
A Proof of the Full
Shimura-Taniyama-Weil Conjecture

Is Announced

Henri Darmon∗

September 9, 2007

On June 23, 1993, Andrew Wiles unveiled his strategy for proving the
Shimura-Taniyama-Weil conjecture for semistable elliptic curves defined over
the field Q of rational numbers. Thanks to the work of Gerhard Frey, Jean-
Pierre Serre and Kenneth Ribet, this was known to imply Fermat’s Last The-
orem. Six years later, Christophe Breuil, Brian Conrad, Fred Diamond, and
Richard Taylor have finally announced a proof of the full Shimura-Taniyama-
Weil conjecture, for all elliptic curves over Q.

The Conjecture

The Shimura-Taniyama-Weil conjecture relates elliptic curves—cubic equa-
tions in two variables of the form y2 = x3 +ax+b, where a and b are rational
numbers—and modular forms—objects, to be defined below, arising as part
of an ostensibly different circle of ideas.

An elliptic curve E can be made into an abelian group in a natural way,
after adjoining to it an extra “solution at infinity” that plays the role of
the identity element. This is what makes elliptic curves worthy of special
study, for they alone, among all projective curves (equations in two variables,
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compactified by the adjunction of suitable points at infinity) are endowed
with such a natural group law. If one views solutions geometrically as points
in the (x, y)-plane, the group operation consists in connecting two points on
the curve by a straight line, finding the third point of intersection of the line
with the curve, and reflecting the resulting point about the x-axis.

After a change of variables is performed to bring it into the best possible
form, the equation defining E can be reduced modulo any prime number p.
If the resulting equation is nonsingular over the finite field with p elements
Fp = Z/pZ, then E is said to have good reduction at p. All but finitely many
primes are primes of good reduction for a given E. For example, the elliptic
curve defined by the cubic equation

y2 = x3 − x2 + 1/4, or equivalently, y2 + y = x3 − x2, (1)

has good reduction at all primes except 11.
Let Np be the number of solutions (over Fp) of the reduced equation and

set ap(E) = p−Np. The sequence {ap(E)}p (indexed by the primes p of good
reduction) encodes basic arithmetic information on E. The sequence ap(E)
for the elliptic curve of equation (1) is given in Table 1.

p 2 3 5 7 11 13 17 19 23 29 31 · · · 10007

Np 4 4 4 9 − 9 19 19 24 29 24 · · · 9989
ap(E) −2 −1 1 −2 − 4 −2 0 −1 0 7 · · · 18

Table 1. Sequence ap(E) for the elliptic curve (1).

It has been a long-standing concern of number theory to search for pat-
terns satisfied by sequences of this sort. For example, in the simpler case
of the quadratic equation in one variable x2 − d = 0 with d an integer, any
prime p that does not divide 2d is a prime of good reduction, and for such
a p the integer Np is equal to 2 or 0, depending on whether d is a square or
not modulo p. Gauss’s quadratic reciprocity law implies that this seemingly
subtle property of p depends only on the residue class of p modulo 4d, so
that the sequence Np obeys a simple periodicity law.

In the case of elliptic curves, a similar pattern arises. It is, however, a good
deal more subtle—so much so that it emerged as a precise conjecture only in
the 1950s through the work of Shimura, Taniyama, and Weil. This pattern
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involves the notion of a modular form of weight two—an analytic function
on the complex upper half-plane {z ∈ C with Im(z) > 0}, satisfying suitable
growth conditions at the boundary as well as a transformation rule of the
form

f

(
az + b

cz + d

)
= (cz + d)2f(z), for all

(
a b
c d

)
∈ Γ,

where Γ is an appropriate “congruence subgroup” of SL2(Z). The main ex-
ample of a congruence subgroup, sufficient for the formulation of the Shimura-
Taniyama-Weil conjecture, is the group Γ0(N) of matrices in SL2(Z) whose
lower left entries are divisible by N . A modular form of weight two on Γ0(N)
(also said to be of level N) is, in particular, invariant under translation by
1, and it can be expressed as a Fourier series

f(z) =
∞∑

n=0

an(f)qn, where q = e2πiz.

