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Abstract
We compute the diagonal restriction of the first derivative with respect to the weight
of a p-adic family of Hilbert modular Eisenstein series attached to a general (odd)
character of the narrow class group of a real quadratic field, and express the Fourier
coefficients of its ordinary projection in terms of the values of a distinguished rigid
analytic cocycle in the sense of Darmon and Vonk (Duke Math J, to appear, 2020)
at appropriate real quadratic points of Drinfeld’s p-adic upper half-plane. This can
be viewed as the p-adic counterpart of a seminal calculation of Gross and Zagier (J
Reine Angew Math 355:191–220, 1985, §7) which arose in their “analytic proof” of
the factorisation of differences of singular moduli, and whose inspiration can be traced
to Siegel’s proof of the rationality of the values at negative integers of the Dedekind
zeta function of a totally real field. Our main identity enriches the dictionary between
the classical theory of complex multiplication and its extension to real quadratic fields
based on RM values of rigid meromorphic cocycles, and leads to an expression for
the p-adic logarithms of Gross–Stark units and Stark–Heegner points in terms of the
first derivatives of certain twisted Rankin triple product p-adic L-functions.
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Introduction

In their influential work on singular moduli [17, §7], Gross and Zagier consider the
diagonal restriction of a family, indexed by a complex parameter s, of non-holomorphic
Hilbert modular Eisenstein series of parallel weight one attached to an odd genus
character ψ of a real quadratic field. Since this family vanishes identically at s = 0,
it becomes natural to study its first derivative, a real analytic modular form of weight
two on SL2(Z). The vanishing of its holomorphic projection is used to calculate the
arithmetic intersections of singular moduli attached to the two imaginary quadratic
subfields of the biquadratic field cut out by ψ . The derivative of the non-holomorphic
Eisenstein family provides a simple but illustrative instance of the Kudla program,
a framework that seeks similar modular generating series for the topological and
arithmetic intersections of a broader class of special cycles on Shimura varieties.

The present work transposes the calculation of Gross and Zagier to a p-adic setting
by studying the diagonal restriction of the first derivative with respect to the weight
of a p-adic family of Hilbert modular Eisenstein series attached to a general (odd)
character of the narrow class group of a real quadratic field. The Fourier coefficients
of its ordinary projection are expressed in terms of the values of a distinguished
rigid analytic cocycle at appropriate “real multiplication points” of Drinfeld’s p-adic
upper half-plane. Such RM values are related to a panoply of invariants defined (con-
jecturally) over ring class fields of real quadratic fields, notably, the Stark–Heegner
points of [4], the Gross–Stark units of [5], and the real quadratic singular moduli of
[10]. Our main identity enriches the analogy between the classical theory of complex
multiplication and its extension to real quadratic fields based on the RMvalues of rigid
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Diagonal restrictions of p-adic Eisenstein families 505

meromorphic cocycles. It also leads to a new expression for the p-adic logarithms of
Gross–Stark units and Stark–Heegner points in terms of the first derivatives of certain
twisted Rankin triple product p-adic L-functions.

Let F be a real quadratic field of discriminant D > 0, and let H denote its Hilbert
class field in the narrow sense. The narrow class group Cl+(D) = Gal (H/F) of F
is endowed with a canonical element c of order 1 or 2 represented by the class of the
principal ideal (α), where α ∈ F× is an element of negative norm, which corresponds
to the complex conjugation in Gal (H/F). Given C ∈ Cl+(D), write C∗ := c · C. A
function ψ on Cl+(D) is said to be odd if it satisfies ψ(C∗) = −ψ(C).

Assume from now on that ψ is such an odd function on Cl+(D). For each k ≥ 1,
it gives rise to a holomorphic Eisenstein series of (odd) parallel weight k on the full
Hilbert modular group SL2(OF ), whose Fourier expansion for k > 1 is given by

Ek(1, ψ)(z1, z2) := L(F, ψ, 1 − k) + 4
∑

ν∈d−1+

σk−1,ψ (νd) exp(2π i(ν1z1 + ν2z2)),

(1)
where

L(F, ψ, s) =
∑

I�OF

ψ(I )Nm(I )−s, (Re(s) > 1) (2)

is the zeta-function attached toψ , the index set d−1+ denotes the cone of totally positive
elements in the inverse different of F , and σk−1,ψ is the function

σk−1,ψ (α) :=
∑

I |(α)

ψ(I )Nm(I )k−1, (3)

the sum being taken over all the integral ideals I of OF that divide (α).
Let p be a rational prime. The p-stabilisation of Ek(1, ψ) has Fourier expansion

given by

E (p)
k (1, ψ) := L(p)(F, ψ, 1− k) + 4

∑

ν∈d−1+

σ
(p)
k−1,ψ (νd) exp(2π i(ν1z1 + ν2z2)), (4)

where L(p)(F, ψ, s) and σ
(p)
k−1,ψ (α) are obtained from L(F, ψ, s) and σk−1,ψ (α)

respectively by restricting the sums arising in their definitions to the ideals whose
norm are prime to p. The Eisenstein series E (p)

k (1, ψ) is of parallel weight k on the
Hecke congruence group of SL2(OF ) consisting of matrices that are upper triangular
modulo p, and hence its restriction to the diagonalH ⊂ H×H is a classical modular
form of weight 2k on �0(p):

Gk(ψ) := E (p)
k (1, ψ)(τ, τ ) ∈ M2k(�0(p)), for all k ∈ Z

≥1. (5)
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506 H. Darmon et al.

As functions of k, the Fourier coefficients of Gk(ψ) interpolate to analytic (Iwasawa)
functions on weight space

W := hom(Z×
p , Z

×
p ) = Z/(p − 1)Z × Zp.

This can be verified directly for the coefficients ofqn withn ≥ 1, and general principles
first described and exploited by Serre in [26] reveal that this property is inherited by
the constant term L(p)(F, ψ, 1 − k). It can thus be viewed as the value at s = 1 − k
of an analytic function, the p-adic L-function L p(F, ψ, s) attached to ψ1.

Our first theorem—Theorem A below—relates the Fourier expansion of the weight
two specialisation G1(ψ) to Mazur’s winding element, defined as the image

gw ∈ H1(X0(p); {0,∞}, Z)

of the vertical path on the Poincaré upper half plane joining 0 to ∞ in the homology
of X0(p) relative to the cusps.

If p is split in F/Q, then every narrow ideal class of F can be represented by a
primitive binary quadratic form Q(x, y) = Ax2 + Bxy + Cy2 with p|A. Such a form
is called a Heegner form (at p). The set of Heegner forms in a given narrow ideal class
C consists of two �0(p)-orbits of Heegner forms, depending on a square root s of D
modulo p, and determined by the condition B ≡ s (mod p). These orbits are denoted
Cs and C−s respectively. The automorph attached to a Heegner form Q belongs to
�0(p), and its image in the homology H1(Y0(p), Z), denoted gQ , depends only on
the �0(p)-orbit of Q. The two homology classes of Heegner forms in C are denoted
gC,s and gC,−s respectively. Define

gψ =
∑

C∈Cl(D)

ψ−1(C)(gC,s + gC,−s) ∈ H1(Y0(p), Z[ψ]),

where Z[ψ] is the ring generated over Z by the values of ψ .
Let Tk(p) be the algebra of Hecke operators acting faithfully on the space

Mk(�0(p)) of modular forms of weight k on �0(p). It is generated by the Hecke
operators Tn for all n ≥ 1, where Tp is used here to denote what is sometimes referred
to as Up. These operators are described in the standard way in terms of double cosets,
and act naturally on the homology groups H1(X0(p); {0,∞}, Z) and H1(Y0(p), Z),
in a way that is compatible with the intersection pairing

〈 · , · 〉 : H1(X0(p); {0,∞}, Z) × H1(Y0(p), Z) −→ Z. (6)

These structures extend by linearity to the homology groups with coefficients in more
general rings like Z[ψ]. Our first result, which is shown in Sect. 1, is

1 Its restriction to hom(Z×
p , 1 + pZp) is customarily denoted L p(F, ψωp, s) in the literature.
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Diagonal restrictions of p-adic Eisenstein families 507

Theorem A The Fourier expansion of the weight two specialisation G1(ψ) is given
by

G1(ψ) =

⎧
⎪⎪⎨

⎪⎪⎩

L p(F, ψ, 0) − 2
∞∑

n=1

〈gw, Tngψ 〉 qn if
(

D
p

)
= 1,

0 if
(

D
p

)
= −1.

Assume henceforth that
(

D
p

)
= −1. Since the family Gk(ψ) vanishes identically

at k = 1, it can be envisaged as the p-adic counterpart of the families of real analytic
modular forms that arise in [17] and in Kudla’s theory of incoherent Eisenstein series,
as explored, for instance, in [19]. It then becomes natural to consider the first derivative

G ′
1(ψ) := d

dk
Gk(ψ)k=1, (7)

which is shown in Sect. 2.1 to be an overconvergent p-adic modular form of weight
two and tame level one. Its image

G ′
1(ψ)ord := eordG ′

1(ψ) := lim
n→∞ U n!

p G ′
1(ψ) ∈ M2(�0(p)) (8)

under Hida’s ordinary projector, which plays the same role as the holomorphic pro-
jection operator in the work of Gross–Zagier, is a classical form of weight two on
�0(p). Our second objective is to calculate the Fourier coefficients of G ′

1(ψ)ord and
relate them to certain rigid cocycles, whose RM values provide a natural framework
for extending the theory of complex multiplication to real quadratic fields, and whose
definition is now briefly recalled.

LetHp denote Drinfeld’s p-adic upper half plane and letM× be the multiplicative
group of non-zero rigid meromorphic functions onHp, endowed with the translation
action of

� := SL2(Z[1/p])

by Möbius transformations. A rigid meromorphic cocycle is an M×-valued one-
cocycle on�. It is said to be rigid analytic if it takes values in the groupA× of non-zero
rigid analytic functions onHp. The groups of rigidmeromorphic and analytic cocycles
are denoted by H1(�,M×) and H1(�,A×) respectively.

Because H1(�, C
×
p ) is finite, the natural map H1(�,M×) −→ H1(�,M×/C

×
p )

has finite kernel. It is convenient to work with elements of the larger group of cocycles
modulo scalars, which are called theta-cocycles. This terminology is motivated by
the analogy with the theta functions that arise in the p-adic uniformisation theory of
Mumford curves, which are invariant under the translation action of a p-adic Schottky
group, but only up to multiplicative scalars. Although there is a non-trivial obstruction
in H2(�, C

×
p ) to lifting a theta-cocycle J to an element of H1(�,M×), the restriction
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508 H. Darmon et al.

of J to SL2(Z) lifts to an element

J ◦ ∈ H1(SL2(Z),M×)

because of the vanishing of H2(SL2(Z), C
×
p ), and this lift is essentially unique because

the group H1(SL2(Z), C
×
p ) is finite.

