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Abstract. In the early 90’s, Perrin-Riou [PR93] introduced an important refinement of the
Mazur-Swinnerton-Dyer p-adic L-function of an elliptic curve E over Q, taking values in
its p-adic de Rham cohomology. She then formulated a p-adic analogue of the Birch and
Swinnerton-Dyer conjecture for this p-adic L-function, in which the formal group logarithms
of global points on E make an intriguing appearance. The present work extends Perrin-Riou’s
construction to the setting of a Garret-Rankin triple product (f, g, h), where f is a cusp form
of weight two attached to E and g and h are classical weight one cusp forms with inverse
nebentype characters, corresponding to odd two-dimensional Artin representations %g and %h
respectively. The resulting p-adic Birch and Swinnerton-Dyer conjecture involves the p-adic
logarithms of global points on E defined over the field cut out by %g ⊗ %h, in the style of the
regulators that arise in [DLR1], and recovers Perrin-Riou’s original conjecture when g and h
are Eisenstein series.

Introduction

One expects to associate p-adic L-functions to quite general p-adic families of Galois repre-
sentations. Such families, which typically arise as continuous Λ[GQ]-modules over a suitable
“Iwasawa algebra” Λ in one or more variables, include the “cyclotomic” collection {Vp(k)}k∈Zp
interpolating the Tate twists of a fixed (motivic) p-adic Galois representation Vp, which pro-
vides the backdrop for classical Iwasawa theory and whose associated p-adic L-function is
directly analogous to the complex L-function attached to Vp. When Vp is the two-dimensional
Galois representation attached to a classical eigenform, this p-adic L-function was first con-
structed and studied by Mazur and Swinnerton-Dyer [MSD]. Other p-adic L-functions, such
as those of Katz attached to families of algebraic Hecke characters of an imaginary quadratic
field and those of Mazur-Kitagawa and Greenberg-Stevens attached to Hida families of elliptic
modular forms, are less prone to admit direct complex avatars. The study of their leading
terms reveals a rich array of phenomena going well beyond a routine transcription to the
p-adic setting of known conjectures about special values of complex L-functions.

The “Perrin-Riou philosophy” alluded to in the title asserts that the p-adic L-function
attached to a Λ[GQ]-module Vp should arise from a global class

κ(Vp) ∈ Ext1
Λ[GQ](Λ,Vp) = H1(Q,Vp)

by restricting it to the decomposition group at p and taking its image under a “Λ-adic regulator
map”

EXP∗ : H1(Qp,Vp)−→D.
This map interpolates the Bloch-Kato dual exponential map at a suitable (typically dense) set
of potentially cristalline specialisations of Vp, and its target D is, accordingly, a module (over a
ring H (Λ) ⊃ Λ consisting of power series whose coefficients satisfy certain growth conditions)
interpolating the Dieudonné modules of the same specialisations. One expects to recover more
standard p-adic L-functions attached to Vp by projecting Lp(Vp) := EXP∗(κ(Vp)) to various
natural quotients of D which are typically locally free of rank one over H (Λ). But the “full”
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p-adic L-function Lp(Vp) allows more satisfying and far-reaching statements about special
values.

In the case where Vp(E) = {Vp(E)(k)}k∈Zp is the cyclotomic family attached to the p-

adic representation Vp(E) = H1(EQ̄,Qp(1)) of an elliptic curve E, the idoneous global class
κ(Vp(E)) was constructed by Kato from p-adic families of Beilinson elements: distinguished
classes in the second K-groups of modular curves arising from pairs of modular units. The
p-adic L-function

Lp(E) := EXP∗(κ(Vp(E))) ∈ H1
dR(E/Qp)⊗H (Λ), H (Λ) ⊃ Λ ' Zp[[T ]],

can be viewed (thanks to Kato’s deep reciprocity law) as a refinement of the Mazur-Swinnerton-
Dyer p-adic L-function attached to E, which one recovers, when E is ordinary, by projecting
Lp(E) to the unit root subspace of H1

dR(E/Qp) for the action of the Frobenius endomorphism.
In [PR93], Perrin-Riou proves two key assertions about the leading term of Lp(E) at the

trivial character 1, relating this leading term to the specialisation, denoted κ(Vp(E)), of the
Λ-adic class κ(Vp(E)) at the same character. These assertions involve the successive images
of κ(Vp(E)) under the Bloch Kato dual exponential and logarithm maps:

exp∗p :
H1(Qp, Vp(E))

H1
fin(Qp, Vp(E))

−→Fil1H1
dR(E/Qp), logp : H1

fin(Qp, Vp(E))−→
H1

dR(E/Qp)

Fil1H1
dR(E/Qp)

.

Perrin-Riou’s first main theorem [PR93, Prop. 2.1.4] asserts that

(1− p−1ϕ−1)

(1− ϕ)
Lp(E)(1) = exp∗p(κ(Vp(E))), (1)

where ϕ denotes the cristalline frobenius endomorphism acting on H1
dR(E/Qp). It also follows

from Kato’s reciprocity law that

(1− p−1ϕ−1)

(1− ϕ)
Lp(E)(1) =

L(E, 1)

ΩE
· ω, (2)

where ΩE is a complex period attached to the choice of an invariant differential

ω ∈ Ω1(E/Q) = Fil1H1
dR(E/Q).

