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Elliptic Curves

Definition: An elliptic curve over the field Q

of rational numbers is an equation of the form

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6,

with ai ∈ Q. (The variables are x and y.)

Simpler form:

y2 = x3 + ax + b,

with ∆ := 4a3 − 27b2 6= 0.

Question. Why study such a special type of

equation?
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Diophantine equations

A Diophantine Equation is a (system of) poly-

nomial equation(s)

f1(x1, . . . , xm) = 0

f2(x1, . . . , xm) = 0

...

fn(x1, . . . , xm) = 0

with integer or rational coefficients, of which

one is interested in integer or rational solu-

tions.

Theorem (Matijasevich). There is no general

algorithm to decide whether any given Dio-

phantine equation admits an integer solution.

(In other words: A number theorist cannot be

replaced by a computer.)
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Some Diophantine equations

3x + 7y = 0

xn + yn = zn (Fermat)

x2 − Dy2 = 1 (Fermat-Pell)

x3y + y3z + z3x = 0 (Klein)

y2 = x3 + ax + b (Fermat, ..., Wiles, ...)

x17y11w5 − 27xy3z2 + 119xw − 121w − 93 = 0

Challenge: to identify, in the chaotic, non-

computable wilderness of all Diophantine equa-

tions, the ones that are the most natural and

interesting.
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In this quest, history and tradition often serve

as guides.

The equations that are the most studied today

are often the same as those that fascinated

the mathematicians of the 17th, 18th and 19th

centuries (Fermat, Euler, Lagrange, Legendre,

Gauss, Kummer, Kronecker, Klein, Fricke, ...)

Principle. A Diophantine equation is inter-

esting if it gives rise to a rich, well-structured

theory, with strong connections to the main

themes of the subject (reciprocity laws, mod-

ular forms, ...)

The main goal of this lecture series is to explain

why elliptic curves enjoy this feature.
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The congruent number problem

Definition. An integer n is a congruent num-

ber if it is the area of a right-angled triangle

with rational side lengths.

Examples: 6 is a congruent number...
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... and so is 157!

6803298587826435051217540
411340519227716149383203

21666555693714761309610
411340519227716149383203

224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016480830
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Congruent numbers and

elliptic curves

Elementary manipulations show:

Theorem n is a congruent number if and only

if the elliptic curve

En : y2 = x3 − n2x

has a non-trivial solution (with y 6= 0).

One is thus led to a question about elliptic

curves!

Question: Study the set of rational solutions

to the equation En.
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Fermat

Theorem (Fermat) The elliptic curve

y2 = x3 − x

has no non-trivial solution (i.e., 1 is not a con-

gruent number).

By elementary manipulations, this is equivalent

to:

x4 + y4 = z2 has no non-trivial solution.

Fermat’s descent: Most importantly, Fermat

introduced a general approach, the method of

descent, for checking (in some cases) whether

an elliptic curve has a rational solution or not.

8



The group law

Elliptic curves are endowed with a structure of

algebraic group.

x

y
 y  = x + a x + b2 3

P

Q

R

P+Q

The addition law on an elliptic curve
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The Mordell-Weil Theorem

In particular, the set E(Q) of rational solutions

to E is an abelian group in a natural way.

Theorem: The group E(Q) is a finitely gen-

erated abelian group.

E(Q) ' Zr ⊕ T.

The integer r is called the rank of E(Q).

Problem. Is there an algorithm for computing

• the rank r

• a system of generators of E(Q)?

This is the main outstanding open question in

the arithmetic theory of elliptic curves.
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An example of Bremner and

Cassels

The elliptic curve

E : y2 = x3 + 877x

has rank one and generator given by:

x =
6127760831879473681012

788415358606839002102

y =

25625626798892680938877
68340455130896486691
53204356603464786949

788415358606839002103

The calculation of Mordell-Weil groups in spe-

cific instances is no small task!
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Fermat’s Descent

A candidate method: Fermat’s descent.

Problem: It is not known to terminate.

The complexity of the descent method, for a

given E, is measured by a certain group at-

tached to E:

The Shafarevich-Tate group LLIE.

Shafarevich-Tate conjecture. LLIE is finite.

This conjecture would imply that Fermat’s de-

scent procedure always eventually terminates,

i.e., constitutes an algorithm.

Other than descent, the only approach to un-

derstanding rational points on elliptic curves is

via the celebrated Birch and Swinnerton-Dyer

conjecture.
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A digression: the circle

The equation x2 + y2 = 1

�����
�����
�����

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

0 x

y

−1 1

1

−1

has 4 integer solutions (x, y) = (±1,0), (0,±1).

We set NZ = 4 .
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Key principle: To understand a Diophantine

equation like

x2 + y2 = 1,

it is useful to study

• the same equation over the real numbers;

• the corresponding congruence equation:

x2 + y2 ≡ 1 (mod p),

for all primes p.

Let

Np = #{1 ≤ x, y ≤ p : x2 + y2 ≡ 1 (mod p)}.

