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Summary of Victor Rotger’s Lecture

Algebraic cycles in the triple product of modular curves/
Kuga-Sato varieties can be used to construct rational points on
elliptic curves (“Zhang points”).

These points make it possible to relate:

Certain extension classes (of mixed motives) arising in the
pro-unipotent fundamental groups of modular curves;

Special values of L-functions of modular forms.

General philosophy (Deligne, Wojtkowiak, ...) relating πunip
1 (X ) to

values of L-functions.



Questions

Are these points “genuinely new”?

New cases of the Birch and Swinnerton-Dyer conjecture?

Relation with Stark-Heegner points?

The fact that “Zhang points” are defined over Q and controlled by
L′(E/Q, 1) justifies a certain pessimism.

Theme of this talk. Diagonal cycles, when made to vary in p-adic
families, should yield new applications to the Birch and
Swinnerton-Dyer conjecture and to Stark-Heegner points.



Stark-Heegner points: executive summary

Stark-Heegner points arising from Hp ×H:

• Points in E (Cp), with E/Q a (modular) elliptic curve with p|NE .

• They are computed as images of certain real one-dimensional
null-homologous cycles on Γ\(Hp ×H), (with Γ ⊂ SL2(Z[1/p]))
under a kind of Abel-Jacobi map.

• The cycles are indexed by ideals in real quadratic orders.

• The resulting local points on a (modular) elliptic curve E/Q are
conjecturally defined over ring class fields of real quadratic fields.



Stark-Heegner points and the BSD conjecture

Theorem (Bertolini-Dasgupta-D and Longo-Rotger-Vigni)

Assume the conjectures on Stark-Heegner points attached to the
real quadratic field F (in a stronger, more precise form given in
Samit Dasgupta’s PhD thesis). Then

L(E/F , χ, 1) 6= 0 =⇒ (E (H)⊗ C)χ = 0,

for all ring class χ : Gal(H/F ) −→ C×.

This result draws a connection between

1 Stark-Heegner points and explicit class field theory for real
quadratic fields;

2 certain concrete cases of the BSD conjecture.



BDD-LRV without Stark-Heegner points?

We would like to prove the BDD-LRV result unconditionally,
without appealing to Stark-Heegner points.

Key Ingredients in our approach:

1. A p-adic Gross-Kudla formula relating certain Garrett Rankin
triple product p-adic L-functions to the images of (generalised)
diagonal cycles under the p-adic Abel-Jacobi map.

2. A “p-adic deformation” of this formula.



Triples of modular forms

Definition

A triple of eigenforms

f ∈ Sk(Γ0(Nf ), εf ), g ∈ S`(Γ0(Ng ), εg ), h ∈ Sm(Γ0(Nh), εh)

is said to be self-dual if

εf εgεh = 1.

In particular, k + `+ m is even.
It is said to be balanced if each weight is strictly smaller than the
sum of the other two.



Generalised Diagonal cycles

Assume for simplicity N = Nf = Ng = Nh.

k = r1 + 2, ` = r2 + 2, m = r3 + 2, r =
r1 + r2 + r3

2
.

E r (N) = r -fold Kuga-Sato variety over X1(N); dim = r + 1.

V = E r1(N)× E r2(N)× E r3(N), dim V = 2r + 3.

Victor’s lecture: When (k, `,m) is balanced, there is an essentially
unique interesting way of embedding E r (N) as a null-homologous
cycle in V . (Generalised Gross-Kudla Schoen cycle.)

∆ = E r ⊂ V , ∆ ∈ CH r+2(V ).



Diagonal cycles and L-series

The height of the (f , g , h)-isotypic component of the generalised
diagonal cycle ∆ should be related to the central critical derivative

L′(f ⊗ g ⊗ h, r + 2).

Work of Gross-Kudla, vastly extended by Yuan-Zhang-Zhang,
represents substantial progress in this direction, when
r1 = r2 = r3 = 0. (Cf. this afternoon’s talks).

Goal of the p-adic Gross-Kudla formula: to describe
relationships between ∆ and p-adic L-series attached to (f , g , h).