A simple example of an analytic theta cocycle is the universal theta-cocycle Juniv,
defined by fixing a base point ξ in P1(Qp) and letting Juniv(γ ) be the (unique, up to
multiplicative scalars) rational function having (γ ξ) − (ξ) as a divisor. This example
is too simple to be of real arithmetic interest, since it takes values in rational functions
rather than in the larger group of rigid analytic functions. But there are other instances,
and in fact the group H1(�,A×/C

×
p ) is intimately related to the space M2(p). Namely,

the group H1(�,M×/C
×
p ) admits an action of the Hecke operators Tn for all n ≥ 1,

described in the standard way in terms of double cosets. This action preserves the
subgroup of analytic theta-cocycles, and its restriction to this subspace factors through
the algebra T2(p). In fact, there is an explicit Hecke-equivariant map

ST× : H1(�0(p), Z) −→ H1(�,A×/C
×
p )/J Z

univ, (9)

described in [11], referred to as the “multiplicative Schneider–Teitelbaum lift”.
A rigid meromorphic cocycle can be evaluated at real multiplication points of

Hp following a recipe that is described in [10]. Namely, a point τ ∈ Hp is said
to be an RM point if F(τ, 1) = 0 for some primitive integral binary quadratic form
F(x, y) = Ax2+ Bxy+Cy2 of positive discriminant, and the discriminant B2−4AC
is also called the discriminant of τ . The RM points are characterised as those in Hp

for which the stabiliser
�[τ ] := Stab�(τ) (10)

of τ in � is an infinite group, of rank one modulo torsion. A generator γτ of �[τ ]
modulo torsion admits the column vector (τ, 1) as an eigenvector, with eigenvalue
a unit ε of F . It can be chosen in a consistent way by fixing a real embedding of
F = Q(τ ) and insisting that ε > 1, which implies that for all ξ ∈ H,

lim
j−→−∞ γ j

τ ξ = τ ′, lim
j−→∞ γ j

τ ξ = τ. (11)

The value of a cocycle J ∈ H1(�,M×) at τ is simply

J [τ ] := J (γτ )(τ ) ∈ Cp ∪ {∞}. (12)

More generally, a theta-cocycle J can also be evaluated at RM points τ whose dis-
criminant is prime to p. Indeed, in this case the automorph γτ belongs to SL2(Z), and
one can simply define

J [τ ] := J ◦(γτ )(τ ) ∈ Cp ∪ {∞}.
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Diagonal restrictions of p-adic Eisenstein families 509

Let HD
p be the set of τ ∈ HRM

p of discriminant D. The theory of composition of
binary quadratic forms identifies the orbit space SL2(Z)\HD

p with the narrow class
group Cl(D), and hence ψ can be viewed as a function on SL2(Z)\HD

p . Let

ψ :=
∑

τ∈SL2(Z)\HD
p

ψ(τ) · τ ∈ Div(SL2(Z)\HD
p ), (13)

be the associated formal degree zero divisor on SL2(Z)\Hp. Because p � D, a theta-
cocycle J can be evaluated at the points of HD

p , and we can set

J [ψ ] :=
∑

SL2(Z)\HD
p

ψ(τ)J [τ ]. (14)

Section 2 introduces the winding cocycle, an explicit theta-cocycle

Jw ∈ H1(�,A×/C
×
p ), (15)

that is related to the winding element gw via

Jw := ST×(gw) (mod J Z

univ),

viewing gw as an element of H1(�0(p), Z) via the intersection pairing. The quantities
Jw[ψ ] belong to F×

p ⊂ C
×
p , where Fp is the completion of F at p, and we may

consider their image under the norm map Nm from F×
p to Q

×
p . From now on, choose

Iwasawa’s branch of the p-adic logarithm

logp : C
×
p −→ Cp (16)

which is trivial on the torsion subgroup of C
×
p as well as on p.

Our second main result is

Theorem B For all fundamental discriminants D > 0, for all primes p that are inert
in F = Q(

√
D), and for all odd functions ψ on Cl(D),

G ′
1(ψ)ord = L ′

p(F, ψ, 0) − 2
∞∑

n=1

logp

(
Nm((Tn Jw)[ψ ])) qn .

Theorems A and B can be used to compute the spectral expansions of the modular
forms G1(ψ) and G ′

1(ψ)ord. To this end, a normalised eigenform f ∈ S2(�0(p))with
Fourier coefficients in a ring O f gives rise to a modular abelian variety quotient A f

of J0(p) with endomorphism ring containing O f , and to a pair of homomorphisms

ϕ̃+
f , ϕ̃−

f ∈ H1(�0(p), C), ϕ̃±
f (γ ) :=

∫

γ

(ω f ± ω̄ f ), ω f := 2π i f (z)dz.
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510 H. Darmon et al.

These classes, which encode the real and imaginary periods of f respectively, can be
rescaled to take values in the the ring O f of Fourier coefficients of f , by choosing
appropriate periods �±

f ∈ C and setting

ϕ+
f := (�+

f )−1ϕ̃+
f , ϕ−

f := (�−
f )−1ϕ̃−

f . (17)

From the latter one obtains a pair of theta-cocycles

J±
f := ST×(ϕ±

f ) ∈
(

H1(�,A×/C
×
p )/J Z

univ

)
⊗ O f ,

which are eigenvectors for the Hecke operators with the same eigenvalues as f . They
are the elliptic modular cocycles described in [11, § 3]. The images of the RM values
J±

f [ψ ] ∈ O×
Fp

under the Tate–Morikawa p-adic uniformisation of A f are the Stark–
Heegner points in A f (Fp) ⊗ O f , conjectured to be defined over suitable ring class
fields of F .

The elliptic cocycles J±
f can be envisaged as the cuspidal counterparts of the

Dedekind–Rademacher cocycle of [11, §3] attached to the periods of the Eisenstein
series of weight two on �0(p) (normalised so that is first Fourier coefficient is 1),
defined by

E (p)
2 (q) = p − 1

24
+
∑

n≥1

σ
(p)
1 (n)qn, E (p)

2 (q)
dq

q
= 1

24
dlog((q p)/(q)).

It is given by
JDR := ST×(ϕDR), (18)

where

ϕDR(γ ) := 24
∫

γ

E (p)
2 (z)dz (19)

is theDedekind–Rademacher homomorphism,whose expression in terms ofDedekind
sums can be found in [23] for example. In the theory of rigid meromorphic cocycles,
the Dedekind Rademacher cocycle plays the role of the modular unit (z)/(pz).
The refinement of Gross’s p-adic Stark conjecture proposed in [5] predicts that the
RM value JDR[ψ ] belongs to (OH [1/p])× ⊗ Q.

For the next statement, let us choose the periods �±
f in (17) in such a way that

�+
f �−

f = 〈 f , f 〉, ϕ+
f ∈ H1(�0(p), K f ), ϕ−

f ∈ H1(�0(p),O f ).

The Manin–Drinfeld theorem implies that the quantity

Lalg( f , 1) := (�+
f )−1

∫ ∞

0
ω f

belongs to the field K f , and in particular is algebraic. It is amultiple of the special value
L( f , 1) by a simple non-zero factor, and can therefore be envisaged as its “algebraic
part”.
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Diagonal restrictions of p-adic Eisenstein families 511

The third main result, discussed in Sect. 3, is readily deduced from Theorems A
and B, is

Theorem C The classical forms G1(ψ) and G ′
1(ψ)ord obtained in the coherent and

incoherent cases respectively may be written as a combination of newforms as follows:

1. (Coherent case). If p is split in F/Q, then we have

G1(ψ) = λ0 · E (p)
2 +

∑

f

λ f · f ,

where f runs over the basis of normalised newforms in S2(�0(p)), and

λ0 = −2

p − 1
· ϕDR(gψ), λ f = −2Lalg( f , 1) · ϕ−

f (gψ).

2. (Incoherent case). If p is inert in F/Q, then we have

G ′
1(ψ)ord = λ′

0 · E (p)
2 +

∑

f

λ′
f · f ,

where the coefficients λ′
0 and λ′

f are given by

λ′
0 = −4

p − 1
· logp

(
Nm(JDR[ψ ])) , λ′

f = −4Lalg( f , 1) · logp

(
Nm(J−

f [ψ ])
)

.

Table 1 illustrates Theorem C for p = 11 and ψ ranging over some odd unramified
characters of real quadratic fields. We consider all genus characters of discriminant
D < 100, corresponding to factorisations D = D1D2 of D into a product of two neg-
ative fundamental discriminants. The space M2(�0(11)) is spanned by the Eisenstein
series E (11)

2 and the newform f attached to the Weil curve

E : y2 + y = x3 − x2 − 10x − 20

of conductor 11, which has rank zero over Q, and Lalg( f , 1) = 1/5. In the coherent
case, the coefficients λ0 and λ f of Part 1 of Theorem C are rational numbers, and it
was checked that λ0 = ϕDR(gψ), as claimed. In the incoherent case, it was checked,
to 50 significant 11-adic digits, that

(1) the coefficient λ′
0 agrees with a rational multiple of the 11-adic logarithm of a

global 11-unit in the biquadratic field Q(
√

D1,
√

D2). More precisely, this unit
belongs to Q(

√
D1), where (D1, D2) are ordered in such a way that ( D1

p ) =
−( D2

p ) = 1.
(2) the coefficient λ′

f agrees with a small rational multiple of the formal group loga-

rithm of a global point in E(Q(
√

D1)). This is consistent with a theorem of Mok
[24] extending the main result of [1] to elliptic curves of prime conductor, which
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512 H. Darmon et al.

Table 1 The spectral expansions of G1(ψ) and G′
1(ψ)ord.

D D1 · D2

(
D
11

)
λ0 λ f λ′

0 λ′
f

12 (−3)(−4) 1 8
5 − 8

5

21 (−7)(−3) −1 0 0 16
5 log

(
2+√−7

11

)
8
5 logE

(
1−√−7

2 , 1+2
√−7

)

24 (−8)(−3) −1 0 0 16
5 log

(
3+√−2

11

)
− 8

5 logE
(
−3−√−2,−4−3

√−2
)

28 (−7)(−4) −1 0 0 24
5 log

(
2+√−7

11

)
− 8

5 logE

(
1−√−7

2 , 1+2
√−7

)

56 (−8)(−7) 1 0 0 0 0

57 (−19)(−3) −1 0 0 16
5 log

(
5+√−19

22

)
− 8

5 logE
(
−7+2

√−19,−38−2
√−19

)

69 (−23)(−3) 1 48
5 − 8

5

76 (−19)(−4) −1 0 0 24
5 log

(
5+√−19

22

)
8
5 logE

(
−7+2

√−19,−38−2
√−19

)

93 (−3)(−31) 1 48
5 − 8

5

implies that the quantities J−
f [ψ ] map to a global point in E(Q(

√
D1)) ⊗ Q

under Tate’s p-adic uniformisation when ψ is a genus character.

Weight one Eisenstein series attached to odd genus characters also play a prominent
role in the calculations of [17]. That theorems B and C are not a direct p-adic coun-
terpart of the formulae in loc.cit. is suggested by the fact that they apply to arbitrary
(odd) class characters, and not just genus characters. This feature, which accounts for
the relevance of Theorem C to explicit class field theory for real quadratic fields, is
illustrated in Sect. 3.6, where a numerical illustration is offered in its support.

Remark 1 Part 1 of Theorem C is essentially equation (1.4) of [22] with the genus
character replaced by a general odd ideal class character of F , while Part 2 can be
viewed as a p-adic “incoherent” counterpart of this result.

Remark 2 When the prime p is split in F , comparing the constant terms for G1(ψ)

given in Theorem A and in Part 1 of Theorem C, we obtain

L p(F, ψ, 0) = 1

12
ϕDR(gψ),

a classical result that follows from Meyer’s formula [30, §4] for the value at s = 0 of
the L-function of a totally odd ring class character of a real quadratic field in terms
of the Dedekind–Rademacher homomorphism. When p is inert in F , comparing the
constant terms for G ′

1(ψ)ord given in Theorem B and in Part 2 of Theorem C leads to
the identity

L ′
p(F, ψ, 0) = 1

12
logp(NmJDR[ψ ]),

which essentially recovers one of the main theorems of [5]. The proof of the p-adic
Gross–Stark conjecture given in [12] shows that L ′

p(F, ψ, 0) is a rational multiple
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Diagonal restrictions of p-adic Eisenstein families 513

of the p-adic logarithm of the norm to Qp of a global p-unit—the Gross–Stark unit
attached toψ—and leads to theoretical evidence for the algebraicity of the RM values
of the Dedekind–Rademacher cocycle. In a forthcoming work [8], the authors will
parlay the infinitesimal deformations of Ek(1, ψ) in the anti-parallel direction and
their diagonal restrictions into a proof of the algebraicity of the full invariant JDR[ψ ].
This gives a new proof of one of the main results of [13], in the setting of real quadratic
fields. It is worth noting that the results in [13] apply to general totally real fields,
whereas the connection with the theory of rigid cocycles is at present restricted to the
quadratic case.

Remark 3 The coefficients λ′
f that occur in the spectral expansion of G ′

1(ψ)ord can be
viewed as the first derivatives of certain twisted Rankin p-adic L-functions attached
to f and to the diagonal restriction of a family of Hilbert modular Eisenstein series.
These quantities can be likened to the “p-adic iterated integrals” of [6] arising from
a pair of weight one cusp forms, by viewing such a pair as a “Hilbert modular form
of weight (1, 1) for the split quadratic algebra Q × Q”. The connection between the
products of logarithms of pairs of Stark–Heegner points and the second derivatives
of Rankin triple product L-functions has already been exploited, notably in [9] and
[2]. The simpler connection with the first derivatives of their twisted variants that is
revealed by Theorem C offers the prospect of a more direct geometric approach to
Stark–Heegner points via the K -theory of Hilbert modular surfaces, which it would
be interesting to flesh out.