In particular, the global class κ(Vp(E)) belongs to the Selmer group H1
fin(Q, Vp(E)) if and

only if L(E, 1) = 0. (Cf. [PR93, §3.3.1].)
When L(E, 1) = 0, it thus becomes natural to examine the first derivative

L ′
p(E)(1) ∈ H1

dR(E/Qp)

of Lp(E) at the trivial character. Perrin-Riou’s second main theorem [PR93, Prop. 2.2.2]
asserts that

(1− p−1ϕ−1)

(1− ϕ)
L ′
p(E)(1) = logp(κ(Vp(E))) (mod Fil1H1

dR(E/Qp)). (3)

The counterpart of (2), conjectured in [PR93, §3.3.5], asserts that

(1− p−1ϕ−1)

(1− ϕ)
L ′
p(E)(1) = log2(P ), (4)

where P is a global point in E(Q)⊗Q whose Néron-Tate canonical height differs from L′(E, 1)
by an elementary non-zero factor. The point P is thus expected to be non-trivial precisely
when E(Q) has (algebraic or analytic) rank one. When E has good reduction at p, this
conjecture was proved in [BDV] by realising the conjectural P as a Heegner point. It then
follows from the Gross-Zagier formula that the global class κ(Vp(E)) is trivial at p if and only
if L′(E, 1) = 0. The proof of (4) relies crucially on a comparison between Kato’s cohomology
class κ(Vp(E)) and the generalised Kato classes whose study was initiated in [BDRa], [BDRb],
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[DRa], and [DRb]. These generalised Kato classes are related to the Garret-Rankin triple
product p-adic L-function of Hida and Harris-Tilouine in exactly the same way that the Kato
class κ(Vp(E)) is related to the Mazur-Swinnerton-Dyer p-adic L-function of E.

The main goal of the present work is to formulate a (largely conjectural) analogue of (4)
in which Lp(E) is replaced by a Perrin-Riou-style refinement of the Garret-Rankin p-adic
L-function Lp(f ,g,h) attached to a triple of Hida families specialising to a triple (f, g, h) of

classical elliptic modular newforms in weights (2, 1, 1), and the expression log2(P ) involving
the Heegner point P is replaced by an expression involving the Stark points of [DLR1] defined
over the number field cut out by the tensor product %g ⊗ %h of the Artin representations
attached to the eigenforms g and h.

The resulting Conjecture 3.2 below, which is the main contribution of this work, draws its
inspiration from (at least) three sources:

(1) The seminal article [PR93] where conjecture (4) is formulated, suggesting that the
“enhanced” p-adic L-functions of Perrin-Riou can be parlayed into a p-adic analytic
construction of global points on elliptic curves, analogous to an earlier construction of
Rubin [Ru92].

(2) The proof [BDV] of Perrin-Riou’s conjecture relying on an alternate construction of
Perrin-Riou’s Lp(E) in which the machinery of overconvergent modular symbols is
replaced by the theory of p-adic modular forms and their interpretation in terms of de
Rham cohomology. This shift in point of view (which amounts roughly speaking to
a passage from Betti to de Rham cohomology, thus obviating the theory of modular
symbols and their overconvergent analogues) turns out to be crucial both for the proofs
of [BDV] and for Conjecture 3.2 below, which applies in many settings where modular
symbols are unavailable.

(3) The “elliptic Stark conjectures” of [DLR1], in which a “Stark point regulator” very
similar to (but not quite the same as) the one of Conjecture 3.2 is related to the
value of a Garrett-Hida p-adic L-function at the triple (f, g, h), which lies outside the
range of classical interpolation defining the p-adic L-function. In contrast, Conjecture
3.2 involves the derivative at the same triple of a different Garret-Rankin p-adic L-
function, whose range of classical interpolation contains (f, g, h). In that sense, the
main conjecture of [DLR1] is more closely analogous to [Ru92, Cor. 10.3] and to
the p-adic Gross-Zagier formula of [BDP], while Conjecture 3.2 below bears a closer
relationship to Perrin-Riou’s conjecture, as formulated in [PR93]. The bridge between
the latter and Rubin’s theorem (which is hinted at in the introduction of [PR93])
is provided by the (generalised) Kato class itself, whose logarithms (evaluated along
different lines of the relevant Dieudonné module) encode all at once the three different
p-adic L-functions attached to (f ,g,h), as described in [DRa]. When compared with
[DLR1], Conjecture 3.2 has the ancillary role of clarifying the relationship between
Perrin-Riou’s conjecture and Rubin’s theorem.

1. The Garret-Rankin p-adic L-function, d’après Perrin-Riou

Let Λ := Zp[[Z×p ]] ' Zp[Z/(p − 1)Z][[T ]] be the usual Iwasawa algebra. For any finite flat

extension Λ̃ of Λ, let MΛ̃(N,χ) denote the module of Λ-adic modular forms of tame level N

and tame character χ, with coefficients in Λ̃, following the notations that were employed, for
instance, in the introduction of [DRb]. Let

g ∈MΛg(Ng, χg), h ∈MΛh(Nh, χh),

be two Λ-adic eigenforms (with coefficients in certain finite flat extensions Λg and Λh of Λ
respectively) whose tame characters satisfy the important self-duality condition

χgχh = 1.
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Let

W := Spf(Λ) = homcts(1 + pZp,C×p )

be the usual weight space, and let

Wg := Spf(Λg), Wh := Spf(Λh)

be the rigid analytic spaces parametrising the Hida families g and h respectively. The inclusion
Λ ↪→ Λg gives rise to a structure map from Wg to W, called the weight map and denoted
x 7→ w(x). A point x ∈ Wg is said to be classical if w(x) (viewed as a continuous character

of 1 + pZp) is of the form t 7→ tkη(t), where k ≥ 0 and η is a finite order character, factoring
through (Z/pnZ)×. We set conventions so that the specialisation (denoted gx) of g at a point
x of classical weight w(x) = (k, η) is an eigenform of weight k and level χgη.

After setting N = lcm(Nf , Ng, Nh) and Λgh := Λg ⊗Λ Λh, we choose a pair (ğ, h̆) of Λ-adic
test vectors in the Hecke eigenspaces of MΛgh(N) attached to the Hecke eigenvalues for g,
and h respectively. The fiber product

Wgh := Spf(Λgh) =Wg ×W Wh

naturally parametrises a family Ξgh of p-adic modular forms of constant weight two, whose
specialisation at a pair (x, y) of common weight w(x) = w(y) = (k, η) is given by

Ξgh(x, y) = (d1−kğx ⊗ η−1)× h̆y,
where d is the Atkin-Serre d operator on p-adic modular forms which raises the weight by
2. When (k, η) is a classical weight, the specialisations ğx and h̆y are both of weight k and
of character χgη and χhη respectively. It follows that Ξgh(x, y) is a p-adic overconvergent
modular form of weight two, trivial nebentype character, and tame level N . Hence it gives
rise to a class Lgh(x, y) ∈ H1

dR(X0(N)), which interpolates to a class

Lgh ∈ H1
dR(X0(N))⊗ Λgh.