Of particular interest are the so-called “cusp forms”, satisfying a more strin-
gent growth condition at the boundary that implies in particular that a0(f) =
0. The Shimura-Taniyama-Weil conjecture asserts that, if E is an elliptic
curve over Q, then there is an integer N ≥ 1 and a weight-two cusp form f
of level N , normalized so that a1(f) = 1, such that

ap(E) = ap(f),

for all primes p of good reduction for E. When this is the case, the curve
E is said to be modular. The conjecture also predicts the precise value of
N : it should be equal to the “conductor” of E, an arithmetically defined
quantity that measures the Diophantine complexity of the associated cubic
equation. Its prime divisors are precisely the primes of bad reduction of E. If
p divides N but p2 does not, then E is said to have semistable reduction at p.
In particular, E has semistable reduction at all primes p (i.e., is semistable),
precisely when N is squarefree.

For instance, the elliptic curve of equation (1) has conductor 11 (and thus
is an example of a semistable elliptic curve). It turns out that the space of
weight two cusp forms of level 11 is one-dimensional, and is spanned by the
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function

q
∞∏

n=1

(1− qn)2 · (1− q11n)2

= q−2q2 − q3 + 2q4+q5 + 2q6−2q7

−2q9 − 2q10+q11 − 2q12+4q13 + 4q14

−q15 − 4q16−2q17 + 4q18 + 2q20 + 2q21

−2q22−q23 − 4q25 − 8q26 + 5q27 − 4q28

+2q30+7q31 + · · ·+ 18q10007 + · · ·

The reader will note that the Fourier coefficients of this function agree with
the numbers computed—by wholly different methods—in Table 1.

The Shimura-Taniyama-Weil conjecture was widely believed to be un-
breachable, until the summer of 1993, when Wiles announced a proof that
every semistable elliptic curve is modular. A full proof of this result ap-
peared in 1994 in the two articles [W] and [TW], the second joint with Taylor.
Shortly afterwards, Diamond [Di1] was able to remove the semistability as-
sumption in Wiles’s argument at all the primes except 3 and 5. Then in 1998
Conrad, Diamond, and Taylor [CDT] refined the techniques still further, es-
tablishing the Shimura-Taniyama-Weil conjecture for all elliptic curves whose
conductor is not divisible by 27. This is where matters stood at the start of
the summer of 1999, before the announcement of Breuil, Conrad, Diamond,
and Taylor.

The Importance of the Conjecture

The Shimura-Taniyama-Weil conjecture, and its subsequent, just-completed
proof, stand as a crowning achievement of number theory in the twentieth
century. This statement can be defended on (at least) three levels.

Fermat’s Last Theorem

Firstly, the Shimura-Taniyama-Weil conjecture implies Fermat’s Last Theo-
rem. This is surprising at first, because the equation xn + yn = zn is not a
cubic and bears, on the face of it, no relation with elliptic curves. But to a
nontrivial solution ap + bp = cp of Fermat’s equation with prime exponent
p > 5, Frey associated the elliptic curve (now known as a “Frey curve”) given
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by the equation y2 = x(x− ap)(x + bp). The conductor of E, when a, b and
c are relatively prime, is the product of the primes dividing abc (so that in
particular E is semistable). Ribet, guided by conjectures of Serre, proved
that such an elliptic curve could not possibly correspond to a modular form
in the way predicted by the Shimura-Taniyama-Weil conjecture.