1 Diagonal restrictions of Hilbert Eisenstein series

The modular form Gk(ψ) of weight 2k on �0(p) described in (5) of the introduction
has Fourier expansion given by

Gk(ψ) := L(p)(F, ψ, 1 − k) + 4
∞∑

n=1

⎛

⎜⎜⎜⎝
∑

ν∈d−1+
Tr(ν)=n

∑

I | (ν)d,
p � I

ψ(I )Nm(I )k−1

⎞

⎟⎟⎟⎠ qn . (20)

The goal of this section is to investigate its weight 2 specialisation and prove Theorem
A from the introduction. When p splits in F , which by analogy with common nomen-
clature in the Kudla programme is referred to as the coherent case, the weight two
specialisation G1(ψ) is the generating series for the homological intersection product
of certain geodesics, while it vanishes identically when p is inert in F . The latter
incoherent setting is arithmetically richer: the first derivative G ′

1(ψ) that is the object
of Theorem B is studied in Sect. 2.
Notation Retaining some of the notations and assumptions of the introduction, F will
denote a real quadratic field with discriminant D, ring of integers OF , set of integral
idealsIF , and different ideal d. The notation d

−1+ means the subset of totally positive
elements of the inverse different d−1. Denote by Nm and Tr the norm and trace maps
from F to Q.
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514 H. Darmon et al.

1.1 The weight two specialisation G1(Ã).

The weight two specialisation of the family considered above plays a central role. The
following lemma is well-known to experts.

Lemma 1.1 The specialisation G1(ψ) is a classical modular form of weight two and
level �0(p). Its constant term is given by

L p(F, ψ, 0) = L(F, ψ, 0) ·
∏

p|p

(1 − ψ(p)). (21)

In particular, the constant term vanishes if p is inert in F.

Proof By [12, Prop. 3.2], the weight one specialisation of the family E (p)
k (1, ψ) is a

classical Hilbert modular form of parallel weight one and level

�0(pOF ) = {( a b
c d

) ∈ SL2(OF ) | c ∈ pOF ,
}
.

Thus, its diagonal restriction is a classical ellipticmodular formofweight two and level
�0(p). The formula for the constant coefficient follows from the fact that L p(F, ψ, s)
interpolates the values of L(p)(F, ψ, n) for every n ∈ Z≤0. In particular, if p is inert
in F, the p-adic L-function admits a trivial zero at s = 0, since the conductor of ψ is
trivial. ��
Remark 1.2 The weight one specialisation of the Eisenstein family can in fact be
obtained by p-stabilising the Eisenstein series of level one with Fourier expansion

E1(1, ψ)(z1, z2) = 4
∑

ν∈d−1+

σ0,ψ (νd) exp(2π i(ν1z1 + ν2z2))

in the notation of (3). However, the constant term of the p-stabilisation E (p)
1 (1, ψ)

may not vanish in the coherent case, due to the contribution of non-zero constant
terms at other cusps. For more on the constant terms at various cusps, see Shih [27]
and Dasgupta–Kakde [14].

1.2 Ideals and RM points

The Fourier coefficient an of the diagonal restriction (20) may be written as

an = 4
∑

C∈Cl+(D)

ψ(C)
∑

(I ,ν) ∈ I(n,C)−I(n,C)p

Nm(I )k−1 (22)

where the index sets are given by

I(n, C) :=
{
(I , ν) ∈ IF × d−1+ : Tr(ν) = n, I | (ν)d, [I ] = C

}
,

I(n, C)p := {(I , ν) ∈ I(n, C) : p | Nm(I )} .
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The finite index sets I(n, C) and I(n, C)p will be placed in an explicit bijection with
certain sets of RM points. To ease the exposition, the case n = 1, where this set of
RM points may be described in a particularly simple way, is treated separately. The
calculations for the case n > 1 are more involved, and are dealt with in the remainder
of the section.

An RM point is defined to be a real quadratic irrationality, and is said to be of
discriminant D if it is the root of a primitive binary quadratic form of discriminant D.
The set of RM points of discriminant D, denoted RM(D), is preserved by the action
of SL2(Z).

Extending the definition in (10), write G[τ ] ⊂ G for the stabiliser of τ in G, for
G any congruence subgroup of � and τ an element of Hp. If τ is an RM point, then
G[τ ] is always of rank one, i.e., it is of the form G[τ ] = ±〈γτ 〉 for the generator γτ

that is uniquely determined by the property that τ is it stable fixed point in the sense
of (11). As in the introduction, the (open) hyperbolic geodesic inH between two RM
points τ1, τ2 will be denoted by (τ1, τ2), whereas the (closed) hyperbolic geodesic
segment between two points ξ1, ξ2 of the extended upper-half planeH∗ = H∪P1(Q)

is denoted by the symbol [ξ1, ξ2]. The intersection number between two geodesics
in H, which is always ±1 or 0, is defined in the natural way after fixing a standard
orientation on H, and is denoted by the symbol “·” as above.

Ideals and RM points are related by the canonical bijection

Cl+(D) −→ SL2(Z) \ RM(D),

[I ] �−→ ω1/ω2,
(23)

where (ω1, ω2) is any positive Z-basis of I , i.e. a basis satisfying ω1ω
′
2 − ω′

1ω2 > 0.
This is well-defined, and defines a bijection with inverse given by:

cl : RM(D) −→ Cl+(D), cl(τ ) =
{

Zτ ⊕ Z if τ − τ ′ > 0,√
D(Zτ ⊕ Z) if τ − τ ′ < 0,

which is constant on SL2(Z)-orbits. Given a narrow ideal class C in Cl+(D), let

RM(C) := cl−1(C) = SL2(Z)τ,

where τ is anypreimageofC. The groupGL2(Z) acts transitively onRM(C)∪RM(C∗),
and any matrix of determinant −1 interchanges RM(C) and RM(C∗). In particular

cl(−τ) = cl(τ )∗. (24)

Definition 1.3 An RM point τ is said to be reduced2 if ττ ′ < 0. A reduced RM point
is called positive if τ ′ < 0 < τ , and negative if τ < 0 < τ ′. Denote by RM+ and
RM− the sets of positive and negative (reduced) RM points, and set

RM±(D) = RM(D) ∩ RM±, RM±(C) = RM(C) ∩ RM±.

2 Note that this differs from the notion of reducedness defined by Gauß in his Disquisitiones Arithmeticae
[15]. Reduced forms in his sense are always reduced in our sense, but the converse is not true.
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Lemma 1.4 The sets RM±(C) are finite. The assignment τ �→ −τ induces a bijection
from RM+(C∗) to RM−(C).

Proof Any τ inRM±(D) is the root of a primitive binary quadratic form Ax2+ Bxy+
Cy2 of discriminant D in which AC < 0. There are finitely many such forms, so the
first assertion follows. The second follows from (24) given that τ �→ −τ interchanges
RM+(D) and RM−(D). ��
Definition 1.5 Let p be a prime that does not divide D. An RMpoint inRM(D) is said
to be Heegner (relative to p) if pτ also lies in RM(D). Equivalently, τ is a Heegner
RMpoint if it is the root of a binary quadratic form of discriminant D that is Heegner at
p in the sense of the introduction. The set of Heegner RM points in RM(C) is denoted
RM(C)p, and likewise RM±(C)p denotes the set of Heegner RM points in RM±(C).

Note that if p is inert in F , then RM(D)p is empty. If p splits in F , it is nonempty
and stable under the action of �0(p), with two distinct orbits, as described in the
introduction.

Lemma 1.6 The sets I(1, C) and RM+(C) are in bijection via the map

(I , ν) �−→ ν
√

D

Nm(I )
.

Proof Any totally positive ν ∈ d−1 of trace 1 can be uniquely expressed as

ν = −b + √
D

2
√

D
, where b ∈ Z, b2 − D < 0, b ≡ D (mod 2).

Given an ideal I | (ν)d, its norm a := Nm(I ) is a positive divisor of the negative integer
Nm(ν

√
D) = (b2 − D)/4, hence its quotient by a is equal to a negative integer c.

Define

τ := −b + √
D

2a

which is a root of ax2 + bxy + cy2 and therefore contained in RM+(D). If (I , ν)

belongs to I(1, C) it is readily checked that τ belongs to RM+(C) ⊂ RM+(D).
Conversely, if τ = (−b + √

D)/2a belongs to RM+(C), then an element (I , ν) of
I(1, C) in the preimage of τ can be constructed by setting

I := (a, ν
√

D), ν := −b + √
D

2
√

D
.

��
The bijection in Lemma 1.6 will now be extended to general n. Due to the non-

constancy of discriminants in the set of RM points corresponding to I(n, C), greater
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care becomes necessary in introducing notation for certain double cosets that feature
in the target of the desired bijection.

As before, let τ ∈ RM(C). Let

Mat(n)
2×2(Z) := {A ∈ Mat2×2(Z) : det(A) = n} (25)

and let Mn and Mn(τ ) be a system of representatives for SL2(Z)\Mat(n)
2×2(Z) and for

the double coset space SL2(Z)\Mat(n)
2×2(Z)/SL2(Z)[τ ] respectively, where as above

wewrite SL2(Z)[τ ] for the stabiliser of τ in SL2(Z), a group of rank 1. In other words,

Mat(n)
2×2(Z) =

⊔

γn∈Mn

SL2(Z) · γn (26)

=
⊔

δn∈Mn(τ )

SL2(Z) · δn · SL2(Z)[τ ]. (27)

It will be convenient to choose the standard set of representatives of the Hecke operator
Tn

Mn :=
{(

n/d j
0 d

)
: d|n, 0 ≤ j ≤ d − 1

}
, (28)

and to assume without loss of generality that Mn(τ ) is contained in Mn .

Definition 1.7 For any choice of sign ± define the set

RM±(n, C) := {(w, δn) ∈ RM± × Mn(τ ) : w ∈ SL2(Z)δnτ } (29)

Let w ∈ RM±(n, C), and let ax2 + bxy + cy2 be the unique quadratic form3 of
discriminant n2D which has w as its stable root. Using the first coefficient of this
quadratic form gives a well-defined map

RM±(n, C) −→ Z : w �→ a(w) := a. (30)

Write RM±(n, C)p for the subsets of those (w, δn) for which p | a(w). Note that the
sets RM±(C) defined in Sect. 1.2 are canonically identified with RM±(1, C).

The following is a generalisation of Lemma 1.4 for all n ≥ 1:

Lemma 1.8 The sets RM±(n, C) are finite. The map

RM+(n, C∗) −→ RM−(n, C) : (w, δn) �−→ (−w, δ∗
n),

is a bijection, where δ∗
n is the representative of the conjugate of δn by the matrix

W∞ =
(
1 0
0 −1

)
.

3 Note that this form may fail to be primitive.
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Proof The finiteness of RM±(n, C) follows from the fact that the discriminant of δnτ

divides n2D, and that the set of reduced RM points of a fixed discriminant is finite.
The second statement follows easily from the observation that −w = W∞w. ��

The following more general version of Lemma 1.6 establishes a bijection between
the index set appearing in the expression (20) for the Fourier coefficient an of the
diagonal restriction, and an explicit set of “augmented RM points” of the above form.

Lemma 1.9 There exists a bijection

I(n, C) −→ RM+(n, C)

such that if (I , ν) corresponds to (w, δn), then Nm(I ) = a(w).

Proof Define the ideal a = (A, (−B +√
D)/2)where Ax2+ Bxy+Cy2 is the unique

quadratic form of discriminant D whose stable root is τ , whose narrow ideal class is
C.

First, let (I , ν) ∈ I(n, C) and define a triple of integers a, b, c by

⎧
⎪⎨

⎪⎩

a = Nm(I )

b = unique integer such that ν = −b+n
√

D
2
√

D
c = −Nm(J ), where I J = (ν)d.

One readily sees that c < 0 < a and b2 − 4ac = n2D. Now define

w = −b + n
√

D

2a
∈ RM+.

If (·)′ is the non-trivial automorphism of F , then I ′ is in the narrow ideal class of a−1.
Define λ to be a totally positive generator of the principal ideal I ′a. Then the lattice

� = Zλ + Zwλ

is well defined up to multiplication by a totally positive unit inO×
F . We claim that� is

a lattice in a of index n. Indeed, λ belongs to a, and on the other hand wλ also belongs
to a since

(wλ) = (ν
√

D/Nm(I ))I ′a
= Ja.

The resulting containment � ⊆ a is of index n, since the quadratic form

Nm(λx − μy)/Nm(a)
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is equal to ax2 + bxy + cy2, which is of discriminant n2D. Therefore

(
λw

λ

)
= N

(
Aτ

A

)
, det N = n,

and hence there is a unique δn ∈ Mn(τ ) such that

N ∈ SL2(Z) · δn · SL2(Z)[τ ].