Suppose that f is a (not necessarily new) eigenform of weight two on Γ0(N). Assume for
simplicity that f has rational Hecke eigenvalues, and hence corresponds to an elliptic curve
E of level dividing N . Fix a non-constant morphism

πf : X0(N)−→E,
and let

Lfgh := πf∗(Lgh) ∈ H1
dR(E)⊗ Λgh.

This Λgh-adic family of de Rham cohomology classes is called the Perrin-Riou p-adic L-

function attached to the modular parametrisation πf and to the pair (ğ, h̆) of Λ-adic test
vectors. When (x0, y0) is the classical point of Wgh of weight one attached to the original

weight one eigenforms ğ and h̆, the specialisation Lfgh(x0, y0) is related to the central critical
value of L(f ⊗ g ⊗ h, 1), in a way that will be made more precise in Theorem 3.1 below.

When L(f ⊗ g ⊗ h, 1) = 0, it is then natural to consider the first derivative of Lfgh at
(x0, y0) with respect to the “weight of g and h” variable. More precisely, assume that the
natural projection Wgh−→W is étale at (x0, y0). This is known to hold whenever g and h
are not theta series of a real quadratic field in which the prime p is split, thanks to a result
of Bellaiche and Dimitrov [BD]. Under this unrestrictive hypothesis, one can choose a local
parameter onWgh near (x0, y0) which corresponds to the weight k, and consider the derivative
with respect to this variable:

L ′
fgh(x0, y0) :=

d

dk
Lfgh(x0, y0)k=1 ∈ H1

dR(E).

The nature of this class, more precisely, its image in a suitable explicit quotient of H1
dR(E),

is the main object of this note.
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2. The Perrin-Riou regulator

As in the previous section, let f be a weight two eigenform on Γ0(Nf ), and let g and h be
eigenforms of weight one, levels Ng and Nh, and with inverse nebentype characters. Under
this last assumption, the tensor product Vgh := Vg⊗Vh of the Artin representations associated
to g and h has trivial determinant and real traces. Let Hg, Hg, and Hgh denote the extensions
of Q cut out by Vg, Vh, and Vgh respectively.

A p-adic deformation datum for g is the datum of

(1) a GQ-stable line in Vg, if g = E1(χ1, χ2) is a weight one Eisenstein series. Such a
datum amounts to the choice of a character in {chi1, χ2}, and there are always two
distinct such choices, since χ1 and χ2 have opposite parity and are therefore distinct.

(2) a GQp stable line in Vg. If g is regular at p, i.e., the characteristic polynomial x2 −
ap(g)x+χg(p) = (x−αg)(x−βg) has distinct roots, then there are exactly two distinct
such p-deformation data, corresponding to a choice of αg or βg.

The terminology is justified by the fact that the choice of a p-adic deformation datum for g
determines a Hida family specialising to a suitable p-stabilisation of g in weight one. When
g = E1(χ1, χ2) is an Eisenstein series, the Hida families attached to the deformation data χ1

and χ2 are just

gχ1 = Ek(χ1, χ2), gχ2 = Ek(χ2, χ1),

which satisfy

ap(gχ1) = χ1(p), ap(gχ2) = χ2(p).

If g is cuspidal but regular at p, i.e., if αg 6= βg, then the Hida families attached to the
deformation data αg and βg, denoted gα and gβ respectively, have weight one specialisations
equal to gα and gβ, where

ap(gα) = αg, ap(gβ) = βg.

Under the regularity assumption, a theorem of Bellaiche and Dimitrov guarantees that the
Hida families gα and gβ are uniquely determined by these conditions.

On the Galois side, the choice of a pair of p-adic deformation data αg and αh for g and
h determines a decomposition of the Galois representations Vg and Vh into a direct sum of
one-dimensional spaces

Vg = V α
g ⊕ V β

g , Vh = V α
h ⊕ V

β
h ,

leading to a decomposition

Vgh = (V α
g ⊗ V α

h )⊕ · · · ⊕ (V β
g ⊗ V

β
h ) =: V αα

gh ⊕ · · · ⊕ V
ββ
gh

of the tensor product Vgh into GQ (resp. GQp)-stable one-dimensional subspaces when g is
Eisenstein (resp. cuspidal). This choice of deformation data also determines a canonical two-
dimensional subspace of Vgh by the rule

V
αg ,αh
gh := V αα

gh ⊕ V
ββ
gh .

Note that the p-stabilised eigenforms gα and hα play symmetrical roles in the definition of this
subspace, which differs from the two-dimensional subspaces denoted V gα

gh and V
gβ
gh in [DLR1].

Recall that all of the Artin representations above are viewed as Qp vector spaces but come
equipped with natural GQ-stable L-rational structures, denoted LVg, LVh, LVgh, LV

αg ,αh
gh , etc.,

where L is a finite extension of Q large enough to contain the eigenvalues of all the elements
in the images of %g and %h. If dimL homGQ(LVgh, E(H)) = 2, let (P,Q) denote an L-basis for

this vector space, and let (v1, v2) be an L-basis for LV
αg ,αh
gh . The matrix

Rgα,hα(E, %gh) :=

(
logE,p(P (v1)) logE,p(P (v2))
logE,p(Q(v1)) logE,p(Q(v2))

)
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depends on the choice of basis (P,Q) (resp. (v1, v2)) only up to multiplication on the left
(resp. right) by an element of GL2(L), and hence the p-adic number detRgα,hα(E, %gh) is
well-defined up to L×.

Definition 2.1. The matrix Rgα,hα(E, %gh) is called the Perrin-Riou matrix, and its deter-
minant is called the Perrin-Riou regulator, associated to the triple (f, gα, hα).

We will now give an explicit description of the Perrin-Riou regulator in various arithmeti-
cally interesting scenarios.