Because the Frey curve is semistable, the original result of [W] and [TW]
is enough to imply Fermat’s Last Theorem, and the new result of Breuil,
Conrad, Diamond, and Taylor yields nothing new on Fermat’s equation. It
does imply, however, other results of the same nature, such as the statement
that a perfect cube cannot be written as a sum of two relatively prime nth
powers with n ≥ 3, generalizing Euler’s result for n = 3. As in the case of
Fermat’s Last Theorem, a solution to the equation ap + bp = c3 is used to
construct an elliptic curve whose existence is shown in [DM] to contradict
the Shimura-Taniyama-Weil conjecture. In many cases—whenever 3 does
not divide ab—the conductor of this curve is divisible by 27, so that the full
strength of the result of Breuil, Conrad, Diamond, and Taylor is needed to
conclude the argument.

The Arithmetic of Elliptic Curves

Secondly, and more centrally perhaps, the Shimura-Taniyama-Weil conjec-
ture lies at the heart of the theory of elliptic curves.

A theorem of Mordell asserts that the abelian group, denoted E(Q), of
points of E with rational coordinates is finitely generated, so that it is iso-
morphic as an abstract group to Zr ⊕ T , where T is finite. It is known how
to determine T explicitly. The integer r ≥ 0, called the rank of E over Q, is
a more subtle invariant: no algorithm is known at present to calculate r as
a function of E.

It has been a longstanding feeling that much information on the arith-
metic of E (such as the invariant r) can be gleaned from the sequence Np(E),
or equivalently ap(E) as p varies. A convenient way to package the informa-
tion contained in this sequence is to form the L-series of E, a function of the
complex variable s defined initially by the Euler product

L(E, s) :=
∏
p-N

(1− ap(E)p−s + p1−2s)−1.

(In the later parts of the theory, elementary factors are included in the prod-
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uct for the finitely many primes p dividing N .) This product converges when
Re(s)> 3/2. But the Shimura-Taniyama-Weil conjecture gives a strong con-
trol on the (arithmetically defined) sequence ap(E), and implies through the
work of Hecke that L(E, s) extends to an analytic function on the entire
complex plane. In particular, it makes sense to study the behavior of L(E, s)
in a neighborhood of s = 1. Note that formally,

L(E, 1) =
∏

p

p

Np + 1
.

It is believed that the size of r might affect the size of Np on average, which
may in turn be reflected in the analytic behavior of L(E, s) near s = 1.
Indeed, Birch and Swinnerton–Dyer in the 1960s conjectured that the order
of vanishing of L(E, s) at s = 1 is equal to r:

ords=1L(E, s) = r.

This conjecture is of fundamental importance for the arithmetic of elliptic
curves, and is still far from being settled, although the work of Gross-Zagier
and Kolyvagin shows that it is true when ords=1(L(E, s)) ≤ 1.

Knowing that E is modular also gives control on the arithmetic of E
in other ways, by allowing the construction of certain global points on E
defined over abelian extensions of quadratic imaginary fields, via the theory
of complex multiplication. Such analytic constructions of global points on E
actually play an important role in studying the Birch and Swinnerton–Dyer
conjecture, through the work of Gross-Zagier and of Kolyvagin.

The Langlands Program

A Galois representation is a (finite-dimensional) representation

ρ : GQ −→ GLn(F ),

where GQ := Gal(Q̄/Q) is the absolute Galois group of Q, and F is any field.
(Of special interest are the case where F = C, Q̄`, or F̄`.)

Wiles’s work can be viewed in the broader perspective of establishing
connections between automorphic forms—objects arising in the (infinite-
dimensional) representation theory of adelic groups—and Galois represen-
tations. Viewed in this light, it becomes part of a vast conjectural edifice put
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together by Langlands, based on earlier insights of Tate, Shimura, Taniyama,
and many others. In this setting, Wiles’s discoveries have enriched the the-
ory with a powerful new method that should keep the experts occupied well
into the new millenium. Indeed, the impact of Wiles’s ideas has only started
being felt in many diverse aspects of the Langlands program:

Two-dimensional complex representations of GQ: Emil Artin associated to
a Galois representation ρ : GQ −→ GLn(C) an L-function L(ρ, s) and con-
jectured that it has an analytic continuation to the whole complex plane.
Via work of Deligne and Serre, the Langlands program relates such repre-
sentations, when n = 2, to certain “cusp forms of weight one” on a group
slightly different from Γ0(N). This relation implies the analytic continuation
of L(ρ, s), just as the modularity of an elliptic curve implies the analytic
continuation of its L-series through the work of Hecke. Before Wiles, the
only cases that could be attacked with any generality were the case where ρ
is reducible, by work of Hecke, and where the image of ρ is solvable, thanks
to the work of Langlands and Tunnell. (It should be noted that for a specific
ρ, the modular form attached to it can in principle be found after a finite
amount of computation, so that the Langlands conjecture could be checked
for a finite number of ρ with nonsolvable image; the first such example was
produced by Joe Buhler in his Harvard PhD thesis.)

Using Wiles’s method, Taylor has formulated a novel strategy [Ta] for
proving the Artin conjecture in the remaining (most interesting) case where
the image of ρ in PGL2(C) is isomorphic to A5—the so-called icosahedral
case. Enough of Taylor’s program has now been carried out in joint work
with Kevin Buzzard, Mark Dickinson, and Nicholas Shepherd–Barron to es-
tablish the truth of the Artin conjecture for infinitely many icosahedral Galois
representations.

Generalizations to other number fields. A number of ingredients in Wiles’s
method have been significantly simplified, by Diamond and Fujiwara among
others. Fujiwara, Skinner, and Wiles have been able to extend Wiles’s results
to the case where the field Q is replaced by a totally real number field K.
In particular, this yields analogues of the Shimura-Taniyama-Weil conjecture
for a large class of elliptic curves defined over such a field.

n-dimensional generalizations. Michael Harris and Richard Taylor have ex-
plored generalizations of the main results of [W] and especially [TW] to the
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context of n-dimensional representations of GQ. (This work, and the proof
of the local Langlands conjecture for GLn by Harris and Taylor, is expected
to be covered in a future Notices article.)

The Work of Breuil, Conrad, Diamond, and
Taylor

The space S2(N) of weight-two cusp forms on Γ0(N) is a finite-dimensional
complex vector space, equipped with an action of a natural family of com-
muting self-adjoint operators, the so-called “Hecke operators”. A normalized
newform on Γ0(N) is a simultaneous eigenvector for these operators, normal-
ized so that its first Fourier coefficient is equal to 1, and not already arising
in the space of cusp forms on Γ0(D) for any D dividing N . A construc-
tion of Eichler and Shimura associates to a normalized newform of level N
with rational Fourier coefficients an elliptic curve over Q of conductor N .
The original Shimura-Taniyama-Weil conjecture states that this construction
yields a bijection from the set of normalized newforms on Γ0(N) with ratio-
nal Fourier coefficients to the set of elliptic curves of conductor N , taken
modulo an equivalence, weaker than isomorphism, known as isogeny. It ap-
pears difficult, even now, to give an a priori estimate for the size of either
set, as a function of N ; in fact, the question of the rationality of the Fourier
coefficients of an eigenform is a subtle one that seems hard to come to terms
with.

In general, the Fourier coefficients of a normalized eigenform f are alge-
braic numbers, defined over a finite extension Kf ⊂ Q̄ of Q. Fix a prime `,
and an inclusion ι : Q̄ −→ Q̄`, where Q` is the field of `-adic numbers. By a
generalization of the Eichler-Shimura construction, f gives rise to an `-adic
Galois representation

ρf : Gal(Q̄/Q) −→ GL2(Q̄`)

satisfying trace(ρf (Frobp)) = ι(ap(f)), for all primes p not dividing N`. Here
Frobp is the “Frobenius element” at p. A notion of conductor can be defined
for an `-adic Galois representation, and it follows from the work of Carayol,
Deligne, Igusa, Langlands, and Shimura, that the conductor of ρf is equal to
the level of f .
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When f is an eigenform with rational Fourier coefficients, corresponding
to an elliptic curve Ef under the original Eichler-Shimura construction, then
ρf is simply obtained by piecing together the natural action of GQ on the
space of `n-torsion points of Ef (Q̄), as n varies.