Note that δn is well-defined, since multiplication of λ by a totally positive unit in O×
F

changes N by right multiplication by an element of SL2(Z)[τ ], and hence does not
change δn . Since w belongs to SL2(Z)δnτ , it follows that w lies in RM+(n, C).

To check that this defines a bijection, we construct an explicit inverse. For an
element (w, δn) ∈ RM+(n, C), let ax2 + bxy + cy2 be the unique quadratic form of
discriminant n2D whose stable root is w. Define

ν = −b + n
√

D

2
√

D
,

which is a totally positive element of d−1 of trace n. Write w = γ δnτ , and define λ

by

(
λw

λ

)
= γ δn

(
Aτ

A

)
.

Note that γ δn is only well-defined up to left multiplication by elements in SL2(Z)[w],
and up to right multiplication by elements in SL2(Z)[τ ], which makes λ well-defined
up to totally positive units. This makes the integral ideals

I = (λ′)/a′, J = (λw)a−1

well-defined, and one checks directly that I J = (ν)d. Therefore (I , ν) belongs to
I(n, C), and this assignment defines the desired inverse to the map defined above. ��

1.3 An unfolding lemma for geodesics

This section presents an unfolding identity between certain sums of intersection num-
bers of geodesics thatwill appearmultiple times in subsequent calculations. The results
below are stated for a congruence subgroup �0(N ) for a general N , but only the cases
N = 1 or N = p will be used.

Lemma 1.10 Suppose τ is an RM point and let γτ be the normalised generator for the
stabiliser subgroup �0(N )[τ ] modulo torsion. Let n ≥ 1 be an integer that is relatively
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prime to N. Then for any point η ∈ H,

∑

δn ∈ Mn(τ )
γ ∈�0(N )/�0(N )[δnτ ]

[0,∞] · (γ δnτ ′, γ δnτ) = 1

2

∑

γn ∈ Mn
γ ∈�0(N )

[0,∞] · [γ γnη, γ γnγτ η].

(31)

Proof For any RM point ρ, let γρ be its automorph in �0(N ), i.e. the generator of
�0(N )[ρ] whose stable fixed point is ρ. Equation (11) implies that, for any ξ ∈ H,

[0,∞] · (γρ′, γρ) =
∞∑

j=−∞
[0,∞] · [γ γ j

ρ ξ, γ γ j+1
ρ ξ ].

Setting ρ = δnτ , this allows us to unfold the left hand side of (31) into the expression

1

2

∑

δn ∈ Mn(τ )

∑

γ ∈�0(N )

[0,∞] · [γ ξ, γ γρξ ] (32)

where the factor 1/2 accounts for the torsion subgroup ±I of �0(N )[δnτ ]. Now note
that γρ = δnγ

f
τ δ−1

n for some f ≥ 1. Setting η = δ−1
n ξ we can rewrite

[0,∞] · [γ ξ, γ γρξ ] = [0,∞] · [γ δnη, γ δnγ f
τ η]

= [0,∞] · ([γ δnη, γ δnγτ η]
+ . . . + [γ (δnγ

f −1
τ )η, γ (δnγ f −1

τ )γτ η]
)

Note that the sum on the right hand side of (31) can be identified with the intersection
product in homology of two homology classes on the open modular curve of level
N , the first being the geodesic between the cusps 0 and ∞ viewed as a class in the
homology of X0(N ) relative to the cusps, and the second being the Tn-translate of the
geodesic joining the images of η and γτ η, whose class in H1(Y0(N ), Z) is independent
of η. Since

⊔

δn ∈ Mn(τ )

�0(N ) · δn · �0(N )[τ ] =
⊔

δn ∈ Mn(τ )

f −1⊔

i=0

�0(N ) · δnγ i
τ ,

the elements δnγ i
τ form a complete set of coset representatives for the action of the

Hecke operator Tn , so the sum (32) agrees with the right hand side of (31), as claimed.
��

1.4 The Fourier expansion of G1(Ã)

This section is devoted to the coherent case, where it is assumed that the prime p
splits in F . Its goal is to prove Theorem A of the introduction, which asserts that the
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form G1(ψ) is the generating series for certain intersection products of the classes of
geodesics in the homology of the modular curve X0(p).

Lemma 1.11 For every n ≥ 1, the sum S :=
∑

C∈Cl+(D)

ψ(C)|I(n, C)| vanishes.

Proof It suffices to show this when ψ is the odd indicator function of a narrow class
C, i.e.

ψ(I ) =
⎧
⎨

⎩

1 if I ∈ C,

−1 if I ∈ C∗,
0 otherwise.

Combining Lemma 1.9 and Lemma 1.8 gives

S = |RM+(n, C)| − |RM+(n, C∗)|
= |RM+(n, C)| − |RM−(n, C )|.

Let τ be an RM point such that cl(τ ) = C. For any RM point ρ,

[0,∞] · (ρ, ρ′) =
⎧
⎨

⎩

1 if ρ ∈ RM+,

−1 if ρ ∈ RM−,

0 otherwise

by definition, where the oriented intersections are taking place on H. The set S can
therefore be rewritten as

S =
∑

(w,δn)∈RM+(n,C)

1 −
∑

(w,δn)∈RM−(n,C)

1

=
∑

δn∈Mn(τ )
γ ∈SL2(Z)/SL2(Z)[δnτ ]

[0,∞] · (γ δnτ
′, γ δnτ).

By Lemma 1.10,

S = 1

2

∑

γn∈Mn

〈gw, γngψ 〉 = 1

2
〈gw, Tngψ 〉

where 〈· , ·〉 denotes the intersection pairing between the homology of X0(1) relative
to the cusps and the homology of the open modular curve Y0(1), and gw and gψ are
as defined in the introduction. Since these homology groups are trivial, it follows that
S = 0 as claimed. ��

We now come to Theorem A, asserting (in the coherent case) that G1(ψ) is a
generating series for intersection products of geodesics on X0(p). The proof uses
the previous lemma, and consists of a rearrangement of a sum over SL2(Z) with an
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additional restriction to sums over �0(p) without any restriction, identifying the latter
with the intersection number in homology.

Theorem 1.12 If p splits in F, the Fourier expansion of G1(ψ) is given by

G1(ψ) = L p(F, ψ, 0) − 2
∞∑

n=1

〈gw, Tngψ 〉p qn .

Proof It suffices to show this when ψ is the odd indicator function of a narrow ideal
class C. Equation (22) and Lemma 1.9 imply the following explicit expression for the
n-th Fourier coefficient of G1(ψ):

an = 4 |RM+(n, C) \ RM+(n, C)p| − 4 |RM+(n, C∗) \ RM+(n, C∗)p|. (33)

Using Lemmas 1.11 and 1.8, this may be rewritten as

an = −4|RM+(n, C)p| + 4|RM+(n, C∗)p|
= −4|RM+(n, C)p| + 4|RM−(n, C )p|

As in the proof of Lemma 1.11, this can be further rewritten as

an = −4
∑

(w,δn) ∈ RM+(n,C)p

1 + 4
∑

(w,δn) ∈ RM−(n,C)p

1 (34)

= −4
∑

δn∈Mn(τ )

∑

w ∈SL2(Z)δnτ
p | a(w)

[0,∞] · (w′, w), (35)

This is almost in the correct form for the unfolding of Lemma 1.10, except for the
condition p | a(w), which will be removed by passing from SL2(Z)-orbits to �0(p)-
orbits.

Suppose first that n is coprime to p. Fix an RM point τ ∈ RM(C), and choose
representatives for the two �0(p)-orbits in RM(C)p

{
τs = Asτ, As ∈ SL2(Z)

τ−s = A−sτ, A−s ∈ SL2(Z)

characterised by the property that all elements in the orbit are the stable roots of
quadratic forms of discriminant D whose middle coefficient is congruent to s and −s
respectively, for a fixed choice s of square root of D modulo p. The set of Heegner
forms ax2+bxy +cy2 in an SL2(Z)-orbit of discriminant n2D is likewise the disjoint
union of two �0(p)-orbits, distinguished by the congruences b ≡ ns (mod p) and
b ≡ −ns (mod p). We will first identify two explicit representatives for these orbits.
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Choose subsets N (s)
n and N (−s)

n of Mn such that

Mat(n)
2×2(Z) =

⊔

δ
(s)
n ∈ N (s)

n

SL2(Z) · δ(s)
n · SL2(Z)[τs] (36)

=
⊔

δ
(−s)
n ∈ N (−s)

n

SL2(Z) · δ(−s)
n · SL2(Z)[τ−s] (37)

For any δn ∈ Mn(τ ), the two matrices δ
(s)
n ∈ N (s)

n and δ
(−s)
n ∈ N (−s)

n are defined to
be the double coset representatives of Asδn A−1

s and A−sδn A−1−s . Then

SL2(Z) · δ(s)
n · SL2(Z)[τs] = SL2(Z) · Asδn A−1

s · SL2(Z)[τs]
= SL2(Z) · δn · SL2(Z)[τ ] · A−1

s

and likewise for δ
(−s)
n , from which one may conclude that the maps

{
Mn(τ ) −→ N (s)

n : δn �−→ δ
(s)
n

Mn(τ ) −→ N (−s)
n : δn �−→ δ

(−s)
n

are bijections, and therefore that

{w ∈ SL2(Z)δnτ } = {w ∈ SL2(Z)δ(s)
n τs}

= {w ∈ SL2(Z)δ(−s)
n τ−s}

Now observe that the action of matrices in Mn on quadratic forms is via

(ax2 + bxy + cy2) ·
(

d j
0 n/d

)
= (ad2)x2 + (nb + 2d ja)xy + (· · · ) y2

Inspection of the first two coefficients reveals that for any δn ∈ Mn(τ ),

• δ
(s)
n τs and δ

(−s)
n τ−s are the stable roots of Heegner forms, and are hence in

RM(n, C)p.

• δ
(s)
n τs and δ

(−s)
n τ−s are the stable roots of quadratic forms whose middle coef-

ficients are respectively congruent to ns and −ns modulo p, and hence are not
equivalent under �0(p).

It follows from these two observations that

{w ∈ SL2(Z)δnτ : p | a(w)} = �0(p)δ(s)
n τs

⊔
�0(p)δ(−s)

n τ−s
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Equation (35) can now be rewritten as

an = −4
∑

δ
(s)
n ∈N (s)

n

∑

γ ∈�0(p)/�0(p)[δ(s)
n τs ]

[0,∞] ·
(
γ δ(s)

n τ ′
s, γ δ(s)

n τs

)

−4
∑

δ
(−s)
n ∈N (−s)

n

∑

γ ∈�0(p)/�0(p)[δ(−s)
n τ−s ]

[0,∞] ·
(
γ δ(−s)

n τ ′−s, γ δ(−s)
n τ−s

)
.

(38)
It remains to show that both of these double sums are in the required form for

Lemma 1.10, in the case �0(N ) = �0(p). Note that τs is the root of a Heegner form,
so that

SL2(Z)[τs] = �0(p)[τs],

and hence for any γn, γ
′
n ∈ Mn (which are upper triangular) and M ∈ SL2(Z) such

that γnγ i
τs

= Mγ ′
n , it must be that M belongs to �0(p). It follows that

⊔

γn∈Mn

�0(p) · γn =
⊔

δ
(s)
n ∈N (s)

n

�0(p) · δ(s)
n · �0(p)[τs]

and likewise for τ−s . Since n is coprime to p, the left hand side is equal to the union of
double cosets defining Tn for the congruence subgroup �0(p). Lemma 1.10 can now
be applied for �0(p) in order to rewrite (38) as

an = −2
∑

γn ∈ Mn
γ ∈�0(p)

([0,∞] · [γ γnξ, γ γnγτs ξ ] + [0,∞] · [γ γnξ, γ γnγτ−s ξ ]) .

This expression is equal to the topological intersection between gw and Tngψ on the
modular curve X0(p). This shows the proposition for the Fourier coefficients away
from p.

Since the higher coefficients of the Fourier expansion on the right hand side is
obtained from a linear function on the Hecke algebra for �0(p), they must agree
with the Fourier expansion of some modular form f in M2(�0(p)). The difference
of G1(ψ) and f has vanishing Fourier coefficients away from p and must therefore
be an oldform. Since there are no non-trivial oldforms, the statement follows for all
Fourier coefficients. ��
Remark 1.13 Even though the above argument relies on the triviality of the space
M2(SL2(Z)), we expect it to go through with minimal changes for more general
congruence subgroups of �, where this triviality fails. Our reliance on this fact merely
simplifies the argument.

