adic disc in \mathbf{Q}_p with $2 \in U$;

 $\mathcal{A}(U) = \text{ring of } p\text{-adic analytic functions on } U.$

Hida. There exists a unique *q*-expansion

$$f_{\infty} = \sum_{n=1}^{\infty} \underline{a}_n q^n, \quad \underline{a}_n \in \mathcal{A}(U),$$

such that $\forall k \geq 2$, $k \in {f Z}$, $k \equiv 2 \pmod{p-1}$,

$$f_k := \sum_{n=1}^{\infty} \underline{a}_n(k) q^n$$

is an eigenform of weight k on $\Gamma_0(N)$, and

$$f_2 = f_E.$$

For k > 2, f_k arises from a newform of level M, which we denote by f_k^{\dagger} .

Heegner points for real quadratic fields

Definition. If $\tau \in \mathcal{H}_p/\Gamma_0(M)$, let $\gamma_\tau \in \Gamma_0(M)$ be a generator for $\operatorname{Stab}_{\Gamma_0(M)}(\tau)$.

Choose $r \in \mathbf{P}_1(\mathbf{Q})$, and consider the "Shimura period" attached to τ and f_k^{\dagger} :

$$J^{\dagger}_{\tau}(k) := \Omega_E^{-1} \int_r^{\gamma_{\tau} r} (z-\tau)^{k-2} f^{\dagger}_k(z) dz.$$

This does not depend on r.

Proposition. There exist $\lambda_k \in \mathbf{C}^{\times}$ such that $\lambda_2 = 1$ and

$$J_{\tau}(k) := \lambda_k^{-1} (a_p(k)^2 - 1) J_{\tau}^{\dagger}(k)$$

takes values in $\overline{\mathbf{Q}} \subset \mathbf{C}_p$ and extends to a *p*-adic anaytic function of $k \in U$.

The definition of $\boldsymbol{\Phi}$

Note: $J_{\tau}(2) = 0$. We define:

$$\log_E \Phi(\tau) := \frac{d}{dk} J_\tau(k)|_{k=2}.$$

There are more precise formulae giving $\Phi(\tau)$ itself, and not just its formal group logarithm.

Conjecture 1. If τ belongs to \mathcal{H}_p^D , then $P_D := \Phi(\tau)$ belongs to $E(H_D)$.

2. ("Gross-Zagier")

$$L'(E/K, \mathcal{O}_K, 1) = \hat{h}(P_D) \cdot (\text{period})$$

Computational Issues

The definition of Φ is well-suited to *numerical* calculations. (Green (2000), Pollack (2004)).

Magma package shp: software for calculating Stark-Heegner points on elliptic curves of prime conductor.

http://www.math.mcgill.ca/darmon/programs/shp/shp.html

H. Darmon and R. Pollack. *The efficient calculation of Stark-Heegner points via overconvergent modular symbols*. Israel Math Journal, submitted.

The key new idea in this efficient algorithm is the theory of overconvergent modular symbols developped by Stevens and Pollack.

Numerical examples

 $E = X_0(11) : y^2 + y = x^3 - x^2 - 10x - 20.$

> HP,P,hD := stark_heegner_points(E,8,Qp);

The discriminant D = 8 has class number 1

Computing point attached to quadratic form (1,2,-1)Stark-Heegner point (over Cp) =

 $(-2088624084707821, 1566468063530870w + 2088624084707825) + O(11^{15})$

This point is close to [9/2, 1/8(7s - 4), 1]

(9/2:1/8(7s-4):1) is a global point on E(K).

A second example

 $E = 37A : y^2 + y = x^3 - x, \quad D = 1297.$ > ,,hD := stark_heegner_points(E,1297,Qp); The discriminant D = 1297 has class number 11 1 Computing point for quadratic form (1,35,-18) 2 Computing point for quadratic form (-4,33,13)3 Computing point for quadratic form (16,9,-19) 4 Computing point for quadratic form (-6,25,28) 5 Computing point for quadratic form (-8,23,24) 6 Computing point for quadratic form (2,35,-9) 7 Computing point for quadratic form (9,35,-2) 8 Computing point for quadratic form (12,31,-7) 9 Computing point for quadratic form (-3,31,28) 10 Computing point for quadratic form (12,25,-14) 11 Computing point for quadratic form (14,17,-18) Sum of the Stark-Heegner points (over Cp) = $(0:-1:1)) + (37^{100})$ This p-adic point is close to [0, -1, 1]

(0:-1:1) is indeed a global point on E(K).

Polynomial hD satisfied by the x-ccordinates:

$$961x^{11} - 4035x^{10} - 3868x^9 + 19376x^8 + 13229x^7 - 27966x^6 - 21675x^5 + 11403x^4 + 11859x^3 + 1391x^2 - 369x - 37$$

> G := GaloisGroup(hD);

Permutation group G acting on a set of cardinality 11

> #G;

22

A theoretical result

$$\chi : G_D := \operatorname{Gal}(H_D/K) \longrightarrow \pm 1$$
$$\zeta(K, \chi, s) = L(s, \chi_1)L(s, \chi_2).$$
$$P(\chi) := \sum_{\sigma \in G_D} \chi(\sigma) \Phi(\tau^{\sigma}), \quad \tau \in \mathcal{H}_p^D.$$

 $H(\chi) :=$ extension of K cut out by χ .

