Stark's Conjecture and related topics

p-adic iterated integrals, modular forms of weight one, and Stark-Heegner points.

Henri Darmon

San Diego, September 20-22, 2013

(Joint with Alan Lauder and Victor Rotger)

Stark's conjectures

Stark's conjectures give complex analytic formulae for units in number fields (more precisely, for their logarithms) in terms of leading terms of Artin L-functions at $s=0$.

Are there similar formulae for algebraic points on elliptic curves?
Heegner points, whose heights are related to L-series via the Gross-Zagier formula, are analogous to circular or elliptic units.

We refer to conjectural extensions of these as "Stark-Heegner points" because they would simultaneously generalise Stark units and Heegner points.

Modular forms of weight one

Let $g=\sum a_{n}(g) q^{n}$ be a cusp form of weight one, level N, and (odd) character χ.

Deligne-Serre. There is an odd two-dimensional Artin representation

$$
\rho_{g}: G_{\mathbb{Q}} \longrightarrow \mathrm{GL}_{2}(\mathbb{C})
$$

attached to g, satisfying

$$
L\left(\rho_{g}, s\right)=L(g, s)=(2 \pi)^{2} \Gamma(s)^{-1} \int_{0}^{i \infty} y^{s} g(i y) \frac{d y}{y}
$$

From Artin representations to weight one forms

Buzzard-Taylor, Khare-Wintenberger. Conversely, if ρ is an odd, irreducible two-dimensional Artin representation, there is a weight one newform g satisfying

$$
L(\rho, s)=L(g, s)
$$

Odd two-dimensional Artin representations are therefore an ideal testing ground for Stark's conjectures.

Stark units attached to forms of weight one

Let $H_{g}:=$ the field cut out by the Artin representation ρ_{g};
$L \subset \mathbb{Q}\left(\zeta_{n}\right):=$ field generated by the fourier coefficients of g;
$V_{g}:=$ the L-vector space underlying ρ_{g}.
Conjecture (Stark). Let g be a cuspidal newform of weight one, with Fourier coefficients in L. Then there is a unit

$$
u_{g} \in\left(\mathcal{O}_{H_{g}}^{\times} \otimes L\right)^{\sigma_{\infty}=1} \text { satisfying }
$$

$$
L^{\prime}(g, 0)\left(=\int_{0}^{\infty} g(i y) \frac{d y}{y}\right)=\log u_{g}
$$

A real quadratic example

$K=\mathbb{Q}(\sqrt{5})$.
The prime $29=\lambda \bar{\lambda}=\left(\frac{11-\sqrt{5}}{2}\right)\left(\frac{11+\sqrt{5}}{2}\right)$ splits in K.
$\psi_{g}=$ character of K of order 4 and conductor $\lambda \infty_{1}$.
Inducing ψ_{g} from K to \mathbb{Q} yields an odd, irreducible representation ρ_{g} which cannot be obtained as the induced representation from an imaginary quadratic field.

It corresponds to a cusp form

$$
g \in S_{1}(5 \cdot 29, \chi), \quad \chi^{4}=1, \quad \operatorname{cond}(\chi)=5 \cdot 29 .
$$

Stark's calculation

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{\infty}(g+\bar{g})(i y) \frac{d y}{y} & =1.65074962913147 \cdots \\
\log (u) & =1.65074962913158 \cdots
\end{aligned}
$$

where

$$
u=\frac{(3+2 \sqrt{5})+\sqrt{7+2 \sqrt{5}}+\sqrt{(20+14 \sqrt{5})+(6+4 \sqrt{5}) \sqrt{7+2 \sqrt{5}}}}{4}
$$

Classification of odd two-dimensional Artin representations

By projective image, in order of increasing arithmetic complexity:
A. Reducible representations (sums of Dirichlet characters).
B. Dihedral, induced from an imaginary quadratic field.
C. Dihedral, induced from a real quadratic field.
D. Tetrahedral case: projective image A_{4}.
E. Octahedral case: projective image S_{4}.
F. Icosahedral case: projective image A_{5}.

The status of Stark's conjecture

A. In the reducible case, it follows from the theory of circular units and Dirichlet's class number formula.
B. In the imaginary dihedral case, it follows from the theory of elliptic units and from Kronecker's limit formula (as Stark observes).
C. Stark has numerically verified many real dihedral cases.

The "exotic" (tetrahedral, octahedral and icosahedral) cases appear to have been relatively less studied, even numerically.