2.1. The case where g and h are Eisenstein series. This corresponds exactly to the case
that was studied in depth by Kato and Perrin-Riou. By possibly twisting g and h, we can
assume without loss of generality that

g = E1(χ1, χ2), h = E1(1, χ), where χ1χ2χ = 1,

and χ is an odd character, so that in particular χ 6= 1 and χ1 6= χ2. It follows that both
g and h each admit two distinct deformation data, corresponding to the choice of ordering
between the pairs of distinct characters corresponding to E1(χ1, χ2) and E1(1, χ). The Artin
representations attached to g and h are given by

Vg = χ1 ⊕ χ2, Vh = 1⊕ χ, Vgh = χ1 ⊕ χ̄1 ⊕ χ2 ⊕ χ̄2.

In particular, the subspaces of Vgh attached to the various choices of deformation data for g
and h are equal to

V χ1,1
gh = V χ2,χ

gh = χ1 ⊕ χ̄1, V χ1,χ
gh = V χ2,1

gh = χ2 ⊕ χ̄2.

Since
L(E, Vgh, s) = L(E,χ1, s) · L(E, χ̄1, s) · L(E,χ2, s) · L(E, χ̄2, s),

the L-function of L(E, Vgh, s) admits a double zero if and only if, after eventually interchanging
χ1 and χ2, one has

ords=1L(E,χ1, s) = ords=1L(E, χ̄1, s) = 1, L(E,χ2, 1) 6= 0, L(E, χ̄2, 1) 6= 0.

In that case, the Birch and Swinnerton Dyer conjecture predicts that the χ1 and χ̄1 isotypic
components of the Mordell-Weil group of E are of rank one, and spanned by points

Pχ1 ∈ (E(H)⊗ L)χ1 , Pχ̄1 ∈ (E(H)⊗ L)χ̄1 .

When χ1 = χ̄1, i.e., when χ1 is quadratic, the existence of Pχ1 = Pχ̄1 is known and follows
from the Gross-Zagier formula, while the existence of Pχ1 is considerably more mysterious
when χ1 6= χ̄1. In any case, the Perrin-Riou regulators in this scenario are given by:

Rgχ1 ,h1(E, %gh) = Rgχ2 ,hχ
(E, %gh) = logE,p(Pχ1) logE,p(Pχ̄1),

Rgχ2 ,h1(E, %gh) = Rgχ1 ,hχ
(E, %gh) = 0.

In this setting, Conjecture 3.2 corresponds to the original conjecture of Perrin-Riou [PR93].
Note that when χ1 is quadratic, the Perrin-Riou regulator is the square of the formal group
logarithm of a global point on E defined over the quadratic field cut out by this character.

2.2. The case where g is cuspidal and h is Eisenstein. We can then assume, without
loss of generality, that h = E(1, χ−1), where χ is the nebentypus character of g. One then has

Vgh = Vg ⊕ V ∗g .
After setting

αh = 1, βh = χ−1(p) = (αgβg)
−1,

one finds
αgαh = αg, βgβh = α−1

g , αgβh = β−1
g , βgαh = βg.

From this one readily obtains
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V
αg ,1
gh = V

αg
g (V ∗g )ᾱg , V

βg ,1
gh = V

βg
g (V ∗g )β̄g .

Since

L(E, Vgh, s) = L(E, Vg, s) · L(E, V ∗g , s),

the L-function of L(E, Vgh, s) admits a double zero if and only if

ords=1L(E, Vg, s) = ords=1L(E, V ∗g , s) = 1.

This is harmonious with the fact that the Perrin-Riou regulator always vanishes if r(E, Vg) > 1
or r(E, V ∗g ) > 1. Otherwise, the Vg and V ∗g isotypic components of the Mordell-Weil group of
E are of dimension one, spanned by elements

Pg ∈ hom(Vg, E(H)⊗ L)GQ , P ∗g ∈ hom(V ∗g , E(H)⊗ L)χ̄1GQ .

The Perrin-Riou regulators is then given by

Rgα,h1(E, %gh) = Rgβ ,hχ̄(E, %gh) = logE,p(Pg(vα)) logE,p(P
∗
g (vᾱ)),

Rgβ ,h1(E, %gh) = Rgα,hχ̄(E, %gh) = logE,p(Pg(vβ)) logE,p(P
∗
g (vβ̄)).

When g is the theta series attached to a ring class character of an imaginary quadratic field,
the global points arising in the Perrin-Riou regulator can be constructed from Heegner points
on modular or Shimura curves. In all other cases, no geometric construction of Pg and P ∗g
seems readily available.

2.3. The adjoint case. This heading alludes to the setting where h = g∗ is the dual of g.
One can then order the frobenius eigenvalues (αh, βh) in such a way that

αh = α−1
g , βh = β−1

g .

The Artin representation attached to g and h is then equal to

Vgh = 1⊕Ad(g),

where Ad(g) denotes the three-dimensional space of trace zero endomorphisms of Vg endowed
with the usual action of GQ. The subspaces of Vgh attached to the various choices of defor-
mation data for g and h are equal to

V
αg ,αh
gh = V

βg ,βh
gh = 1⊕Ad(g)ϕ=1, V

αg ,βh
gh = V

βg ,αh
gh = Ad(g)ϕ=αg/βg ⊕Ad(g)ϕ=βg/αg .

The decomposition of Vgh implies that

L(E, Vgh, s) = L(E, s) · L(E,Ad(g), s).

In particular, the L-function of L(E, Vgh, s) admits a double zero at the center if and only if

(ords=1L(E, s), ords=1L(E,Ad(g), s)) = (2, 0), (1, 1), or (0, 2).

We discuss these cases in turn.

Case 1: ords=1L(E, s) = 2 and L(E,Ad(g), 1) 6= 0.
The Birch and Swinnerton Dyer conjecture predicts that E(Q) has rank two and that the
Ad(g)-isotypic components of the Mordell-Weil group of E is trivial. In this case one always
has

Rgα,hα(E, %gh) = Rgβ ,hβ (E, %gh) = Rgα,hβ (E, %gh) = Rgβ ,hα(E, %gh) = 0.