NR = 2π.
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Evaluating Np

Parametric solution

(x, y) =

(

t2 − 1

t2 + 1
,

2t

t2 + 1

)

.

So letting t = 0,1, . . . , p − 1,∞:

Np =

{

p + 1 if −1 is not a square mod p;
p − 1 if −1 is a square mod p.

Quadratic reciprocity. If p is odd,

Np =

{

p + 1 if 4 divides p + 1;
p − 1 if 4 divides p − 1.
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A mysterious identity

Consider the expression
∏

p
Np

p
.

∏

p

p

Np
=

1

1 + 1
3

× 1

1 − 1
5

× · · ·

= (1 − 1

3
+

1

9
− · · · ) ×

(1 +
1

5
+

1

25
+ · · · ) × · · ·

= 1 − 1

3
+

1

5
− 1

7
+

1

9
− · · ·

=
π

4
(Leibniz).

This yields the mysterious identity:

∏

p

Np

p
· NR = 2NZ
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Another digression

The Fermat-Pell equation x2 − 2y2 = 1

1−1 0 3−3

2

−2

has NZ, NR = ∞.

We set
NR

NZ

=
log(3 + 2

√
2)

2
√

2
.
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Another mysterious identity

A direct (and elementary) evaluation yields

∏

p

Np

p

NR

NZ

= 1

Note: This can be rewritten

2
√

2
∏

p

p

Np
= log(3 + 2

√
2).

In particular, evaluating the infinite product on

the left allows us to calculate numerically a

solution to the Pell equation!
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Birch and Swinnerton-Dyer

To understand the equation

y2 = x3 + ax + b,

we consider as before

Np := #{1 ≤ x, y ≤ p : y2 ≡ x3 + ax + b}.

Idea (Birch and Swinnerton-Dyer).

The asymptotic behaviour of the Np should re-

flect the rank r of E(Q).

BSD Conjecture. (Rough form)

∏

p<X

Np

p
≈ CE(logX)r.

Difficulty: This product is not easy to control.
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L-functions

Let ap := p − Np.

Hasse’s inequality: |ap| ≤ 2
√

p.

To E we associate the L-function

L(E, s) =
∏

p

(1− app
−s + p1−2s)−1 =:

∑

n

ann−s.

This series converges for Re(s) > 3
2.

Formally, L(E,1) =
∏

p
p

Np
.

BSD Conjecture: The L-function L(E, s) ex-

tends to an analytic function of s ∈ C, and

ords=1 L(E, s) = r.

Clay Institute Millenium Prize problem.
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The BSD conjecture

More precise form:

L(r)(E,1) = #LLIE · RE#E(Q)−2
tor

∏

v

Ωv,

where

•LLIE = Shafarevich-Tate group of E;

•RE = regulator:

RE = det(〈Pi, Pj〉)1≤i,j≤r,

where P1, . . . , Pr generates E(Q) (modulo tor-

sion), and 〈 , 〉 is the Néron-Tate canonical

height.

•Ωv = “local term” attached to the place v.

Tate (1974) “... this remarkable conjecture

relates the behaviour of a function L at a point

where it is at present not known to be defined

to the order of a group LLI which is not known

to be finite.”
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Wiles’ theorem

Theorem (Wiles, Taylor, Diamond, Conrad,

Breuil) The function L(E, s) has an analytic

continuation to all of C; in particular the value

L(E, s) makes sense near s = 1.

This theorem is a consequence, (thanks to

work of Hecke) of a result which related the

L-series L(E, s) to modular forms.

More on this in the second lecture!
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The Gross-Zagier-Kolyvagin

theorem

Theorem (Gross-Zagier, Kolyvagin). If

ords=1 L(E, s) ≤ 1,

then

ords=1 L(E, s) = r,

and LLIE is finite. Furthermore there is an ef-

ficient method to compute E(Q) in this case.

It is believed that the “bulk” of elliptic curves

satisfy the hypothesis of the theorem. Hence

for “most” elliptic curves over Q, the BSD con-

jecture is known!

Yet alot of mystery still remains.
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The congruent number problem

En : y2 = x3 − n2x.

Tunnell’s theorem: Suppose n is odd and

square-free. Then L(En,1) = 0 if and only if

#{x, y, z ∈ Z : 2x2 + y2 + 8z2 = n} =

2×#{x, y, z : 2x2 + y2 + 32z2 = n}.

Corollary. If

#{x, y, z ∈ Z : 2x2 + y2 + 8z2 = n} 6=

2×#{x, y, z : 2x2 + y2 + 32z2 = n},

then n is not a congruent number. Otherwise,

assuming the BSD conjecture, n is a congruent

number.
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Difficulty. To show that L(E,1) = 0 implies

the existence of a rational point of infinite or-

der in E(Q).

Number theory disposes of a very limited ar-

senal of methods for producing solutions to

Diophantine equations (as opposed to show-

ing they do not exist.)

Understanding the mysterious process whereby

the vanishing of an L-function L(E, s) forces

the presence of a rational point on E(Q) would

be a great step forward.
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