Stark-Heegner points

Let E be an elliptic curve attached to $f \in S_{2}\left(\Gamma_{0}(N)\right)$.
To extend Stark's conjecture to elliptic curves, it is natural to replace Artin L-series by Hasse-Weil-Artin L-series

$$
L\left(E, \rho_{g}, s\right)=L(f \otimes g, s)
$$

Remark. The BSD conjecture leads us to expect that the leading terms of $L\left(E, \rho_{g}, s\right)$ ought to encode the Néron-Tate heights of global points on E, and not their logarithms, which in any case are not numbers at all but elements of \mathbb{C} / Λ.

p-adic methods

Motivation. This issue does not arise in a p-adic setting: the p-adic logarithms of global points are well-defined p-adic numbers.

In fact, p-adic logarithms of global points do arise as leading terms of p-adic L-series attached to elliptic curves:
a) The Katz p-adic L-function (Rubin, 1992);
b) The Mazur-Swinnerton Dyer p-adic L-function (Perrin-Riou, 1993);
c) Various types of p-adic Rankin L-functions attached to $f \otimes \theta_{\psi}$ (Bertolini-D, 1995; Bertolini-D-Prasanna, 2008);
d) p-adic Garrett-Rankin L-functions attached to $f \otimes g \otimes h$
(D-Rotger, 2012).

p-adic iterated integrals

D, Rotger. The leading terms of p-adic Garrett-Rankin L-functions can be expressed in terms of certain explicit analytic expressions, referred to as " p-adic iterated integrals".

These iterated integrals are attached to a triple (f, g, h) of newforms of weights $(2, k, k), k \geq 1$.

Their definition is based on the theory of p-adic and overconvergent modular forms.

p-adic and overconvergent modular forms

Let χ be a Dirichlet character of modulus N prime to p.
$M_{k}(N p, \chi)$ the space of classical modular forms of weight k, level $N p$ and character χ;
$M_{k}^{(p)}(N, \chi)$ the corresponding space of p-adic modular forms;
$M_{k}^{\circ c}(N, \chi)$ the subspace of overconvergent modular forms.
The latter is a p-adic Banach space, on which the Atkin U_{p} operator acts completely continuously.

$$
M_{k}(N p, \chi) \subset M_{k}^{\circ c}(N, \chi) \subset M_{k}^{(p)}(N, \chi)
$$

Coleman's classicality theorem. If h is overconvergent and ordinary (slope zero) of weight ≥ 2, then h is classical.

The d operator

Let $d=q \frac{d}{d q}$ be the Atkin-Serre d operator on p-adic modular forms.

$$
d^{j}\left(\sum_{n} a_{n} q^{n}\right)= \begin{cases}\sum_{n} n^{j} a_{n} q^{n} & \text { if } j \geq 0 \\ \sum_{p \nmid n} n^{j} a_{n} q^{n} & \text { if } j<0\end{cases}
$$

- If $f \in M_{2}^{\circ c}(N)$, then

$$
F:=d^{-1} f \in M_{0}^{\circ \mathrm{C}}(N) .
$$

- If h belongs to $M_{k}(N p, \chi)$, then

$$
F \times h \in M_{k}^{\text {oc }}(N, \chi), \quad e_{\text {ord }}(F \times h) \in M_{k}(N p, \chi) \otimes \mathbb{C}_{p}
$$

where $e_{\text {ord }}:=\lim _{n} U_{p}^{n!}$ is Hida's ordinary projector.

p-adic iterated integrals: definition

Suppose

$$
f \in S_{2}(N), \quad \gamma \in M_{k}(N p, \chi)^{\vee}, \quad h \in M_{k}(N, \chi) .
$$

Definition

The p-adic iterated integral of f and h along γ is

$$
\int_{\gamma} f \cdot h:=\gamma\left(e_{\text {ord }}(F \times h)\right) \in \mathbb{C}_{p} .
$$

The terminology is motivated from the case $k=2$, where f and h correspond to differentials on a modular curve.

Remark: They differ from those that arise in Chen's theory and Coleman's p-adic extension, where one focusses on integrands that are "path independent".

Lauder's "fast ordinary projection" algorithm

- Given an overconvergent form, represented as a truncated q-series $g=\sum_{n=1}^{N} a_{n} q^{n}$, the calculation of

$$
e_{\text {ord }}(g) \quad\left(\bmod p^{M}\right)
$$

typically requires (in favorable circumstances) applying U_{p} to g roughly M times.