Case 2: ords=1L(E, s) = ords=1L(E,Ad(g), s) = 1.
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Both E(Q)⊗L and hom(Ad(g), E(H)⊗L)GQ are then expected to be of dimension one over
L. Let P and Pg denote generators of these L-vector spaces. One then has, up to scalars in
L×,

Rgα,hα(E, %gh) = Rgβ ,hβ (E, %gh) = logE,p(P ) logE,p(Pg(v1)),

Rgα,hβ (E, %gh) = Rgβ ,hα(E, %gh) = 0.

Case 3: L(E, 1) 6= 0 and ords=1L(E,Ad(g), s) = 2.
It is then expected that E(Q) has rank zero while hom(Ad(g), E(H)⊗L)GQ is a two-dimensional
vector space; let (Pg, Qg) be a basis for the latter, and let vα/β and vβ/α be vectors of Ad(g)
on which the frobenius element acts with the eigenvalue αg/βg and βg/αg respectively. Up to
scalars in L×, one finds in this case

Rgα,hα(E, %gh) = Rgβ ,hβ (E, %gh) = 0. (5)

The regulators Rgα,hβ (E, %gh) and Rgβ ,hα(E, %gh) are more interesting, and are both equal to

logE,p(Pg(vα/β)) logE,p(Qg(vβ/α))− logE,p(Pg(vβ/α)) logE,p(Qg(vα/β)).

This represents the simplest instance where the Perrin-Riou regulator is “not factorable”, i.e.,
is not simply a product of logarithms of global points on E.

2.4. The dihedral case. Let K be a real or imaginary quadratic field and suppose that g
and h are the Hecke theta series attached to finite order characters ψg and ψh of GK . When
K is real, it is therefore assumed that ψg and ψh are of mixed signature, so that the induced
Artin representations are odd and the associated theta series are holomorphic. Let

ψ1 := ψgψh, ψ2 := ψgψ
′
h,

where ψ′h denotes the character of K obtained by viewing ψh as an idéle class character
and pre-composing it with the Galois involution on K. The running assumption that the
nebentype characters of g and h are inverses of each other implies that both ψ1 and ψ2 are
ring class characters, i.e.,

ψ′1 = ψ−1
1 , ψ′2 = ψ−1

2 .

The Artin representation Vgh then decomposes as

Vgh = V1 ⊕ V2, V1 := IndQ
K(ψ1), V2 := IndQ

K(ψ2).

The discussion can now be broken up into two cases:

Case 1. The prime p is inert in K. There is a root of unity ξ for which (after eventually
re-ordering (αg, βg) and (αh, βh) appropriately),

αg = ξ, βg = −ξ, αh = ξ−1, βh = −ξ−1.

The subspaces of Vgh attached to the various choices of deformation data for g and h are equal
to

V
αg ,αh
gh = V

βg ,βh
gh = V +

1 ⊕ V
+

2 ,

V
αg ,βh
gh = V

βg ,αh
gh = V −1 ⊕ V

−
2 ,

where the superscripts of + and − denote the 1 and −1 eigenspaces respectively for the
action of the frobenius element at p. One finds that the Perrin-Riou regulators are non-zero
if and only if r(E, V1) = r(E, V2) = 1, and one then has, after letting P1 and P2 be L-vector
space generators of hom(V1, E(H)⊗L)GQ and hom(V2, E(H)⊗L)GQ respectively, and letting
(v+

1 , v
−
1 ) be a frobenius eigenbasis for V1, and likewise (v+

2 , v
−
2 ) an eigenbasis for V2:

Rgα,hα(E, %gh) = Rgβ ,hβ (E, %gh) = logE,p(P1(v+
1 )) logE,p(P2(v+

2 )),

Rgα,hβ (E, %gh) = Rgβ ,hα(E, %gh) = logE,p(P1(v−1 )) logE,p(P2(v−2 )).
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Case 2. The prime p is split in K. After eventually re-ordering (αg, βg) and (αh, βh), we may
assume without loss of generality that the frobenius element at p acts on V1 with eigenvalues

α1 = αgαh, β1 = βgβh,

and on V2 with eigenvalues
α2 = αgβh, β2 = βgαh.

The subspaces of Vgh attached to the various choices of deformation data for g and h are equal
to

V
αg ,αh
gh = V

βg ,βh
gh = V1,

V
αg ,βh
gh = V

βg ,αh
gh = V2.

One then finds that the first Perrin-Riou regulator attached to the deformation data (αg, αh)
is non-zero if and only if r(E, V1) = 2 and r(E, V2) = 0. After letting (P1, Q1) be a basis for
the vector space hom(V1, E(H)⊗ L)GQ , and letting (v, w) be a basis for V1, one then has

Rgα,hα(E, %gh) = Rgβ ,hβ (E, %gh) = logE,p(P1(v)) logE,p(Q1(w))− logE,p(P1(w)) logE,p(Q1(v)).

The discussion is exactly the same for the Perrin-Riou regulator attached to the deformation
data (αg, βh), but with the roles of V1 and V2 interchanged.

3. The main conjecture

We begin by proving that the value Lp(f, ğ, h̆) belongs to a specific translate of the Hodge
filtration in H1

dR(X0(N)), and also that its non-vanishing is directly related to that of the
central critical value L(f ⊗ g ⊗ h, 1) = L(E, Vgh, 1). Let ϕ denote the cristalline frobenius
acting on H1

dR(X0(N))[f ], and set

E(g, h;x) = (1− αgαh · x)× (1− αgβh · x)× (1− βgαh · x)× (1− βgβh · x).

The operator E(g, h;ϕ) acts invertibly on H1
dR(X0(N)), since the eigenvalues of ϕ have com-

plex absolute value
√
p while the zeroes of E(g, h, x) are roots of unity.

Theorem 3.1. Let Lp(f, ğ, h̆) ∈ H1
dR(X0(N)) be the class attached to the triple (f, ğ, h̆).

Then
(1− ϕ2)

E(g, h;ϕ)
Lp(f, ğ, h̆) belongs to Fil1H1

dR(X0(N))[f ] = Ω1(X0(N))[f ]. (6)

It vanishes for all choices (ğ, h̆) of test vectors if and only if L(E, Vgh, 1) = 0.