Theorem (Bertolini, D).

If
$$a_p(E)\chi_1(p) = -\operatorname{sign}(L(E,\chi_1,s))$$
, then

1. $\log_E P(\chi) = \log_E \tilde{P}(\chi)$, with $\tilde{P}(\chi) \in E(H(\chi))$.

2. The point $\tilde{P}(\chi)$ is of infinite order, if and only if $L'(E/K, \chi, 1) \neq 0$.

The proof rests on an idea of Kronecker ("Kronecker's solution of Pell's equation in terms of the Dedekind eta-function").

Kronecker's Solution of Pell's Equation

D = negative discriminant.

Replace $\mathcal{H}_p^D/\Gamma_0(N)$ by $\mathcal{H}^D/\mathbf{SL}_2(\mathbf{Z})$.

Replace Φ by

$$\eta^*(\tau) := |D|^{-1/4} \sqrt{\mathrm{Im}(\tau)} |\eta(\tau)|^2.$$

 $\chi =$ genus character of $\mathbf{Q}(\sqrt{D})$, associated to

$$D = D_1 D_2, \quad D_1 > 0, \quad D_2 < 0.$$

Theorem (Kronecker, 1865).

$$\prod_{\sigma \in G_D} \eta^*(\tau^{\sigma})^{\chi(\sigma)} = \epsilon^{2h_1 h_2/w_2},$$

where

 $h_j = \text{class number of } \mathbf{Q}(\sqrt{D_j}).$

 $\epsilon =$ Fundamental unit of $\mathcal{O}_{D_1}^{\times}$.

Kronecker's Proof

Three key ingredients:

1. Kronecker limit formula:

$$\zeta'(K,\chi,0) = \sum_{\sigma \in G_D} \chi(\sigma) \log \eta^*(\tau^{\sigma}).$$

2. Factorisation Formula:

$$\zeta(K,\chi,s) = L(s,\chi_{D_1})L(s,\chi_{D_2}).$$

In particular

$$\zeta'(K,\chi,0) = L'(0,\chi_{D_1})L(0,\chi_{D_2}).$$

3. Dirichlet's Formula.

 $L'(0, \chi_{D_1}) = h_1 \log(\epsilon), \quad L(0, \chi_{D_2}) = 2h_2/w_2.$

Note: Complex multiplication is not used!

The Stark-Heegner setting

Assume $\chi =$ trivial character.

 $P_K =$ "trace" to K of P_D .

1. A "Kronecker limit formula"

$$\frac{d^2}{dk^2} L_p(f_k/K, k/2) = \frac{1}{4} \log_p(P_K + a_p(E)\bar{P}_K)^2.$$

If $a_p(E) = -\text{sign}(L(E/\mathbf{Q}, s))$, then
$$\frac{d^2}{dk^2} L_p(f_k/K, k/2) = \log_p(P_K)^2.$$

2. Factorisation formula:

 $L_p(f_k/K, k/2) = L_p(f_k, k/2) L_p(f_k, \chi_D, k/2).$

 $L_p(f_k, k/2) =$ specialisation to the critical line s = k/2 of $L_p(f_k, k, s)$ (Mazur's two-variable *p*-adic *L*-function.)

An analogue of Dirichlet's Formula

Suppose $a_p = -\text{sign}(L(E/\mathbf{Q}, s)) = 1$.

Theorem over Q (Bertolini, D)

The function $L_p(f_k, k/2)$ vanishes to order ≥ 2 at k = 2, and there exists $P_{\mathbf{Q}} \in E(\mathbf{Q}) \otimes \mathbf{Q}$ such that

1.
$$\frac{d^2}{dk^2}L_p(f_k, k/2) = -\log^2(P_Q).$$

2. $P_{\mathbf{Q}}$ is of infinite order iff $L'(E/\mathbf{Q}, 1) \neq 0$.

Proof of theorem over ${\rm Q}$

Introduce a suitable auxiliary imaginary quadratic field K.

A "Kronecker limit formula"

$$\frac{d^2}{dk^2} L_p(f_k/K, k/2) = \log_p(P_K)^2,$$

where P_K is a *Heegner point* arising from a Shimura curve parametrisation.

Key Ingredients: Cerednik-Drinfeld Theorem.

M. Bertolini and H. Darmon, Heegner points, p-adic L-functions and the Cerednik-Drinfeld uniformisation, Invent. Math. **131** (1998).

M. Bertolini and H. Darmon, *Hida families and rational points on elliptic curves*, in preparation.

End of Proof

We now use the factorisation formula $L_p''(f_k/K,k/2) = L_p''(f_k,k/2)L_p(f_k,\chi_D,1)$ to conclude.

The structure of the argument

Heegner points + Cerednik-Drinfeld

 \Rightarrow Theorem for K imaginary quadratic

- \Rightarrow Theorem for Q
- \Rightarrow Theorem for K real quadratic.

This argument seems to shed no light on the rationality of the Stark-Heegner point P_D (unless the class group has exponent two).