Wenowcomplete the proof of TheoremA, by showing that, in the incoherent setting
when p is inert in F , the weight 2 specialisation G1(ψ) of (20) vanishes identically.

Proposition 1.14 If p is inert in F, the weight two specialisation G1(ψ) vanishes.
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Proof Let n ≥ 1, and suppose (I , ν) is an element of I(n, C) such that p � Nm(I ). Let
J be the minimal ideal that is coprime to (p) and such that I J divides (ν)d. The map

(I , ν) �−→ (J ′, ν′)

defines an involution, andψ(J ′) = −ψ(I ). Since ν and ν′ both have trace n, it follows
from the expression (22) that the n-th Fourier coefficient of G1(ψ) vanishes, and the
proposition follows. ��
Remark 1.15 Note that the proof of Proposition 1.14 only used the fact that ψ((p)) =
1, and shows for example also that the series G1(ψ) vanishes when p = pp′ and
ψ(p) = 1 (see Sect. 3.6). When ψ is unramified and p is inert in F , one can alter-
natively observe that the operation of p-stabilisation commutes with the diagonal
restriction, and therefore G1(ψ) is the p-stabilisation of a weight two modular form
on SL2(Z). The proposition then follows from the fact that there are no non-zero
modular form of weight two and level one.

2 The incoherent Eisenstein series and its diagonal restriction

The goal of this section is to prove Theorem B of the introduction, showing that the
overconvergent form G ′

1(ψ)ord discussed in the introduction is a generating series for
the RMvalues of an appropriate rigid analytic theta cocycle. Assume for the remainder
of this section that p is inert in F .

2.1 The overconvergence of G′
1(Ã)

Arguments similar to those of Buzzard–Calegari [3, §8] will be used to show that
the first derivative G ′

1(ψ) is an overconvergent p-adic modular form of level 1. The
following general lemma considers the first derivative of an “overconvergent family”
at a point where it vanishes identically:

Lemma 2.1 Suppose G(t) is a family of overconvergent forms of weight κ(t), indexed
by a parameter t on a closed rigid analytic disk D. If G(0) = 0, and k = κ(0) ∈ Z,
then

(
∂

∂t
G(t)

) ∣∣∣∣
t=0

is an overconvergent modular form of weight k.

Proof Let E be the level one modular form

E =
⎧
⎨

⎩

E p−1 if p ≥ 5
E6 if p = 3
E4 if p = 2

(39)
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where Ek is the unique level one Eisenstein series of weight k with constant term 1
at the cusp ∞. Since the weight of E is a multiple of (p − 1), and its q-expansion
reduces to 1 modulo p, it must be a lift of a power of the Hasse invariant, and therefore
|E − 1| < 1 on a strict neighbourhood of the ordinary locus of X0(p). In particular,
by shrinking D if necessary, there is a power series e(t) such that Ee(t) converges for
all t ∈ D to an overconvergent form of weight κ(t)κ(0)−1.

Let A†
k be the space of overconvergent modular forms of weight k, and Aord

k the

space of p-adic modular forms of weight k, so that A†
k ⊂ Aord

k . The rigid analytic
functions on the closed disk D and its boundary B = {t ∈ D : |t | = 1} are given by
the Tate algebras

Cp〈t〉 =
⎧
⎨

⎩
∑

n≥0

cntn : lim
n→∞ |cn| = 0

⎫
⎬

⎭ Cp〈t, t−1〉 =
{
∑

n∈Z

cntn : lim|n|→∞ |cn| = 0

}

Now consider the family

t−1 · G(t)/Ee(t).

Since B is an affinoid, this defines a family of overconvergent forms over B, and
therefore an element of A†

k ⊗̂ Cp〈t, t−1〉. On the other hand, since G(0) = 0, its
q-expansion is integral, and therefore it is an element of Aord

k ⊗̂ Cp〈t〉. Since

Aord
k ⊗̂ Cp〈t〉

⋂
A†

k ⊗̂ Cp〈t, t−1〉 = A†
k ⊗̂ Cp〈t〉. (40)

it follows that it is a family of overconvergent forms of weight k. Multiplying out Ee(t),
shows that t−1G(t) is an overconvergent family over the disk D, so that in particular

(
∂

∂t
G(t)

) ∣∣∣∣
t=0

which is its value at t = 0, is an overconvergent modular form, of weight k. ��
Lemma 2.2 The modular form G ′

1(ψ) is overconvergent.

Proof Lemma 2.1 applies to the family Gk(ψ), which is overconvergent because it is
the diagonal restriction of the (overconvergent) Hilbert Eisenstein family. It follows
from this lemma that G ′

1(ψ) is also overconvergent. ��
Remark 2.3 For numerical computations, it is useful to quantify the rate of over-
convergence of G ′

1(ψ). The ideas above can be refined to show that G ′
1(ψ) is

r -overconvergent for any r < p/(p + 1). Since this finer result is not needed in this
paper, its proof shall merely be sketched. The work of Goren–Kassaei [16, Theorem
A] shows that the family Ek(1, ψ) analytically continues to the canonical region Vcan.
The diagonal embedding on moduli stacks is given by E/S �→ E ⊗Z OF � E ×S E ,
endowed with the natural pieces of extra structure, and it can be checked directly
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that the valuations of the lifts of the partial Hasse invariants appearing in loc. cit. all
coincide with the valuation of the lift of the Hasse invariant on E . It follows that the
diagonal embedding induces an embedding Xr ↪→ Vcan for any r with |r | < p/(p+1),
and hence the family of diagonal restrictions is r -overconvergent for any such r . By
adapting the proofs of Lemma 2.1, one shows that G ′

1(ψ) inherits the same rate of
overconvergence. See also Buzzard–Calegari [3, §8].

2.2 The Bruhat–Tits tree and the Drinfeld upper half-plane

We first establish some notation related to the Drinfeld upper half plane Hp. Let
v◦ be the standard vertex of the Bruhat–Tits tree T of PGL2(Qp), whose stabiliser
in � is SL2(Z). For each integer n ≥ 0, let T <n and T ≤n denote the subgraph of T
consisting of vertices and edges that are at distance< n and≤ n from v◦, respectively.
LetH<n

p ⊂ H≤n
p ⊂ Hp denote the inverse images ofT <n andT ≤n under the reduction

map. The collection of H<n
p and H≤n

p gives an admissible covering of Hp by wide
open subsets and affinoid subsets respectively, which are stable under the action of
SL2(Z).

A pair (x, y) ∈ O2
Cp

is said to be primitive if gcd(x, y) = 1. Any τ ∈ P1(Cp)

can be written in projective coordinates as τ = (τ1 : τ2), where (τ1, τ2) ∈ O2
Cp

is

primitive. With this convention, the sets H<n
p and H≤n

p can be described as

H<n
p = {(τ1 : τ2) such that ordp(aτ1 − bτ2) < n, for all primitive (a, b) ∈ Z

2
p},

H≤n
p = {(τ1 : τ2) such that ordp(aτ1 − bτ2) ≤ n, for all primitive (a, b) ∈ Z

2
p}.
(41)

2.3 The winding cocycle

We now define the winding cocycle, which gives a class

Jw ∈ H1(�,A×/C
×
p ),

appearing inTheoremB.The cocycle Jw is obtainedby taking suitable infinite products
of cross-ratios. Recall that for any four points p1, p2, p3, p4 inP

1(Cp), using the usual
convention when some of the points are ∞, the cross-ratio is defined by

(p1, p2; p3, p4) := p3 − p1
p3 − p2

· p4 − p2
p4 − p1

, (42)

and is invariant under the action of GL2(Qp) on all four points simultaneously.
The definition of Jw depends on a choice of admissible base points ξ = (ξp, ξ∞) ∈

Hp ×H, whose class in H1(�,A×/C
×
p )will turn out to be independent of this choice

(cf. Lemma 2.6). The pair ξ = (ξp, ξ∞) is said to be admissible if:

• ξ∞ ∈ H∞ does not lie on any geodesic in the �-orbit of [0,∞],
• ξp ∈ Hp lies in the affinoid H≤0

p of (41).
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Since the non-admissible points have ξ∞ contained in a countable union of sets of
measure zero, the existence of admissible base points is apparent.

Remark 2.4 For computational purposes, it may be desirable to dispose of explicit
choices for ξ∞. For instance, let ξ be the root of a primitive integral binary quadratic
form [a, b, c] of discriminant  := b2 − 4ac < 0 for which

(1) the prime p is inert in the imaginary quadratic order of discriminant ,
(2) the class of [a, b, c] is of order > 2 in the class group attached to .

Letting ξ∞ ∈ H∞ and ξp ∈ Hp be the complex and p-adic root of the same binary
quadratic form obtained by choosing embeddings of Q(ξ) in Cp and C respectively,
it can be shown that the pair (ξp, ξ∞) is admissible. Since no use will be made of this
fact in this paper, its proof is omitted.

The determinant of a pair (r , s) of distinct elements of P1(Q) is ad − bc, where
r = a/b and s = c/d are expressions for r and s as fractions in lowest terms, adopting
the usual convention that ∞ = 1/0. It is an integer that is well-defined up to sign,
hence shall always be normalised to be positive. If (r , s) and (r ′, s′) are �-equivalent,
then their determinants equal up to multiplication by a power of p. Let � denote
the �-orbit of the pair (0,∞), and let �(m) ⊂ � be the subset of pairs (r , s) with
ordp(det(r , s)) = m. It is not hard to see that �(m) is non-empty for all m ≥ 0 and
that

� =
∞⋃

m=0

�(m). (43)

Choose an admissible base point ξ = (ξp, ξ∞), and define

J ξ
w(γ )(z) =

∏

(r ,s) ∈�

(
r , s; ξp, z

)[r ,s] · [ξ∞,γ ξ∞]
, (44)

where the exponent [r , s] · [ξ∞, γ ξ∞] denotes the topological intersection of these
two hyperbolic geodesic segments on the Poincaré upper half-plane.

Proposition 2.5 For each γ ∈ �, the infinite product defining J ξ
w(γ ) converges to

a rigid analytic function on Hp and it satisfies a cocycle condition modulo scalars,
namely

J ξ
w(γ1γ2) = J ξ

w(γ1) × γ1 · J ξ
w(γ2) (mod C

×
p ). (45)

Proof Observe first that�◦ := SL2(Z) acts on the set�(m) byMöbius transformations,
and that there are finitely many orbits for this action:

�(m) = �◦ · (r1, s1) � �◦ · (r2, s2) � · · · � �◦ · (r�, m�).

But the cardinality of the set

{α ∈ �◦ such that [αr , αs] · [ξ∞, γ ξ∞] = ±1}
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is equal to the number of intersection points between the images of the geodesics [r , s]
and [ξ∞, γ ξ∞] in the quotient SL2(Z)\H∞. Since this number is finite, it follows that
the product

J ξ
w,m(γ ) :=

∏

(r ,s)∈�(m)

(
r , s; ξp, z

)[r ,s] · [ξ∞,γ ξ∞]

has finitely many factors �= 1, so it is a rational function of z. To prove convergence
of

J ξ
w(γ )(z) :=

∞∏

m=0

J ξ
w,m(γ )(z)

as a rigid meromorphic function of z ∈ H≤n
p it suffices to show that the restriction of

J ξ
w,m(γ ) to H≤n

p converges uniformly to 1 as m −→ ∞. To see this, write r = a/b
and s = c/d in lowest terms as above, let z := (z0 : z1) and ξp := (ξ0 : ξ1) be
primitive homogenous coordinates in OCp for z and ξp, and note that

(
r , s; ξp, z

) = 1 − (r , ξp; s, z
)

= 1 − (ad − bc)

(ξ1c − ξ0d)
· (ξ1z0 − ξ0z1)

(bz0 − az1)

It follows from the definitions of H≤0
p and H≤n

p in (41) that

|(r , s; ξp, z) − 1| ≤ pn−m

when z ∈ H≤n
p and (r , s) ∈ �(m). Therefore, the infinite product defining J ξ

w(z)
converges absolutely and uniformly on affinoid subsets ofHp. The cocycle condition

for J ξ
w modulo scalars now follows from a direct calculation. ��

The following proposition asserts that the choice of admissible base point ξ that
went into the definition of this cocycle does not affect its class in cohomology.

Proposition 2.6 The class of J ξ
w in H1(�,A×/C

×
p ), denoted Jw, does not depend on

the choice of admissible base point ξ that was made to define it.