Proof. The class Lp(f, ğ, h̆) is the image of the class in H1
dR(X0(N)) represented by the weight

two overconvergent modular form ğ[p]h̆. The case (k, `,m) = (2, 1, 1) of [DRa, Cor. 4.13] shows
that, after applying the ordinary projection,

ef∗(ğ[p] × h̆) =
E(g, h, ϕ)

(1− ϕ2)
ef∗(ğ × h̆).

The very same identity holds on the slope one subspace of H1
dR(X0(N))[f ], hence it is true on

all of H1
dR(X0(N))[f ]: this follows from the same calculation as was used to deduce Cor. 4.13

of loc.cit. The assertion (6) now follows from the fact that ğh̆ is a holomorphic modular
form of weight two on X0(N), hence represents a regular differential, whose class in de Rham
cohomology belongs to Fil1H1

dR(X0(N))[f ]. The second assertion follows from the main result
of [HK] relating the non-vanishing of the central critical value L(f ⊗ g ⊗ h, 1) to that of an
invariant trilinear form on the tensor product of the automorphic representations associated
to f , g and h. �

Recall that Kgh is the field generated by the fourier coefficients of g and h, viewed as a
subfield of Q̄p after fixing a p-adic embedding.
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Conjecture 3.2. Assume that Lp(f, ğ, h̆) = 0 for all pairs (ğ, h̆), i.e., that L(E, Vgh, 1) = 0.

If r(E, Vgh) > 2, then the first derivative L ′
p(f, ğ, h̆) vanishes as well. Otherwise, for all ωf̆

in Ω1(X0(N)/Q),〈
(1− ϕ2)

E(g, h;ϕ)
L ′
p(f, ğ, h̆), ωf̆

〉
belongs to Reggα,hα(E)Kgh,

where Reggα,hα(E) is the Perrin-Riou regulator of Definition 2.1 and 〈 , 〉 denotes the Poincaré

pairing on H1
dR(X0(N)).

So far, Conjecture 3.2 remains open in all but a very few instances. The case where g and h
are Eisenstein series corresponds to the conjecture of [PR93], and was proved in [BDV] when
g and h are associated to quadratic characters.

When g and h are theta series attached to the same imaginary quadratic field, the global
points that enter into the Perrin-Riou regulator can be expressed in terms of Heegner points,
and Conjecture 3.2 might be amenable to an attack via the techniques of [DLR1] .

When g and h are theta series of the same real quadratic field, the points that enter into
the Perrin-Riou regulator can be expressed in terms of Stark-Heegner points defined over ring
class fields of real quadratic fields. It would thus be of great interest to relate the quantity
L ′
p(f, ğ, h̆) of Conjecture 3.2 to Stark-Heegner points. This raises a significant challenge,

given that E has good rather than multiplicative reduction at the prime p of Conjecture 3.2.
All other scenarios lie tantalizingly beyond the reach of the limited repertoire of techniques

currently at our disposal for constructing global points on elliptic curves, and for these cases
we must largely content ourselves with numerical evidence, some of which is summarised in
the next section.

4. Numerical evidence

This section presents numerical evidence which illustrates and supports Conjecture 3.2. As
in [DLR1] all the computations decribed in this section were done using the Magma computer
algebra system, and the authors are deeply grateful to those who develop and support it.

The experiments here were more difficult than those in [DLR1]. This is in part because here
we consider a derivative of a p-adic L-series rather than the value taken by one. One must
appreciate also though that the experimental range is limited to rather small tame levels, but
in [DLR1] we were free to take p dividing the conductor of the elliptic curve, and it turned
out that many of the most interesting examples found were of this type [DLR1, Examples
3.14, 3.15, 5.3, 5.4 (curves 26b, 52b), 5.5, 5.6 (curves 629a, 629d), 7.1, 7.2]. (Note there are
two typographical errors in the table in [DLR1, Appendix A], the levels for Examples 3.14
and 3.15 being 69 and 161 and not as stated 57 and 35, respectively.) In the current paper
we insist that the elliptic curve has good reduction at p, and so we could not revisit this rich
vein of examples (it would be interesting to relax this condition though).

As a result we are not able to present such an impressive panoply of examples as in [DLR1].
Note though that the experimental work in this paper has played a rather different role. The
elliptic Stark conjecture of [DLR1] was arrived at after several years of experimental work and
theoretical calculation, and the detailed experimental investigation of many different cases was
key to its eventual formulation. By contrast, the conjecture in the present paper was derived
largely by pure thought, guided by a little experimentation, taking as a starting point the
elliptic Stark conjecture and its strengthening in [DRc] and also the conjecture of Perrin-Riou
(proved in [BDV]). So here the experiments played a supporting rather than leading part.

We first recall some notations. We define

E1(fα) = (1− αf−2)
E(fα, g, h) = (1− α−1

f αgαh)(1− α−1
f αgβh)(1− α−1

f βgαh)(1− β−1
f βgβh).
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Here x2 − ap(f)x+ p = (x− αf )(x− βf ) with αf the unit root. Likewise

x2 − ap(g)x+ χg(p) = (x− αg)(x− βg), x2 − ap(h)x+ χh(p) = (x− αh)(x− βh)

where χh = χ−1
g . We define E1(fβ) and E(fβ, g, h) in the same way but replacing αf by βf .

The precise incarnation of the elliptic Stark conjecture in this setting asserts that

E1(fα)

E(fα, g, h)
· βf · `α +

E1(fβ)

E(fβ, g, h)
· αf · `β =

Rαα,ββ(E, %gh)

[ωE , φ(ωE)]
.

Here `α and `β are defined via the equation

`α · fα + `β · fβ =
∂

∂k

(
ef

(
d1−k (gk) · h

[p]
k

))∣∣∣∣
k=1

where g is the Hida family through gα and h that through hα. Note these Hida families are
unique in the examples considered (except for the case of an Eisenstein series E1(1, χ) with
χ(p) = 1 when there are two Eisenstein families and also a CM-family meeting in weight one).