Hida families

Λ = Zp[[1 + pZp]] ' Zp[[T ]]: Iwasawa algebra.

Weight space: W = hom(Λ,Cp) ⊂ hom((1 + pZp)×,C×p ).

The integers form a dense subset of W via k ↔ (x 7→ xk).

Classical weights: Wcl := Z≥2 ⊂W .

If Λ̃ is a finite flat extension of Λ, let X̃ = hom(Λ̃,Cp) and let

κ : X̃ −→W

be the natural projection to weight space.

Classical points: X̃cl := {x ∈ X̃ such that κ(x) ∈Wcl}.



Hida families, cont’d

Definition

A Hida family of tame level N is a triple (Λf ,Ωf , f ), where

1 Λf is a finite flat extension of Λ;

2 Ωf ⊂ Xf := hom(Λf ,Cp) is a non-empty open subset (for the
p-adic topology);

3 f =
∑

n anqn ∈ Λf [[q]] is a formal q-series, such that
f (x) :=

∑
n x(an)qn is the q series of the ordinary

p-stabilisation f
(p)
x of a normalised eigenform, denoted fx , of

weight κ(x) on Γ1(N), for all x ∈ Ωf ,cl := Ωf ∩ Xf ,cl.



Hida’s theorem

f = normalised eigenform of weight k ≥ 1 on Γ1(N).

p - N an ordinary prime for f (i.e., ap(f ) is a p-adic unit).

Theorem (Hida)

There exists a Hida family (Λf ,Ωf , f ) and a classical point
x0 ∈ Ωf ,cl satisfying

κ(x0) = k, fx0 = f .

As x varies over Ωf ,cl, the specialisations fx give rise to a
“p-adically coherent” collection of classical newforms on Γ1(N),
and one can hope to construct p-adic L-functions by interpolating
classical special values attached to these eigenforms.



A ‘Heegner-type” hypothesis

Triple product L-function L(f ⊗ g ⊗ h, s) has a functional equation

Λ(f ⊗ g ⊗ h, s) = ε(f , g , h)Λ(f ⊗ g ⊗ h, k + `+ m − 2− s).

ε(f , g , h) = ±1, ε(f , g , h) =
∏

q|N∞

εq(f , g , h).

Key assumption: εq(f , g , h) = 1, for all q|N.

This assumption is satisfied when, for example:

gcd(Nf ,Ng ,Nh) = 1, or,

Nf = Ng = Nh = N and ap(f )ap(g)ap(h) = −1 for all p|N.

ε(f , g , h) = ε∞(f , g , h) = −1, hence L(f , g , h, c) = 0.
(c = k+`+m−2

2 )



Triple product p-adic Rankin L-functions

They interpolate the central critical values

L(f x ⊗ g
y
⊗ hz , c)

Ω(fx , gy , hz)
∈ Q̄.

Four distinct regions of interpolation in Ωf ,cl × Ωg ,cl × Ωh,cl:

1 Σf = {(x , y , z) : κ(x) ≥ κ(y) + κ(z)}. Ω = ∗〈fx , fx〉2.

2 Σg = {(x , y , z) : κ(y) ≥ κ(x) + κ(z)}. Ω = ∗〈gy , gy 〉2.

3 Σh = {(x , y , z) : κ(z) ≥ κ(x) + κ(y)}. Ω = ∗〈hz , hz〉2.

4 Σbal = (Z≥2)3 − Σf − Σg − Σh.
Ω(fx , hy , gz) = ∗〈fx , fx〉2〈gy , gy 〉2〈hz , hz〉2.

Resulting p-adic L-functions: Lf
p(f ⊗ g ⊗ h), Lg

p(f ⊗ g ⊗ h), and

Lh
p(f ⊗ g ⊗ h) respectively.



Garrett’s formula

Let (f , g , h) be a triple of eigenforms with unbalanced weights
(k , `,m),

k = `+ m + 2n, n ≥ 0.