- But the first N fourier coefficients of $U_{p}^{M} g$ depend on knowing the first $N p^{M}$ fourier coefficients of g : so this naive algorithm runs in "exponential time" in the desired p-adic accuracy.
- Alan Lauder's fast "ordinary projection" algorithm calculates the ordinary projection in "polynomial time".
- Our experiments rely crucially on this powerful tool.

The set-up

$f \in S_{2}(N)$ corresponds to an elliptic curve E;
$g \in M_{1}\left(N, \chi^{-1}\right), \quad h \in M_{1}(N, \chi)$ classical weight one eigenforms;
$V_{g h}:=V_{g} \otimes V_{h}$, a 4-dimensional self-dual Artin representation,
$H_{g h}$ the field cut out by it.
Let $g_{\alpha} \in M_{1}\left(N p, \chi^{-1}\right)$ be an ordinary p-stabilisation of g attached to a root α_{g} of the Hecke polynomial

$$
x^{2}-a_{p}(g) x+\chi^{-1}(p)=\left(x-\alpha_{g}\right)\left(x-\beta_{g}\right)
$$

Assume that $\gamma=\gamma_{g_{\alpha}}$ has the same system of Hecke eigenvalues as g_{α},

$$
\gamma_{g_{\alpha}} \in M_{k}(N p, \chi)^{\vee}\left[g_{\alpha}\right]
$$

The question

Give an arithmetic interpretation for

$$
\int_{\gamma_{g_{\alpha}}} f \cdot h, \quad \text { as } \gamma_{g_{\alpha}} \in M_{1}(N p, \chi)^{\vee}\left[g_{\alpha}\right]
$$

in terms of the arithmetic of E over the field $H_{g h}$.

Some assumptions

I. Certain local signs in the functional equation for $L\left(E, V_{g h}, s\right)$ are all 1. In particular, $L\left(E, V_{g h}, s\right)$ vanishes to even order at $s=1$.
II. The self-dual representation $V_{g h}$ breaks up as

$$
V_{g h}=V_{1} \oplus V_{2} \oplus W, \quad \text { and }
$$

$$
\operatorname{ord}_{s=1} L\left(E, V_{1}, s\right)=\operatorname{ord}_{s=1} L\left(E, V_{2}, s\right)=1, \quad L(E, W, 1) \neq 0
$$

The BSD conjecture then predicts that V_{1} and V_{2} occur in $E\left(H_{g h}\right) \otimes L$ with multiplicity one.
III. The frobenius σ_{p} at p acting on $V_{1}\left(\operatorname{resp} V_{2}\right)$ has the eigenvalue $\alpha_{g} \alpha_{h}$ (resp. $\alpha_{g} \beta_{h}$).
IV. (Not essential) The eigenvalues $\left(\alpha_{g} \alpha_{h}, \alpha_{g} \beta_{h}\right)$ do not arise in $\left(V_{2}, V_{1}\right)$ at the same time, when $V_{1} \neq V_{2}$.

The conjecture

Stark-Heegner Conjecture (D-Lauder-Rotger)

Under the above assumptions,

$$
\int_{\gamma_{g_{\alpha}}} f \cdot h=\frac{\log _{E, p}\left(P_{1}\right) \log _{E, p}\left(P_{2}\right)}{\log _{p} u_{g_{\alpha}}}, \quad \text { where }
$$

- $P_{j} \in V_{j}$-isotypic component of $E\left(H_{g h}\right) \otimes L$, and

$$
\sigma_{p} P_{1}=\alpha_{g} \alpha_{h} \cdot P_{1}, \quad \sigma_{p} P_{2}=\alpha_{g} \beta_{h} \cdot P_{2}
$$

- $u_{g_{\alpha}}=$ Stark unit in $A d^{0}\left(V_{g}\right)$-isotypic part of $\left(\mathcal{O}_{H_{g}}^{\times}\right) \otimes L$;

$$
\sigma_{p} u_{g_{\alpha}}=\frac{\alpha_{g}}{\beta_{g}} \cdot u_{g_{\alpha}}
$$

Remarks about the Stark-Heegner conjecture

- The RHS of this conjecture belongs to $L \otimes \mathbb{Q}_{p}$, because

$$
\left(\alpha_{g} \alpha_{h}\right)\left(\alpha_{g} \beta_{h}\right)=\alpha_{g}^{2} \chi(p)=\alpha_{g} / \beta_{g} .
$$

- The term $\log _{p}\left(u_{g_{\alpha}}\right)$ that appears in the denominator can be viewed as a p-adic avatar of $\left\langle g_{\alpha}, g_{\alpha}\right\rangle$, and is defined over the field cut out by the adjoint of V_{g}. In particular it depends only on the projective representation attached to g.
- The unit $u_{g_{\alpha}}$ is closely related to the Stark units that will come up in Bill Duke's lecture tomorrow.