Proof The requirement that ξp ∈ H≤0
p implies that

(r , s; ξp, z) = (r , s; ξ ′
p, z) (mod O×

Cp
)

for any other choice of ξ ′
p ∈ H≤0

p , and hence changing ξp to ξ ′
p does not affect the

cocycle in Z1(�,A×/C
×
p ). As for replacing ξ∞ by ξ ′∞, a direct calculation reveals
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that the associated cocycles differ by the coboundary d F , where F ∈ A× is defined
by

F(z) =
∏

(r ,s)∈�

(r , s; ξ ′
p, z)[r ,s]·[ξ∞,ξ ′∞].

��

2.4 Hecke operators on rigid cocycles

Our goal is to investigate generating series constructed from the sequence Tn Jw for
all n ≥ 1 of Hecke translates of the winding cocycle Jw constructed above. We now
briefly recall the definition of the Hecke operators Tn .

These Hecke operators are defined in terms of relevant coset representatives. For
all n ≥ 1, choose a finite set �n such that

⋃

α∈M2(Z)
det(α)=n

�α� =
⊔

γn∈�n

� · γn .

For p � n, one may choose the usual set of representatives �n = Mn defined in (26).
On the other hand, when n = pm we may take

�pm =
{(

pm 0
0 1

)}
.

Following Shimura [28, § 8.3] we describe the action of the Hecke operators Tn on
H1(�, A) for any multiplicative �-module A. Let γ ∈ �, then for any γn ∈ �n ,

γnγ = γ ′γ ′
n, for some γ ′ ∈ �, γ ′

n ∈ �n .

Suppose J is in Z1(�, A), then one defines

(Tn J )(γ ) =
∏

γn∈�n

γ ι
n · J (γ ′)

where the involution (−)ι is defined by αι = det(α) · α−1. It can be checked that
with these definitions, Tn J defines an element in Z1(�, A), whose equivalence class
in group cohomology does not depend on the choice of coset representatives �n .

There are also two involutions W∞ and Wp determined by the matrices

(−1 0
0 1

) (
p 0
0 1

)
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which lie in the normaliser of � in GL2(Q). The action of these involutions on the
cohomology class of the winding cocycle are easily described, as in the following
lemma.

Lemma 2.7 The cohomology class defined by the winding cocycle Jw has eigenvalue
−1 for the involution W∞, and eigenvalue +1 for Wp.

Proof The action of W∞ on the winding cocycle J ξ
w with respect to some choice of

base point ξ = (ξ∞, ξp) is defined by

(W∞ J ξ
w)(γ ) = (

1 0
0 −1

) · J ξ
w(γ ι)

=
∏

(r ,s)∈�

(r , s; ξp,−z)[r ,s]·[ξ∞,γ ιξ∞] (46)

=
∏

(r ,s)∈�

(−r ,−s;−ξp, z)−[−r ,−s]·[−ξ∞,−γ ιξ∞] (47)

=
∏

(r ,s)∈�

(−r ,−s;−ξp, z)−[−r ,−s]·[−ξ∞,γ ·(−ξ∞)] (48)

The second equality is justified by the fact that the map a �→ −a defines an orientation
reversing diffeomorphism from the upper half plane to itself, causing the sign of the
intersection in the exponent to change. To obtain our conclusion, note that it is clear
that (r , s) �→ (−r ,−s) defines a bijection on �, so we obtain the equality

W∞ J ξ
w = (J ξ ′

w )−1

where ξ ′ = (−ξ∞,−ξp) is a different choice of base point. By Proposition 2.6 the
cohomology class of the winding cocycle is independent of the choice of base point
ξ , so that the result follows. The statement about Wp is proved similarly. ��

2.5 Lifting the winding cocycle

As a preamble to the explicit determination of the RM values of the cocycles Tn Jw,
we first discuss how to lift their restrictions to SL2(Z). Consider the natural diagram

H1(�,A×/C
×
p )

res

H1(SL2(Z), C
×
p ) H1(SL2(Z),A×) H1(SL2(Z),A×/C

×
p ) H2(SL2(Z), C

×
p )

where the vertical arrow is restriction to the natural subgroup �◦ := SL2(Z) of �,
which is the stabiliser of the standard vertex v◦ in the Bruhat–Tits tree. Whereas the
cocycles Tn Jw need not admit a lift to H1(�,A×), their restrictions to �◦ do admit a
lift

(Tn Jw)◦ ∈ H1(SL2(Z),A×),
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by the triviality of H2(SL2(Z), C
×
p ). Since H1(SL2(Z), C

×
p ) is a finite group of order

at most 12, this lift is unique up to torsion. We start by giving an explicit description
of (Tn Jw)◦.

For each pair (r , s) define functions tr ,s(z) by expressing r = a/b and s = c/d as
fractions in lowest terms, in such a way that ad − bc > 0, and setting

tr ,s(z) = bz − a

dz − c
. (49)

The function tr ,s(z) depends only on the pair (r , s) and its divisor is equal to (r)− (s).
Hence

tr ,s(z)/tr ,s(ξp) = (r , s; ξp, z) (50)

Observe that the constant tr ,s(ξp) of proportionality lies inO×
Cp

, since ξp lies inH≤0
p .

Lemma 2.8 For all γ ∈ Mat2×2(Z) with det(γ ) > 0 and all (r , s) ∈ P1(Q)2,

tγ r ,γ s(γ z) = d2
d1

· tr ,s(z),

for some positive divisors d1, d2 of det(γ ). In particular, tγ r ,γ s(γ z) = tr ,s(z) when
γ ∈ SL2(Z).

Proof Let r = a/b in lowest terms, so that au + bt = 1 for some u, v ∈ Z. We have

γ r = Aa + Bb

Ca + Db
, where γ =

(
A B
C D

)
(51)

and furthermore

gcd(Aa + Bb, Ca + Db) | (Aa + Bb)(Dt − Cu) + (Ca + Db)(Au − Bt)

= AD − BC = det(γ ).

This implies that up to some divisor ±d1 of det(γ ), the fraction in (51) is in lowest
terms, and analogously we find a divisor ±d2 for γ s. Furthermore,

(Aa + Bb)(Cc + Dd) − (Ca + Db)(Ac + Bd) = (AD − BC)(ad − bc) > 0

so that the quantity d2/d1 is positive. ��
We now give an explicit description of the lift (Tn Jw)◦, where Tn is the Hecke

operator defined in Sect. 2.4. Since (Tn Jw)◦ does not depend on the choice of ξp, we
will simplify our notation and simply write ξ for ξ∞.

Proposition 2.9 For all γ ∈ SL2(Z), the infinite product

(Tn Jw)◦(γ ) :=
∞∏

m=0

(Tn Jw)◦m(γ ),
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where the factors are defined by

(Tn Jw)◦m(γ ) :=
∏

γn∈�n

∏

(r ,s)∈�(m)

(tr ,s(γnz))[r ,s] · [ξ, γnγ (γ ′
n)−1ξ ]

converges to a rigid analytic function on Hp, up to 12-th roots of unity, and defines an
element of H1(SL2(Z),A×/μ12), which is the unique lift of the restriction of Tn Jw

to �◦ = SL2(Z).

Proof For integers m > N + ordp(n) ≥ 0, consider the restriction of (Tn Jw)◦m(γ ) to
the affinoidH≤N

p . Suppose (r , s) ∈ �(m) with r = a/b and s = c/d in lowest terms.
The fact that ordp(ad − bc) = m implies that the primitive vectors (a, b) and (c, d)

in Z
2 are proportional to each other modulo pm . Hence there exists v ∈ Z

×
p for which

(a, b) = v · (c, d) + pm(e, f )

for some (e, f ) ∈ Z
2. It follows that

tr ,s(z) = v + pm f z − e

dz − c
.

If γn ∈ Mn and z ∈ H≤N
p , then γnz ∈ H≤N ′

p with N ′ = N + ordp(n). The description
of the latter set given in (41) shows that

f γnz − e

dγnz − c
∈ p−N ′OCp ,

so that (Tn Jw)◦m(γ ) is constant modulo pm−N ′
, and its reduction defines a cocycle

of SL2(Z) valued in the trivial module (Z/pm−N ′
Z)×. Since the abelianisation of

SL2(Z) is of order 12, it follows that

(Tn Jw)◦m(γ )(z)|H≤N
p

∈ μ12 (mod pm−N ′
).

The convergence of the infinite product (up to 12th roots of unity) follows. The rest
of the statement follows by definition of the Hecke action on cohomology. ��

2.6 RM values of the winding cocycle

The main interest in the winding cocycle and its Hecke translates Tn Jw lies in their
RM values, which we now investigate. Recall that if τ ∈ Hp is an RM point, then we
defined

Tn Jw[τ ] := (Tn Jw)◦(γτ )(τ ) ∈ Cp ∪ {∞}.

We will now obtain an explicit formula for this quantity, using Proposition 2.9.
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First, we fix some notation. Suppose n is coprime to p, and choose Mn(τ ) ⊆ Mn

as in (26). Note that the condition (n, p) = 1 implies that

⊔

γn∈Mn

� · γn =
⊔

δn∈Mn(τ )

� · δn · �[τ ]. (52)

We also use the notation �̃ := GL+
2 (Z[1/p]) for the group of invertible matrices

with entries in Z[1/p] and positive determinant, and let D and D̃ be the subgroups of
diagonal matrices in � and �̃ respectively. We have the following explicit formula for
Tn Jw[τ ]:
Theorem 2.10 For all τ ∈ HD

p , and for all n ≥ 1 such that (n, p) = 1,

Tn Jw[τ ] =
∏

δn∈Mn(τ )

∏

w∈�̃δnτ
vp(w)=0

w[0,∞]·(w′,w). (53)

Proof We start by choosing a set of coset representatives �n for the Hecke operator
Tn that is more convenient for our purposes than the standard choice Mn : For every δn

in Mn(τ ), there is an integer f such that the stabiliser subgroup �[δnτ ] is generated
modulo torsion by the matrix δnγ

f
τ δ−1

n . Now choose

�n =
⊔

δn∈Mn(τ )

{
δn, δnγτ , . . . , δnγ f −1

τ

}
, (54)

which is a set of coset representatives for Tn . The Hecke action is independent of the
choice of representatives, and with this choice, we find

{
γnγτ (γ

′
n)−1 = γδnτ if γn = δn ∈ Mn(τ )

γnγτ (γ
′
n)−1 = 1 otherwise,

where we recall that γδnτ = δnγ
f

τ δ−1
n is the automorph of the RM point δnτ . It now

follows from Proposition 2.9 that

Tn Jw[τ ] =
∏

δn∈Mn(τ )

∏

γ∈�̃/D̃

tγ 0,γ∞(δnτ)[γ 0,γ∞]·[ξ,γδnτ ξ ]

where we used the fact that the map γ �→ (γ 0, γ∞) gives a natural identification

�̃/D̃ =
∞⋃

m=0

�(m),

where as before �(m) ⊂ � is the subset of pairs (r , s) with ordp(det(r , s)) = m.
Since (n, p) = 1, the stabiliser subgroup �[δnτ ] is contained in SL2(Z), and it

follows from Lemma 2.8 that the quantity tγ 0,γ∞(δnτ) only depends on the double
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coset of γ in γ Z

δnτ\�̃/D̃. As a consequence, a similar unfolding argument as in Lemma
1.10 implies that

Tn Jw[τ ] =
∏

δn∈Mn(τ )

∏

γ ∈�[δnτ ]\�̃/D̃

tγ 0,γ∞(δnτ)
∑

j∈Z
[γ 0,γ∞]·[γ j

δnτ ξ,γ
j+1

δnτ ξ ]

=
∏

δn∈Mn(τ )

∏

γ ∈�[δnτ ]\�̃/D̃

tγ 0,γ∞(δnτ)[γ 0,γ∞]·(δnτ ′,δnτ)

Consider �̃prim ⊂ �̃, consisting of the elements whose two columns are primitive
vectors in Z

2. Clearly, each coset in �̃/D̃ has a unique primitive representative, and
hence the natural inclusion �̃prim/ ± 1 ⊂ �̃/D̃ is a bijection. Furthermore, if γ is
primitive, then

tγ 0,γ∞(δnτ) = γ −1δnτ.