Theorem (Garrett, Harris-Kudla)

The central critical value L(f , g , h, c) is a multiple of

〈f , gδnmh〉2,

where

δk =
1

2πi
(

d

dτ
+

k

τ − τ̄
) : Sk(Γ1(N))! −→ Sk+2(Γ1(N))!

is the Shimura-Maass operator on “nearly holomorphic” modular
forms, and

δnm := δm+2n−2 · · · δm+2δm.



The p-adic L-function

Theorem (Hida, Harris-Tilouine)

There exists a (unique) element Lp
f (f , g , h) ∈ Frac(Λf )⊗ Λg ⊗ Λh

such that, for all (x , y , z) ∈ Σf , with (k, `,m) := (κ(x), κ(y), κ(z))
and k = `+ m + 2n,

Lp
f (f , g , h)(x , y , z) =

E (fx , gy , hz)

E (fx)

〈fx , gyδ
n
mhz〉

〈fx , fx〉
,

where, after setting c = k+`+m−2
2 ,

E (fx , gy , hz) :=
(
1− βfxαgyαhz p−c

)
×
(
1− βfxαgyβhz p−c

)
×
(
1− βfxβgyαhz p−c

)
×
(
1− βfxβgyβhz p−c

)
,

E (fx) :=
(

1− β2
fx p−k

)
×
(

1− β2
fx p1−k

)
.



Complex Abel-Jacobi maps

The cycle ∆ is null-homologous:

cl(∆) = 0 in H2r+4(V (C),Q).

Our formula of “Gross-Kudla-Zhang type” will not involve heights,
but rather p-adic analogues of the complex Abel-Jacobi map of
Griffiths and Weil:

AJ : CHr+2(V )0 −→
H2r+3

dR (V /C)

Filr+2 H2r+3
dR (V /C) + H2r+3

B (V (C),Z)

=
Filr+2 H2r+3

dR (V /C)∨

H2r+3(V (C),Z)
.

AJ(∆)(ω) =

∫
∂−1∆

ω.



p-adic étale Abel-Jacobi maps

CHr+2(V /Q)0
AJet //

��

''

H1
f (Q,H2r+3

et (V̄ ,Qp)(r + 2))

��

CHr+2(V /Qp)0 AJet

// H1
f (Qp,H

2r+3
et (V̄ ,Qp)(r + 2))

Filr+2 H2r+3
dR (V /Qp)∨

The dotted arrow is called the p-adic Abel-Jacobi map and
denoted AJp.

p-adic Gross-Kudla: Relate AJp(∆) to certain Rankin triple
product p-adic L-functions, à la Gross-Kudla-Zhang.



More notations

ωf = (2πi)r1+1f (τ)dw1 · · · dwr1dτ ∈ Filr1+1 H r1+1
dR (E r1).

ηf ∈ H r1+1
dR (E r1/Q̄p) = representative of the f -isotypic part on

which Frobenius acts as a p-adic unit, normalised so that

〈ωf , ηf 〉 = 1.

Lemma

If (k , `,m) is balanced, then the (fk , g`, hm)-isotypic part of the Q̄p

vector space Filr+2 H2r+2
dR (V /Q̄p) is generated by the classes of

ωfk⊗ωg`
⊗ωhm , ηfk⊗ωg`

⊗ωhm , ωfk⊗ηg`
⊗ωhm , ωfk⊗ωg`

⊗ηhm .



The p-adic Gross-Kudla formula

Given (x0, y0, z0) ∈ Σbal, write (f , g , h) = (fx0 , gy0 , hz0), and
(k , `,m) = (κ(x0), κ(y0), κ(z0)).

Recall that sign(L(f ⊗ g ⊗ h, s)) = −1, hence L(f ⊗ g ⊗ h, c) = 0.

Theorem (Rotger-D)

Lp
f (f ⊗g⊗h, x0, y0, z0) =

E (f )

E (f , g , h)
×AJp(∆k,`,m)(ηf ⊗ωg⊗ωh),

and likewise for Lp
g and Lp

h.



What next?