The values `α and `β were found numerically using an extension of the methods in [La].
The computation of `β was greatly facilitated by a beautiful observation of David Loeffler on
computing higher slope projections of overconvergent modular forms. See the final sentence
of [LSZ, Section 6.3].

The period [ωE , φ(ωE)] can be computed by using Kedlaya’s algorithm [K]. Namely, relative
to a suitable Weierstrass model for E, the regular differential ωE is equal to dx/y and Kedlaya’s
algorithm allows the calculation of

φ(dx/y) ≡ adx/y + bxdx/y

in de Rham cohomology, and from this one obtains [ωE , φ(ωE)] = b, since [dx/y, dx/y] = 0
and [dx/y, xdx/y] = 1.

In all of the numerical examples we considered, the Perrin-Riou regulator is “factorisable”
(in the language [DLR1, Introduction]) and

Rαα,ββ(E, %gh) = logE,p(P ) · logE,p(Q)

for points P and Q in the αgαh and βgβh eigenspace, respectively, for Frobenius on E(H)⊗Vgh.

4.1. CM forms and points over class fields of imaginary quadratic fields. The first
examples involve CM forms, cuspidal and Eisenstein, and both primes which are split and
primes which are inert in the associated imaginary quadratic field. Note that even in this
setting the case of inert primes is still well beyond what might be reached in theory with
current techniques. (For CM forms and an inert prime even the attached Hida families are
less well understood, but see [DLR4] for some relevant results in this direction.)

We start with CM Eisenstein series, examples with both split and inert primes, including
an inert prime for which the elliptic curve is supersingular rather than ordinary.

Example 4.1. Let χ be the (odd) quadratic character of conductor 43. Take g = h = E1(1, χ)
and let g = h = E(1, χ) be the Eisenstein family with characters 1 and χ. Note that under
the running convention on Eisenstein series the family E(1, χ) specialises in weight one to the
stabilisation E1(1, χ)χ(p) and so α = χ(p) and β = 1.

We have Vgh = Q ⊕ Q ⊕ Q(χ) ⊕ Q(χ). With E the curve 43a one finds ran(E) = 1 and
ran(E,χ) = 0, with E(Q) generated by P = (0,−1). Let f be the weight two newform
attached to E.

First take p = 5 which is inert in K and so χ(p) = −1. We find that

`α = 305438082056138881787518872050321 mod 550

`β = 1715988771080506290273997704982059 mod 545.
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To 47-digits of 5-adic precision we have

E1(fα)

E(fα, g, h)
· βf · `α +

E1(fβ)

E(fβ, g, h)
· αf · `β = 2 · p ·

logE,p(P )2

[ωE , φ(ωE)]
. (7)

Next take p = 11, which is split in K and so χ(p) = 1. Then we find

`α = 36848669019657864060052031 mod 1125

`β = 2137235593546798625453411 mod 1119,

and in fact (7) holds again to 21-digits of 11-adic precision.
Finally consider p = 7, which is inert in K. Here the curve E is supersingular at p and so

we do not have distinguished slope 0 and 1 stabilisations of f , but rather two stabilisations
of slope 1

2 which we may arbitrarily label fα and fβ. Observe that the lefthand side of the
formula above is in actual fact symmetric in α and β. We compute

`α = (66000633276731936105293
√
−7 + 652578133435989411694779) · 7 mod 728

`β = (−66000633276731936105293
√
−7 + 652578133435989411694779) · 7 mod 728.

To 28 digits of 7-adic precision we find now

E1(fα)

E(fα, g, h)
· βf · `α +

E1(fβ)

E(fβ, g, h)
· αf · `β =

1

2
·

logE,p(P )2

[ωE , φ(ωE)]
.

The next example involves a cuspidal form with projective image S3 and split prime.

Example 4.2. Let χ be the (odd) quadratic character of conductor 83. We take g ∈ S1(83, χ)
and h = E1(1, χ). Let K = Q(

√
−83) and H be the Hilbert class field of K, and write

Gal (H/K) = 〈σ〉. Then g is the theta series θψg where ψg is a cubic character of Gal (H/K).
The representation ρg is equal to the induced representation Vψg , and Vgh = Vψg ⊕ Vψg . Here
Vψg is an L-vector space with L = Q(ζ3).

Let E be the elliptic curve labelled 83a and f the attached newform. The representation
Vψg occurs in the Mordell-Weil group of E with multiplicity 1. Precisely, the Vψg component
of the Mordell-Weil group has as an L-basis P and σ(P ), where,

P = (t,−t2 − 2) ∈ E(H) with t3 − t2 + t− 2 = 0

is the Heegner point in E(H).
Let p = 7, which splits in K. We have αg = ζ3, βg = ζ2

3 , αh = χ(p) = 1 and βh = 1. Define

P ζ3
ψg

= P + ζ2
3 · σ(P ) + ζ3 · σ2(P ), P

ζ2
3

ψg
= P + ζ3 · σ(P ) + ζ2

3 · σ2(P ).

We find
`α = 86690077598577919513256847 · 72 mod 735

`β = 111304939462498464367895297 mod 729

and

E1(fα)

E(fα, g, h)
· βf · `α +

E1(fβ)

E(fβ, g, h)
· αf · `β = −p ·

logE,p(P
ζ3
ψg

) logE,p(P
ζ2
3

ψg
)

16[ωE , φ(ωE)]

to 31-digits of 7-adic precision, as predicted.
Let us now take f and g as before with p = 7, but instead h = g. We now have

Vgh = Vψg ⊕Q(χ)⊕Q
occurring in the Mordell-Weil group of E with ranks 1, 0, 1. Here one may choose stabilisations
in two essentially different ways, so that

(αg · αh, βg · βh) = (ζ2
3 , ζ3) or (1, 1).

However, Vψg does not have 1 as a frobenius eigenvalue, and likewise the trivial representation

does not have either ζ3 or ζ2
3 . So under both choices of stabilisations the regulator vanishes.
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Experimentally one observes that in both cases each of the coefficients `α and `β vanishes
numerically, which is consistent with Conjecture 3.2.