Now observe the equality of sets

{γ −1δnτ : γ ∈ �̃prim/ ± 1} = {w ∈ �̃δnτ : vp(w) = 0},

which allows us to rewrite the above expression as

Tn Jw[τ ] =
∏

δn∈ Mn(τ )

∏

γ ∈�[δnτ ]\�̃prim

(γ −1δnτ)[0,∞]·(γ −1δnτ ′,γ −1δnτ) (55)

=
∏

δn∈ Mn(τ )

∏

w ∈ �̃δnτ
vp(w) = 0

w[0,∞]·(w′,w). (56)

��

2.7 Diagonal restrictions: the incoherent case

Finally, we return to the incoherent case of the diagonal restriction of the p-adic
family of Hilbert Eisenstein series. Recall that we showed that when p is inert in
F , the diagonal restriction G1(ψ) vanishes identically, and the first order derivative
G ′

1(ψ) is an overconvergent form of weight 2 and tame level 1. We are now ready to
prove Theorem B from the introduction:

Theorem 2.11 For any odd function ψ on Cl(D),

G ′
1(ψ)ord = L ′

p(F, ψ, 0) − 2
∞∑

n=1

logp

(
Nm((Tn Jw)[ψ ])) qn . (57)

Proof Note that all Fourier coefficients are linear in the character ψ , so it suffices to
prove this for the odd indicator function of the class C attached to an RM point τ ,
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which takes values 1 and −1 on C and C∗, and 0 elsewhere. Let τ be an RM point in
RM(C).

Suppose first that n is not divisible by p. Define the map

�̃δnτ −→ Cp : w �−→ logp (a(w))

sending an RM point w to the p-adic logarithm of the leading coefficient of any
quadratic form whose prime-to-p discriminant is n2D, and whose stable root is w.
The integer a(w) is only defined up to powers of p, but its logarithm is well-defined.
By Lemma 1.8 and Theorem 2.10, we obtain the identities

logp

(
Nm((Tn Jw)[ψ ])) =

∑

δn∈Mn(τ )

∑

w∈�̃δnτ
vp(w)=0

[0, ∞] · (w′, w) · logp (Nm(w)) (58)

= −2
∑

δn∈Mn (τ )

∑

w∈�̃δnτ
vp(w)=0

[0, ∞] · (w′, w) · logp (a(w)) (59)

where the last equality is justified by the obvious relations

[0,∞] · (w′, w) = −[0,∞] · (−1/w′,−1/w)

logp (Nm(w)) = − logp (a(w)) + logp (a(−1/w)) .
(60)

The next step is to rewrite the inner sum of (59). First observe that its index set is

lim
m→∞ Xm(δn), where Xm(δn) := {w ∈ �̃δnτ : vp(w) = 0, vp(disc(w)) ≤ 2m}.

For any w ∈ Xm(δn) we let a, b, c be the the unique integers such that

• the stable root of ax2 + bx + c = 0 is w,
• b2 − 4ac = n2 p2m−2k D, where vp(disc(w)) = 2m − 2k,

Define w̃ = pkw, then w̃ is the stable root of the equation ax2 + bpk x + cp2k = 0.
Since vp(a) = 0 there exists a matrix M ∈ M2(Z) of determinant p2m such that
w̃ = Mδnτ . This means there is a unique δpm ∈ Mpm (τ ) such that M belongs to the
double coset

SL2(Z) · δpm · SL2(Z)[δnτ ].

We claim that the map w �−→ (w̃, δpn ) defines a bijection

Xm(δn) ←→ RM(pm, δnτ) \ RM(pm, δnτ)p. (61)

To prove this claim, note that the image is contained inRM(pm, δnτ), and p � a(w̃) =
a(w). To see that it is a bijection, note that the inverse map is given by

(w̃, δpm ) �→ w̃ · p−vp(w̃).
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In conclusion, (61) shows that

2 logp

(
Nm((Tn Jw)[ψ ])) = −4 lim

m→∞
∑

δn∈Mn(τ )

∑

w∈Xm (δn)

[0,∞] · (w′, w) · logp a(w)

= −4 lim
m→∞

∑

(w̃,δnpm ) ∈ RM(npm ,C)\RM(npm ,C)p

[0,∞] · (w̃′, w̃) · logp a(w̃)

where the inner sum is the npm-th Fourier coefficient of G ′
1(ψ) by (22) and Lemma

1.9.
It now follows that for all n that are prime to p, the nth Fourier coefficient of

G ′
1(ψ)ord agrees with the corresponding coefficient on the right-hand side of (57).

Because the Hecke action on the space H1(�,A×/C
×
p ) of analytic theta-cocycles

factors through the Hecke algebra T2(p) ⊂ End(M2(�0(p)) acting faithfully on
M2(�0(p)), the formal q-series

Gw := L? − 2
∞∑

n=1

logp

(
Nm((Tn Jw)[ψ ])) qn

is a classical weight two modular form on �0(p), for a uniquely determined constant
L? ∈ Cp. Therefore the difference G ′

1(ψ)ord − Gw is an oldform in M2(�0(p)), and
therefore zero. It follows that L? = L ′

p(F, ψ, 0), and hence that both sides of (57)
coincide. ��

3 The twisted triple product p-adic L-function

We now turn to the proof of Theorem C of the introduction, which rests on a careful
analysis of the winding element gw andwinding cocycle Jw, and on the decomposition
of the latter as a linear combination of the Dedekind–Rademacher cocycle JDR and
the elliptic modular cocycles J±

f .

3.1 The Schneider–Teitelbaum lift

The logarithmic derivative map embeds the multiplicative group H1(�,A×/C
×
p ) into

the Cp-vector space H1(�,A2), whereA2 denotes the rigid analytic functions onHp

equipped with the “weight two action” of �. Let

U := {z ∈ Cp with 1 < |z| < p} ⊂ Hp (62)

denote the standard annulus, whose stabiliser in � is equal to �0(p). The p-adic
annular residueω �→ resU (ω), as described for instance in [25, §II] or [29], determines
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a �0(p)-equivariant map

resU : A2 −→ Cp,

with �0(p) acting trivially on the target.

Theorem 3.1 The linear map

resU : H1(�,A2) −→ H1(�0(p), Cp)

induced by the p-adic annular residue is a surjection of Cp-vector spaces. Its kernel
is one-dimensional and generated by the cocycle dlog Juniv.

The proof of this assertion is given in [11, § 3]. It rests on the construction of an explicit
inverse to the residue map, referred to as the Schneider–Teitelbaum lift:

ST : H1(�0(p), Cp) −→ H1(�,A2)/Cp · dlog Juniv.

There is also a multiplicative variant, the so-called multiplicative Schneider–
Teitelbaum lift

ST× : H1(�0(p), Z) −→ H1(�,A×/C
×
p )/J Z

univ (63)

of [11, § 3], which fits into the commutative square

H1(�0(p), Z)
ST×

H1(�,A×/C
×
p )/J Z

univ

dlog

H1(�0(p), Cp)
ST

H1(�,A2)/Cp · dlog Juniv.

The multiplicative Schneider–Teitelbaum lift leads to the construction of various
explicit rigid analytic theta-cocycles, as described in the introduction and in [11,
§ 3], namely the Dedekind–Rademacher cocycle JDR := ST×(ϕDR) attached to the
Dedekind–Rademacher homomorphism, and the elliptic modular cocycles J±

f :=
ST×(ϕ±

f ) attached to the real and imaginary periods of weight two cusp forms on
�0(p).

Remark 3.2 Although the theta-cocycles JDR and J±
f are only defined up to multiples

of Juniv, the RM values of the latter are given by

Juniv[τ ] := ετ , (64)

where ετ is the fundamental unit of the order attached to τ (cf. [11, §3]). Since this
quantity depends only on the discriminant of τ rather than on τ itself, it follows that

Juniv[ψ ] = 1 (65)
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for any odd function ψ , and hence that the RM values JDR[ψ ] and J±
f [ψ ] are

well-defined.

3.2 The winding element and the winding cocycle

Recall that the winding element gw is the class of the geodesic path from 0 to ∞ in
the homology of X0(p) relative to the cusps, and define

ϕw : �0(p) −→ Z, γ �−→ 〈gw, γ 〉, (66)

where 〈 , 〉 denotes the intersection pairing of (6)

H1(X0(p); {0,∞}, Z) × H1(Y0(p), Z) −→ Z.

Proposition 3.3 The winding cocycle Jw is the image of the homomorphism ϕw under
the multiplicative Schneider–Teitelbaum lift of (63):

Jw = L×
ST(2ϕw).

Proof Recall
the standard annulusU of (62) having�0(p) as its stabiliser in�. The inverse of the

Schneider–Teitelbaum lift takes a cocycle J ∈ H1(�,A×/C
×
p ) to the homomorphism

φJ : �0(p) −→ Z, φJ (γ ) := resU (dlog J (γ )),

where resU is the p-adic annular residue attached to U . Consider the infinite product
expression of Proposition 2.9 for J ◦

w and observe that the terms dlog J ◦
w,m(γ ) for

m ≥ 1 contribute nothing to the annular residue at U : indeed, two cusps r , s for
which det(r , s) = pm with m ≥ 1 necessarily belong to the same connected affinoid
component of the complement of U , and hence resU (dlog tr ,s(z)) = 0 for such pairs.
On the other hand,

resU (dlog tr ,s(z)) =
{

1 if r /∈ Zp, s ∈ Zp,

−1 if r ∈ Zp, s /∈ Zp.

Hence, any pair (r , s) for which the residue of dlog tr ,s(z) is equal to 1 is of the form
(α0, α∞). It follows that

resU (dlog Jr ,s(γ )) =
∑

α∈�0(p)

(+1)[α0, α∞] · [ξ, γ ξ ] +
∑

α∈�0(p)

(−1)[α∞, α0] · [ξ, γ ξ ]

= 2
∑

α∈�0(p)

[α0, α∞] · [ξ, γ ξ ].
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This last expression equals twice the intersection product of the relative homology
class gw with the class of γ in H1(Y0(p), Z). The proposition follows. ��

3.3 Spectral expansion of the winding element

The following lemmadescribes the decomposition of the cohomology classϕw relative
to the Q̄- basis (ϕDR, ϕ±

f ) for H1(�0(p), Q̄) described in (19) and (17).

Lemma 3.4 The homomorphism ϕw is equal to

ϕw = 1

p − 1
· ϕDR +

∑

f

Lalg( f , 1) · ϕ−
f ,

where the sum runs over a basis of normalised eigenforms for S2(�0(p)),

Lalg( f , 1) := 1

�+
f

∫ ∞

0
ω+

f ∈ K f

is the “algebraic part” of the special value L( f , 1), and

ϕ−
f (γ ) := 1

�−
f

∫ γ z0

z0
ω−

f ∈ O f

is the minus class in H1(�0(p),O f ) attached to f , normalised by the periods �±
f

chosen in (17).

Proof Recall the canonical identifications

H1(Y0(p); {0,∞}, C) −→ H1
c (Y0(p))∨ −→ H1

dR(Y0(p)),

where H1
c denotes the de Rham cohomology with compact support and the super-

script ∨ denotes the C-linear dual. The first identification arises from the integration
pairing and the second from Poincaré duality. Let Gw be the class in H1

dR(Y0(p))

corresponding to ϕw under this identification, which is characterised by the equivalent
conditions

∫

γ

Gw = 〈γ, gw〉, for all γ ∈ H1(Y0(p), Z), (67)

〈Gw, ω〉 =
∫ ∞

0
ω, for all ω ∈ H1

c (Y0(p)). (68)

Let α0 and α±
f ∈ C be the coordinates of Gw relative to the basis of H1

dR(Y0(p))

consisting of ωEis and of the classes ω+
f and ω−

f as f ranges over the normalised
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weight two eigenforms on �0(p):

Gw = α0ωEis +
∑

f

(λ+
f ω+

f + λ−
f ω−

f ). (69)

Letγ ∈ H1(Y0(p), Z)be the class attached to the standard (upper-triangular) parabolic
element of �0(p), which is orthogonal to the cuspidal classes ω+

f and ω−
f . Applying

(67) to this class and substituting for the expansion (69) of Gw, one obtains

2π i(p − 1) · α0 = 1 and hence α0 = 1

2π i(p − 1)
. (70)

The class Gw − α0ωEis belongs to H1
dR(X0(p)) and can therefore be paired against

any element of the de Rham cohomology of X0(p). Applying (68) with ω = ω−
f and

substituting for (69) once again, yields

− � f α
+
f =

∫ ∞

0
ω−

f = 0, and hence α+
f = 0. (71)

The same calculation with ω = ω+
f reveals that

� f α
−
f =

∫ ∞

0
ω+

f , and hence α−
f = (� f )

−1
∫ ∞

0
ω+

f = Lalg( f , 1)(�−
f )−1.