Consequences of p-adic Gross-Kudla:

• The Abel-Jacobi images of diagonal cycles encode the special
values of the three distinct p-adic L-functions attached to (f , g , h)
at the points in Σbal.

• The p-adic Gross-Kudla formula supplies evidence for a “p-adic
Bloch-Beilinson conjecture” for the rank 8 motive whose `-adic
realisation is Vf ⊗Vg ⊗Vh, when (f , g , h) is self-dual and balanced.

What about the Birch and Swinnerton-Dyer conjecture?



The Birch Swinnerton-Dyer point

Let f , g and h be Hida families such that

1. fx0 is attached to an (ordinary) elliptic curve E/Q, for some
x0 ∈ Ωf with κ(x0) = 2;

2. gy0 is a classical modular form of weight 1 attached to an Artin
representation ρ1, for some y0 ∈ Ωg with κ(y0) = 1;

3. hz0 is a classical modular form of weight 1 attached to an Artin
representation ρ2, for some z0 ∈ Ωh with κ(z0) = 1.

The behaviour of Lp
f (f , g , h), Lp

g (f , g , h) and Lp
h(f , g , h) at

the point (x0, y0, z0) should somehow control

homGQ(ρ1 ⊗ ρ2,E (Q̄)⊗ C).



A picture

Σf Σg

(x0, y0, z0) •

Σh Σbal

Lp
f (f , g , h)(x0, y0, z0) = ∗L(E , ρ1 ⊗ ρ2, 1).

What about Lp
g , Lp

h? p-adic Gross-Kudla?



From cycles to cohomology classes

We can use the cycles ∆k,`,m to construct global classes

AJet(∆k,`,m) ∈ H1(Q,H2r+3
et (VQ̄,Qp)(r + 2)).

Künneth:

H2r+3
et (VQ̄,Qp)(r + 2) →

3⊗
j=1

H
rj +1
et (E rj

Q̄,Qp)(r + 2)

→ Vfx ⊗ Vgy ⊗ Vhz (r + 2).

By projecting AJet(∆) we obtain a cohomology class

ξ(x , y , z) ∈ H1(Q,Vfx ⊗ Vgy ⊗ Vhz (r + 2)),

for each (x , y , z) ∈ Σbal.



p-adic interpolation of ξ(x , y , z)

Σf Σg

(x0, y0, z0) •

Σh Σbal

Idea: Extend the assignment (x , y , z) 7→ ξ(x , y , z) to all of Σ.



p-adic interpolation of diagonal cycle classes

For each (y , z) ∈ Ωg ×W Ωh with ` := κ(y) = κ(z) ≥ 2, the triple
(x0, y , z) is balanced, so we can consider the cohomology classes

κ(f , gy , hz) ∈ H1(Q,Vf ⊗ Vgy ⊗ Vhz (`)).

κ(f , gy , hz) ∈ H1(Q,Vp(E )⊗ Vgy ⊗ Vhz (`− 1)).



p-adic interpolation of Galois representations

Theorem (Hida, Wiles,...) There exists a Λ-adic representation
V g of GQ satisfying

V g ⊗Λg ,y Q̄p = Vgy , for almost all y ∈ Ωg ,cl,

and similarly for V h.

Corollary There exists a Galois representation V gh, of rank 4 over
Λgh := Λg ⊗Λ Λh, satisfying

V gh ⊗Λgh,(y ,z) Q̄p = Vgy ⊗ Vhz (`− 1).



Families of cycles, cont’d

Recall that

ξ(f , gy , hz) ∈ H1(Q,Vp(E )⊗ Vgy ⊗ Vhz (`− 1)).

Let
evy ,z : H1(Q,V gh) −→ H1(Q,Vgy ⊗ Vhz (`− 1)).

Theorem (Rotger, D)

There exists a “big” cohomology class

ξ ∈ H1(Q,Vp(E )⊗ V gh)

such that
ξ(y , z) := evy ,z(ξ) = ξ(f , gy , hz)

for almost all (y , z) ∈ Ωg ×W Ωh.



p-adic interpolation of cohomology classes

Similar interpolation results have been obtained and exploited in
other contexts:

1 Kato: p-adic interpolation of classes arising from Beilinson
elements in H1(Q,Vp(f )(2)). Their weight k specialisations
encode higher weight Beilinson elements (A. Scholl,
unpublished.)