Theoretical evidence

Theorem (D, Lauder, Rotger)
If g and h are theta series attached to the same imaginary quadratic field K, and the prime p splits in K, then the Stark-Heegner conjecture holds.

- The points P_{1} and P_{2} are expressed in terms of Heegner points;
- the unit $u_{g_{\alpha}}$ in terms of elliptic units.

The ingredients in the proof

1. The relation described in D , Rotger between $\int_{\gamma_{g \alpha}} f \cdot h$ and the Garrett-Rankin L-function $L_{p}(f \otimes g \otimes h)$.
2. When $g=\theta_{\psi_{g}}$ and $h=\theta_{\psi_{h}}$ are theta series, a factorisation

$$
L_{p}\left(f \otimes \theta_{\psi_{g}} \otimes \theta_{\psi_{h}}\right)=L_{p}\left(f \otimes \theta_{\psi_{1}}\right) L_{p}\left(f \otimes \theta_{\psi_{2}}\right) \times \eta^{-1}
$$

$\psi_{1}=\psi_{g} \psi_{h}, \quad \psi_{2}=\psi_{g} \psi_{h}^{\prime}, \quad \eta=$ ratio of periods.
3. The p-adic Gross-Zagier formula of Bertolini, D, Prasanna, relating the appropriate values of $L_{p}\left(f \otimes \theta_{\psi_{j}}\right)$ to Heegner points over ring class fields of K.
4. The period ratio η can be interpreted as a value of the Katz p-adic L-function for K; the Stark unit $u_{g_{\alpha}}$ of the denominator arises from Katz's p-adic variant of the Kronecker limit formula.

Remarks about the proof

The assumption that p splits in K is used crucially;

- in Katz's p-adic Kronecker limit formula;
- in the p-adic Gross-Zagier formula of Bertolini-D-Prasanna for $L_{p}\left(f \otimes \theta_{\psi}\right)$, which is based on a similar circle of ideas.
("The CM points need to lie on the p-ordinary locus of the modular curve".)

However, the conjecture on p-adic iterated integrals still makes sense when p is inert in K.

Although many of many of our tools of our proof break down, Heegner points are still available, making this setting specially tantalising.

Examples, examples!

B. Gross, in a letter to B. Birch, 1982:
"The fun of the subject seems to me to be in the examples."

An imaginary dihedral example, p inert

$K=\mathbb{Q}(\sqrt{-83})$ a quadratic imaginary field of class number3.
$H=$ be the Hilbert class field of K.
$g=$ cusp form attached to the cubic character of $\mathrm{cl}(K)$:

$$
g \in S_{1}\left(83, \chi_{K}\right), \quad h=E\left(1, \chi_{K}\right) \in M_{1}\left(83, \chi_{K}\right)
$$

We considered the p-adic iterated integrals attached to:

$$
\begin{aligned}
(f, g, g): & V_{g g}=\mathbb{Q} \oplus \mathbb{Q}\left(\chi_{K}\right) \oplus V_{g}, \\
(f, g, h): & V_{g h}=V_{g} \oplus V_{g} .
\end{aligned}
$$

Heegner points

Let $f \in S_{2}$ (83) be the newform attached to

$$
E=83 A: y^{2}+x y+y=x^{3}+x^{2}+x .
$$

The curve E has rank 1 over \mathbb{Q}, and rank 3 over H.
$E(H) \otimes \mathbb{Q}$ is generated by three Heegner points P_{1}, P_{2}, P_{3} which are permuted by $\operatorname{Gal}(H / K)$ and whose x coordinates satisfy $x^{3}-x^{2}+x-2=0$.