4.2. Points over real quadratic fields. Weight one forms whose associated representations
are induced from characters of a real quadratic field but no imaginary quadratic field are rather
rare in small level. The smallest level is 145, where one finds two (up to Galois conjuguate)
distinct forms, which have projective image D8. In [DLR1, Example 4.1] we consider one of
these, and the elliptic curve 17a with prime p = 17; here the ranks of the appropriate parts
of the Mordell-Weil group are favourable to test Conjecture 3.2, and all computations can be
done in tame level 145. In the current setting though we require a prime of good reduction,
and so this example is not appropriate. Unfortunately there are no suitable examples with D8

forms within computational reach. The next example instead has D4 projective image; here
the representation is induced from a character of a real quadratic field, but also two imaginary
quadratic fields (so it would have been equally at home in the preceding section c.f. [DLR1,
Example 4.3]).

Example 4.3. Let χ39 = χ3 · χ13 be the (odd) quadratic character of conductor 39. The
space S1(39, χ39) is one dimensional and spanned by the eigenform

g = q − q3 − q4 + q9 + q12 − q13 + · · · .

The representation %g is induced from characters of Q(
√

13), Q(
√
−3) and Q(

√
−39). Letting

h = g we find that

Vgh = Q⊕Q(χ13)⊕Q(χ3)⊕Q(χ39).

The curve

E : y2 + xy = x3 + x2 − 4x− 5,

labelled 39a in Cremona’s tables, has

ranks 0, 1, 1, 0 over the fields Q, Q(
√

13),Q(
√
−3), Q(

√
−39), respectively.

Let p = 5. Note this prime is inert in the real quadratic field Q(
√

13) (the case of split
primes is exceptional, see [DLR3] for a discussion of that setting). We have Hecke polynomial
x2 − a5(g)x + χ(5) = x2 + 1, and we take αg = i and βg = −i. Since h = g we may choose
stabilisations in two essentially different manners, so that either

(αg · αh, βg · βh) = (−1,−1) or (+1,+1).

Observe 5 is inert in Q(
√
−3) and split in Q(

√
−39). So with the latter “(+1,+1) choice” of

stabilisations an inspection of the Mordell-Weil ranks shows the regulator is zero. A numerical
computation of the Perrin-Riou derivative in that setting shows also the values `α and `β
vanish.

The more interesting “(−1,−1) choice” of stabilisation yields the following. We take points

P13 = (11, (−21
√

13− 11)/2) and P3 = (−7/3, (−13
√
−3 + 21)/18)

which lie in E(Q(
√

13)) and E(Q(
√
−3)), in the (−1)-eigenspace for frobenius in each case.

Numerically we find

`α = −17718319807076452060224057682 mod 540

`β = −819594150830239792388179918 mod 535

and
E1(fα)

E(fα, g, h)
· βf · `α +

E1(fβ)

E(fβ, g, h)
· αf · `β =

i

8
· p ·

logE,p(P13) logE,p(P3)

[ωE , φ(ωE)]

to 35-digits of 5-adic precision, as predicted.
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4.3. Points over cyclotomic fields. The next example involves (non-CM) Eisenstein series
and points over cyclotomic fields. Note again that the two cyclotomic field examples in
[DLR1, Examples 7.1 and 7.2] were not suitable because the elliptic curves in those examples
had multiplicative reduction at the prime p. Here the authors were rather fortunate to find
another example in which the curve does have good reduction. (In this example we include
some additional details which we suppressed in earlier ones, to avoid boring the reader.)

Example 4.4. Let χ be the (odd) quadratic character of conductor 11, and ε an (even) cubic
character of conductor 9. Let

f = q + q2 − q4 + 4q5 − 2q7 − 3q8 + 4q10 + q11 + · · ·
be the weight 2 newform attached to the elliptic curve

E : y2 + xy = x3 − x2 − 15x+ 8

labelled 99c in Cremona’s tables. Taking p = 7 we see that f is ordinary at p and the Hecke
polynomial x2 − ap(f)x + p = (x − αf )(x − βf ) has distinct roots αf , βf ∈ Q7, with αf of
valuation zero. We denote by

fαf = f(q)− βff(qp), fβf = f(q)− αff(qp)

the ordinary and slope 1 stabilisations, respectively, and define `α and `β by

`α · fαf + `β · fβf =
∂

∂k

(
ef

(
d1−k (Ek(1, χ · ε)) · Ek(ε, χ)[p]

))∣∣∣∣
k=1

.

Let ε(2) = ζ6 − 1 and embed Q(ε) into Q7 by sending ζ6 to the 6th root of unit congruent to
3 modulo 7. Then with this embedding one computes

`α = −95094724917386055830477214505 · 72 mod 735

`β = 20650895244292830822547546879 mod 731.

With g = E1(1, χ · ε) and h = E1(ε, χ) one has

Vgh = ε⊕ χ⊕ χ⊕ ε
and one finds that

ran(E,χ) = 0, ran(E, ε) = ran(E, ε) = 1

and likewise for algebraic ranks. The cyclic cubic field attached to the character ε is

K = Q(a), a3 − 3a− 1 = 0

and the Mordell-Weil group of E over K is generated as a Gal (K/Q)-module by

P = (3a2 − 6a− 2, 12a2 − 15a− 8).

Define

Pε = P + ζ3 · σ(P ) + ζ2
3 · σ2(P ), Pε = P + ζ2

3 · σ(P ) + ζ3 · σ2(P )

where ζ3 = ζ6 − 1 and Gal (K/Q) = 〈σ〉. Testing Conjecture 3.2 also requires the numerical
calculation of

[ωE , φ(ωE)] = −444479194329457437073608360237027 · 7 mod 740.

Then with the notation for Euler factors defined earlier in the paper one finds that

E1(fα)

E(fα, g, h)
· βf · `α +

E1(fβ)

E(fβ, g, h)
· αf · `β =

1

12
· (−ζ6 + 2) · p ·

logE,7(Pε) logE,7(Pε)

[ωE , φ(ωE)]

to 32 digits of 7-adic precision.
Note here that χ(7) = −1 and ε(7) = ζ6 − 1, and so in the setting of [DLR1] the 7-adic

iterated integral attached to the triple (f, g, h) would in fact have vanished.
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