2 Ben Howard: p-adic interpolation of classes arising from
Heegner points. Their higher weight specialisations encode
the images of higher weight Heegner cycles under p-adic
Abel-Jacobi maps (Francesc Castella, in progress).



The BSD class

Consider the specialisation

ξ(x0, y0, z0) ∈ H1(Q,Vf ⊗ Vgy0
⊗ Vhz0

(1))

= H1(Q,Vp(E )⊗ ρ1 ⊗ ρ2).

The BSD point (x0, y0, z0) is not in Σbal, and therefore ξ(x0, y0, z0)
lies outside the range of “geometric interpolation” defining the
family ξ.

In particular, the restriction

ξ(x0, y0, z0)p ∈ H1(Qp,Vp(E )⊗ ρ1 ⊗ ρ2)

need not be cristalline.



The dual exponential map

p-adic exponential map:

exp : Ω1(E/Qp)∨ −→ E (Qp)⊗Qp.

The dual map (exploiting Tate local duality):

exp∗ :
H1(Qp,Vp(E ))

H1
f (Qp,Vp(E ))

−→ Ω1(E/Qp).

Analogous map for Vp(E )⊗ ρ1 ⊗ ρ2:

exp∗ :
H1(Qp,Vp(E )⊗ ρ1 ⊗ ρ2)

H1
f (Qp,Vp(E )⊗ ρ1 ⊗ ρ2)

−→ Ω1(E/Qp)⊗ ρ1 ⊗ ρ2.



A reciprocity law

Question: Relate exp∗(ξ(x0, y0, z0)) ∈ Ω1(E/Qp)⊗ ρ1 ⊗ ρ2 to
L-functions?

Conjecture (Rotger, D)

The image of the class ξ(x0, y0, z0) under exp∗ is non-zero if and
only if L(E ⊗ ρ1 ⊗ ρ2, 1) 6= 0.

The strategy for proving this, based on ideas of Perrin-Riou,
Colmez, Ochiai.... is clear.

The details are not yet fully written up.

One should get a formula relating exp∗(ξ(x0, y0, z0)) to
L(E ⊗ ρ1 ⊗ ρ2, 1).



The BSD theorem

E = elliptic curve over Q;

ρ1, ρ2 = odd 2-dimensional representations of GQ,

det(ρ1) det(ρ2) = 1.

The classes ξ(x0, y0, z0) and the reciprocity law above should
enable us to show:

Theorem? (Rotger, D: still in progress, and far from complete!)
Assume that there exists σ ∈ GQ for which ρ1 ⊗ ρ2(σ) has distinct
eigenvalues. If L(E ⊗ ρ1 ⊗ ρ2, 1) 6= 0, then

hom(ρ1 ⊗ ρ2,E (Kρ1Kρ2)⊗ C) = 0.



Application to elliptic curves and real quadratic fields

Let F be a real quadratic field,

χ1, χ2 : GF −→ C×

two characters of signature (+,−).

ρ1 = IndQ
F χ1, ρ2 = IndQ

F χ2.

ρ1 ⊗ ρ2 = IndQ
F (χ1χ2)⊕ IndQ

F (χ1χ
′
2).

This set-up would yield BDD-LRV, unconditionally.



The parallel with Kato’s method

Rotger-D Kato

(f , g , h) (f ,Ek(1, χ),Ek(χ−1, 1))

p-adic Gross-Kudla p-adic Beilinson (Coleman-de Shalit, Brunault)

Diagonal cycles Beilinson elements

L(f ⊗ g` ⊗ h`, `) L(f , j), j ≥ 2

⇓ ⇓

L(f ⊗ ρ1 ⊗ ρ2, 1) L(f , χ, 1)

Cf. the lectures by Brunault and Bertolini this Thursday.



Thank you for your attention.

Time for lunch!