Embed $H \longrightarrow \mathbb{Q}_{5^{2}}$ so that $P_{1} \in E\left(\mathbb{Q}_{5}\right), \quad P_{2}, P_{3} \in E\left(\mathbb{Q}_{5^{2}}\right)$.

$$
\begin{aligned}
P & :=P_{1}+P_{2}+P_{3}=(1,-3) \in E(\mathbb{Q}) \\
Q^{+} & :=2 P_{1}-\left(P_{2}+P_{3}\right) \in E(H)_{0}^{\sigma_{5}=1} \\
Q^{-} & :=P_{2}-P_{3} \in E(H)_{0}^{\sigma_{5}=-1}
\end{aligned}
$$

The experiment

The prime $p=5$ is inert in K.
We calculated that

$$
\begin{aligned}
& \int_{\gamma_{g_{+}}} f \cdot g=\int_{\gamma_{g_{-}}} f \cdot g=\frac{16 \log _{E, 5}(P) \log _{E, 5}\left(Q^{-}\right)}{5 \log _{5}(u)} \\
& \int_{\gamma_{g_{+}}} f \cdot h=\int_{\gamma_{g_{-}}} f \cdot h=\frac{16 \log _{E, 5}\left(Q^{+}\right) \log _{E, 5}\left(Q^{-}\right)}{5 \log _{5}(u)}
\end{aligned}
$$

modulo 5^{70}, in agreement with the conjectures.

A real dihedral example

Stark's calculation, from an earlier slide: $K=\mathbb{Q}(\sqrt{5}), 29=\lambda \lambda^{\prime}$ $\psi_{g}=\psi_{h}^{-1}=$ quartic character of conductor $\lambda \infty_{1}$.

$$
\begin{gathered}
g \in S_{1}\left(145, \chi^{-1}\right)_{L}, \quad h \in S_{1}(145, \chi)_{L}, \quad L=\mathbb{Q}(i) . \\
V_{g h}=L \oplus L\left[\chi_{5}\right] \oplus V_{\psi_{-}}, \quad \psi_{-}:=\psi_{g} / \psi_{g}^{\prime} .
\end{gathered}
$$

The character ψ_{-}cuts out the quartic subfield H of the narrow ring class field of K of conductor 29.

$$
H=\mathbb{Q}(\sqrt{5}, \sqrt{29}, \sqrt{\delta}), \quad \delta=\frac{-29+3 \sqrt{29}}{2}
$$

The conjecture in this case involves points on elliptic curves defined over H, and in the minus part for $\operatorname{Gal}(H / \mathbb{Q}(\sqrt{5}, \sqrt{29}))$.

A real dihedral example, cont'd

$$
\begin{gathered}
E=17 A: y^{2}+x y+y=x^{3}-x^{2}-x-14 . \\
E(\mathbb{Q})_{L}=0, \quad E(K)_{L}=L \cdot P, \quad P=\left(\frac{392}{20}, \frac{-1995+7218 \sqrt{5}}{200}\right) .
\end{gathered}
$$

$E(H)$ is generated by the Galois conjugates of

$$
\begin{aligned}
Q= & \left(\frac{-220777-17703 \sqrt{145}}{5800}, \frac{214977+17703 \sqrt{145}}{11600}\right. \\
& \left.+\frac{28584525+3803103 \sqrt{5}+1645605 \sqrt{29}+2364771 \sqrt{145}}{290000} \sqrt{\delta}\right) .
\end{aligned}
$$

To calculate the point Q, we used the theory of Stark-Heegner points arising from "integration on $\mathcal{H}_{17} \times \mathcal{H}$ ".

A real quadratic example, cont'd

A calculation reveals that

$$
\int_{\gamma_{ \pm}} f \cdot h=\frac{\log _{E, 17}(P) \log _{E, 17}(Q)}{3 \cdot 17 \cdot \log _{17}((1+\sqrt{5}) / 2)}
$$

to an accuracy of 16 significant 17-adic digits.
Remark. Unlike what often happens with numerical verifications of Stark's conjectures, both the left and right-hand sides of this expression are explicit 17 -adic analytic expressions. It might therefore not be out of reach to prove the resulting equality, and it would be of great interest to do so.

An abelian example

$\chi_{1}=$ cubic Dirichlet character of conductor 19 ,
$\chi_{2}=$ quadratic Dirichlet character of conductor 3;
$\chi=\chi_{1} \chi_{2} . \quad L=\mathbb{Q}\left(\zeta_{3}\right)$.
Eisenstein series: $g=E\left(1, \chi^{-1}\right), \quad h=E\left(\chi_{1}, \chi_{2}\right)$,

$$
V_{g h}=L\left[\chi_{1}\right] \oplus L\left[\chi_{1}^{-1}\right] \oplus L\left[\chi_{2}\right] \oplus L\left[\chi_{2}^{-1}\right] .
$$

Remark: The Artin representation $L\left(\chi_{1}\right)$ is not self-dual.
Goal: Use the conjecture to construct points defined over the cubic subfield H of $\mathbb{Q}\left(\zeta_{19}\right)$.