It becomes natural to formulate a more general version of the Shimura-
Taniyama-Weil conjecture, replacing elliptic curves with two-dimensional
representations of GQ with coefficients in Q̄`. This more general version
would have the virtue of avoiding the subtleties associated with fields of
definition of Fourier coefficients of eigenforms.

An important insight that emerged over the last decades through the
work of Alexander Grothendieck, Pierre Cartier, Jean Dieudonné, and fi-
nally Jean-Marc Fontaine and his school, is that it should be possible to
characterize the `-adic representations arising from modular forms entirely
in Galois-theoretic terms—or, more precisely, in terms of their restriction
to a “decomposition group” Gal(Q̄`/Q`) at `, or even an “inertia group” at
this prime. Such representations are called “potentially semistable”, and this
notion is a key ingredient for generalizing the Shimura-Taniyama-Weil con-
jecture to `-adic Galois representations. Around 1990, Fontaine and Mazur
conjectured that the `-adic Eichler-Shimura construction yields a bijection
from the set Λmod(N) of normalized eigenforms of level N to the set Λgal(N) of
`-adic Galois representations of conductor N that are potentially semistable
at `. Wiles’s proof in essence amounts to a sophisticated counting argument
in which these two sets are compared and found to be of the same size.

The main tools in controlling the size of Λmod are supplied by the theory
of “Hecke rings” and congruences between modular forms, a rich body of
techniques developed by Mazur, Hida, and Ribet, and used to great effect
by Ribet to derive Fermat’s Last Theorem from the Shimura-Taniyama-Weil
conjecture.

The set Λgal(N) is, in many ways, the more subtle object of the two, about
which there is a priori the least explicit information. There are two major
ingredients used to estimate the size of Λgal(N) and relate it to Λmod(N).

• The theory of “base change”, and in particular the work of Langlands and
Tunnell on solvable base change.

• The theory of deformations of Galois representations pioneered by Mazur
and Hida.
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The second ingredient is extremely general and flexible, and is being
honed into a powerful tool in the arithmetic study of automorphic forms. The
first ingredient, by contrast, is available only when the image of ρf is a (pro)-
solvable group. Number theory has, over the last hundred years, developed
an arsenal of techniques for understanding abelian and solvable extensions,
as evidenced in Class Field Theory, which gives a precise description of all
the abelian extensions of a given number field, as well as the behavior of
the Frobenius elements in these extensions. Arriving at an understanding of
nonsolvable extensions on the same terms has proved far more elusive.

Unfortunately, the image of ρf is rarely solvable. But it is when the
prime ` is 3, by a fortuitous accident of group theory: the group GL2(F3),
and hence GL2(Z3), is solvable, a fact that ceases to be true as soon as 3 is
replaced by any larger prime. It is for this reason that in the application to
the Shimura-Taniyama-Weil conjecture it is indispensable in Wiles’s strategy
to work with the prime ` = 3.

The last obstacle to carrying out Wiles’s program to a complete proof of
the Shimura-Taniyama-Weil conjecture arose from a technical difficulty: the
3-adic Galois representations of conductor N , when 27 divides N , have an
intricate behavior when restricted to the inertia group at 3—and a precise
description, and understanding, of this behavior is required to control the set
Λgal(N) when ` = 3. Overcoming this difficulty required some new insights
into the structure of 3-adic representations of GQ that are “highly ramified”
at the prime 3. A number of these key insights were provided by the work of
Breuil strengthening Fontaine’s theory.
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