An abelian example, cont'd

$$
\begin{gathered}
E=42 a: y^{2}+x y+y=x^{3}+x^{2}-4 x+5 \\
E(\mathbb{Q})_{L}=0, \quad E\left(K_{\chi_{2}}\right)_{L}=0, \quad E(H)_{L}=L \cdot P_{\chi_{1}} \oplus L \cdot P_{\bar{\chi}_{1}} \\
H=\mathbb{Q}(\alpha), \quad \text { where } \quad \alpha^{3}-\alpha^{2}-6 \alpha+7=0 . \\
P=\left(64 \alpha^{2}+80 \alpha-195,1104 \alpha^{2}+1424 \alpha-3391\right) .
\end{gathered}
$$

An abelian example, cont'd

We take $p=7$, and find:

$$
\int_{\gamma} f . h=\frac{64}{7 \cdot 9} \frac{\log _{E, 7}\left(P_{\chi_{1}}\right) \log _{E, 7}\left(P_{\bar{\chi}_{1}}\right)}{\log _{7}\left(u_{\chi}\right)+\log _{7}\left(u_{\bar{\chi}}\right)} \quad\left(\bmod 7^{35}\right),
$$

where u_{χ} is a Gross-Stark unit (a 7 unit) attached to the odd sextic character χ,for which $\chi(7)=1$.

The presence of p-units (Gross-Stark units) rather than genuine units in the denominator of the formula is specific to settings where g is an Eisenstein series.

Stark's retirement gift

Stark's "Class fields and modular forms of weight one" concludes:
"A meaningful numerical verification for $N=133$ would be of some interest."

This level is one of the smallest where an exotic form (with projective image A_{4}) arises.

Stark is alluding to his conjectures on $L^{\prime}(g, 0)$, but the comment applies equally well to the Stark-Heegner conjectures!

Stark's retirement gift: A Stark-Heegner point attached to the exotic A_{4} form of level 133.

The last week of August, in Benasque, Spain

A tetrahedral example

$\chi=$ sextic Dirichlet character of conductor 133;
$g \in S_{1}(133, \chi):=$ the unique A_{4} form.
$h=\bar{g} \quad .\left(\right.$ Note that $\left.L=\mathbb{Q}\left(\zeta_{12}\right)\right)$.

$$
V_{g h}=L \oplus W_{g}, \quad W_{g}:=\operatorname{Ad}^{0}\left(V_{g}\right)
$$

The A_{4} extension cut out by W_{g} is the normal closure of $\mathbb{Q}(a)$,

$$
a^{4}+3 a^{2}-7 a+4=0
$$

The Stark-Heegner conjecture involves points of elliptic curves defined over this field.

A tetrahedral example, cont'd

Let $f \in S_{2}(91)$ be the eight two cusp form attached to

$$
\begin{gathered}
E=91 B: y^{2}+y=x^{3}+x^{2}-7 x+5 . \\
E(\mathbb{Q})_{L}=L \cdot P, \quad P=(-1,3) . \\
E(\mathbb{Q}(a)))_{L}=L \cdot P \oplus L \cdot Q \\
Q=\left(9 a^{3}+5 a^{2}+31 a-45,-a^{3}+16 a^{2}+16 a+83\right) .
\end{gathered}
$$

The point $Q=Q_{1}$ and its Galois translates Q_{2}, Q_{3} and Q_{4} generate a copy of W_{g} in $E(H)$.

A tetrahedral example, cont'd

Let $p=13$.
Embed $H \longrightarrow \overline{\mathbb{Q}}_{13}$ so that σ_{13} fixes Q_{1} and permutes Q_{2}, Q_{3} and Q_{4} cyclically, and set:

$$
Q^{\prime}=Q_{2}+\zeta_{3} Q_{3}+\zeta_{3}^{2} Q_{4}
$$

Alan checked (just one week before this conference!) that

$$
\int_{\gamma} f \cdot h=\frac{4 \log _{E, 13}(P) \log _{E, 13}\left(Q^{\prime}\right)}{13 \sqrt{3} \log _{13}\left(u_{g}\right)}
$$

to 20 digits of 13 -adic accuracy.

Happy retirement!