(72)
We have thus obtained

Gw = 1

2π i(p − 1)
· ωEis +

∑

f

Lalg( f , 1) · (�−
f )−1ω−

f , (73)

where the sum is taken over a basis of eigenforms for f . The lemma now follows from
(67) and the definitions in (19) and (17). ��

3.4 Spectral decomposition: the coherent case

We now turn to the proof of Part 1 of Theorem C of the introduction, concerning
the expansion of the modular form G1(ψ) as a linear combination of eigenforms in
M2(�0(p)).

Theorem 3.5 The modular form G1(ψ) is equal to

G1(ψ) = λ0 · E (p)
2 +

∑

f

λ f · f ,

where the sum runs over the basis of normalised eigenforms f in S2(�0(p)), and

λ0 = −2

p − 1
· ϕDR(gψ), λ f = −2Lalg( f , 1) · ϕ−

f (gψ).
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Proof By Theorem 1.12, the generating series G1(ψ) is equal to

G1(ψ) = L p(F, ψ, 0) − 2
∞∑

n=1

ϕw(Tngψ)qn .

Lemma 3.4 implies the n-th Fourier coefficient in this expression is equal to

ϕw(Tngψ) = 1

p − 1
· ϕDR(Tngψ) +

∑

f

Lalg( f , 1) · ϕ−
f (Tngψ)

= 1

p − 1
· ϕDR(gψ)an(E (p)

2 ) +
∑

f

Lalg( f , 1)ϕ−
f (gψ)an( f ).

The theorem follows by substituting this into the q-expansion formula for G1(ψ). ��
Remark: The coefficient λ f in the above decomposition can be understood as the
special value of a twisted triple product L-function attached to f and the family of
Hilbert modular Eisenstein series Ek(1, ψ).

As an illustration of this result, consider the unique unramified odd character ψ

of discriminant 12, which is the odd genus character attached to the factorisation
12 = (−3)(−4). Let p = 23, which is split in Q(

√
12), then we compute

G1(ψ) = a0 + 8q3 + 8q4 + 8q6 + 16q8 + 8q9 + 16q10 + . . .

As before, we express G1(ψ) in a basis of normalised eigenforms, and obtain

G1(ψ) = 8

11
· E (23)

2 − 8

11

(
7β − 4

5
· f1 + 7β ′ − 4

5
· f2

)

where β = (1+ √
5)/2 is the golden ratio, and f1 = q − βq2 + . . . and its conjugate

f2 are the newforms of weight 2 and level 23. In light of the above result, we note that
the algebraic part of the L-value of the modular surface attached to the pair { f1, f2}
is equal to 1/11, which is consistent with the fact that the trace of (7β − 4)/5 is −3.

3.5 Spectral decomposition: the incoherent case

The following direct corollary of Lemma 3.4 expresses the theta-cocycle Jw as a linear
combination of Hecke eigenvectors.

Lemma 3.6 The rigid analytic theta cocycle Jw satisfies

Jw = 2

p − 1
· JDR +

∑

f

2Lalg( f , 1) · J−
f (mod J Z

univ),

where the sum runs over a basis of normalised eigenforms for S2(�0(p)), and additive
notation is used to denote the group operation in H1(�,A×/C

×
p ) ⊗ K f .
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Proof This follows by applying the Schneider–Teitelbaum lift to Lemma 3.4. ��
We are now ready to prove part (2) of Theorem C.

Theorem 3.7 The modular form G ′
1(ψ)ord is equal to

G ′
1(ψ)ord = λ′

0 · E (p)
2 +

∑

f

λ′
f · f ,

where the coefficients λ′
0 and λ′

f are given by

λ′
0 = −4

p − 1
· logp

(
Nm(JDR[ψ ])) , λ′

f = −4Lalg( f , 1) · logp

(
Nm(J−

f [ψ ])
)

.

Proof By Theorem 2.11, the generating series G ′
1(ψ)ord is equal to

G ′
1(ψ)ord = L ′

p(F, ψ−
τ , 0) − 2

∞∑

n=1

logp(Nm((Tn Jw)[ψ ]))qn .

By Lemma 3.6, the n-th Fourier coefficient An := −2 logp(Nm((Tn Jw)[ψ ])) in this
q-expansion is equal to

An = −4

p − 1
· logp(Nm((Tn JDR)[ψ ]))

−4
∑

f

Lalg( f , 1) · logp(Nm((Tn J−
f )[ψ ]))

= −4an(E (p)
2 )

p − 1
· logp(Nm(JDR[ψ ]))

−4
∑

f

Lalg( f , 1) · logp(Nm(J−
f [ψ ]))an( f ),

where the sum runs over a basis of normalised eigenforms for S2(�0(p)). The result
follows in exactly the same way as in the proof of Theorem 3.5. ��
Remark 3.8 Recall from [11, § 3] that

JDR[ψ ] ?∈ (OH [1/p])× ⊗ Q

is conjectured to be the Gross–Stark unit attached to the RM divisor ψ . If f is a
normalised eigenform on �0(p) having integer Fourier coefficients, so that it corre-
sponds to a modular elliptic curve E f via the Eichler–Shimura construction, [11, § 3]
likewise predicts that the Stark–Heegner points

J+
f [ψ ] ?∈ E f (H), J−

f [ψ ] ?∈ E f (H)
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are global points on E f . The global point J+
f [ψ ] is conjecturally fixed by complex

conjugation, i.e., is defined over the class field in the wide sense, while J−
f [ψ ]

is expected to be in the minus eigenspace for complex conjugation. The coefficient
λ f in the above decomposition can be understood as the special value of a twisted
triple product L-function attached to f and the family of Hilbert modular Eisenstein
series Ek(1, ψ). It is notable that these coefficients involve the logarithms of the Stark–
Heegner points attached to oddmodular symbols, which are conjecturally in the minus
part for complex conjugation.

3.6 Examples

Using Lemma 1.9, we may efficiently compute the diagonal restrictions G1(ψ) and
the first derivative G ′

1(ψ). This will be described in a more general setting in [21].
The algorithms of Lauder [20] can then be used to compute the ordinary projection
G ′

1(ψ)ord. Expressing these classical modular forms of weight two and level p as
linear combinations of eigenforms leads to the following numerical illustrations of
Theorem C.

Example 1 When p = 17, the space M2(�0(p)) is two-dimensional and is spanned
by the Eisenstein series E (17)

2 and the normalised newform f attached to the elliptic
curve

E : y2 + xy + y = x3 − x2 − x − 14

of rank 0 over Q, whose associated central L-value is Lalg( f , 1) = 1/4.

Table 2 presents the coefficients of the spectral decompositions of G1(ψ) and
G ′

1(ψ)ord for all genus characters associated to a factorisation D = D1 · D2 with

D < 100, where the labelling is chosen such that
(

D1
17

)
= −

(
D2
17

)
= 1 in the

incoherent case. The coefficients λ0 and λ f are rational numbers, and were computed
exactly. The coefficients λ′

0 and λ′
f were computed numerically up to 30 digits of

17-adic precision. We note that the exceptional vanishing for D = 76 is explained by
Remark 1.15.

Example 2 We now turn to the attractive case of elliptic curves of conductor 37, where
there are two isogeny classes with different ranks:

37a E+ : y2 + y = x3 − x
37b E− : y2 + y = x3 + x2 − 23x − 50

We denote f + and f − for the associated modular forms, which span S2(�0(37)).
The elliptic curve E+ has non-split multiplicative reduction at 37, and rank 1 over
Q, whereas E− has split multiplicative reduction, and rank 0 over Q. We also have
Lalg( f −, 1) = 1/3.
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Ta
bl
e
2

T
he

sp
ec
tr
al
de
co
m
po

si
tio

ns
of

G
1
(ψ

)
an
d

G
′ 1
(ψ

) o
rd

w
he
n

p
=

17
.

D
D
1

·D
2

(
D 17

)
λ
0

λ
f

λ
′ 0

λ
′ f

12
(−

4)
(−

3)
-1

0
0

lo
g
( 4

−√ −1
17

)
lo
g E

( 3
+√ −1

,−
5−

4√ −1
)

21
(−

3)
(−

7)
1

2
-2

24
(−

8)
(−

3)
-1

0
0

−2
lo
g
( 3

−2
√ −2
17

)
2
lo
g E
( −2

2+
17

√ −2
9

,
18
1+

34
√ −2

27

)

28
(−

4)
(−

7)
-1

0
0

3
lo
g
( 4

−√ −1
17

)
lo
g E

( 3
+√ −1

,−
5−

4√ −1
)

33
(−

3)
(−

11
)

1
2

-2

44
(−

4)
(−

11
)

-1
0

0
3
lo
g
( 4

−√ −1
17

)
−
lo
g

E
( 3

+√ −1
,−

5−
4√ −1

)

56
(−

8)
(−

7)
-1

0
0

6
lo
g
( 3

−2
√ −2
17

)
2
lo
g E
( −2

2+
17

√ −2
9

,
18
1+

34
√ −2

27

)

57
(−

19
)(

−3
)

-1
0

0
2
lo
g
( 7

−√ −1
9

2·1
7

)
2
lo
g E

( √
−1

9−
3,

−√ −1
9−

11
)

69
(−

23
)(

−3
)

1
6

2

76
(−

4)
(−

19
)

1
0

0
0

0

77
(−

7)
(−

11
)

1
6

2

88
(−

8)
(−

11
)

-1
0

0
6
lo
g
( 3

−2
√ −2
17

)
−2

lo
g

E

( −2
2+

17
√ −2

9
,
18
1+

34
√ −2

27

)

93
(−

3)
(−

31
)

1
6

2
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Table 3 The spectral decompositions of G′
1(ψ)ord when p = 37.

D D1 · D2 λ′
0 λ′

f + λ′
f −

24 (−3)(−8) 8
9 log

(
1+7

√−3
2·37

)
0 8

9 logE−
(
− 7

3 ,
−9+19

√−3
18

)

56 (−7)(−8) 8
3 log

(
3+2

√−7
37

)
0 8

3 logE−
(−27+√−7

8 ,
15+3

√−7
16

)

57 (−3)(−19) 8
9 log

(
1+7

√−3
2·37

)
0 8

9 logE−
(
− 7

3 ,
−9+19

√−3
18

)

69 (−3)(−23) 8
3 log

(
1+7

√−3
2·37

)
0 0

76 (−4)(−19) 4
3 log

(
1+6

√−1
37

)
0 8

3 logE−
(
− 5

4 ,
−4+37

√−1
8

)

88 (−11)(−8) 8
3 log

(
7+3

√−11
2·37

)
0 8

3 logE−
(−65−5

√−11
18 ,

68−10
√−11

27

)

93 (−3)(−31) 8
3 log

(
1+7

√−3
2·37

)
0 0

It turns out that themodular form G1(ψ) vanishes systematically whenψ is a genus
character, in the coherent as well as in the incoherent cases. In the coherent setting,
this “exceptional vanishing” of G1(ψ) = 0 can be explained by the presence of an
exceptional zero of the associated p-adic L-function, as described in Remark 1.15.
It follows from Proposition 2.1 that G ′

1(ψ) is also overconvergent in the coherent
setting. Our numerical experiments found in all these cases that G ′

1(ψ)ord is a nonzero
multiple of f +. We expect the constant of proportionality to be a rational multiple of
the p-adic height of a Mordell–Weil generator of E+(Q), but have not verified this.

Table 3 shows the coefficients of the spectral decompositions of G ′
1(ψ)ord for

all genus characters associated to the factorisation D = D1 · D2 with D < 100
and (D/p) = −1, with the ordering of D1 and D2 as in the previous example. The
coefficients λ′

0 and λ′
f were computed numerically up to 20 digits of 37-adic precision.

We note that the vanishing of λ′
f − for D = 69 and 93 in Table 3 can be accounted

for by the fact that the twists of E− by the odd quadratic characters of conductor 23
and 31 have analytic rank equal to 2.

Example 3 Finally, we illustrate how Theorems B and C do not only apply to genus
characters, by considering D = 316 which has narrow class number 6. Let ψ be the
odd character which takes value 1 on the trivial class, value −1 on the class of d, and
zero elsewhere. Setting p = 11, we compute that G1(ψ) = 0 and that

G1(ψ)′ord = λ′
0E (11)

2 + λ′
f f ,

where f is the modular form attached to the elliptic curve X0(11) considered also in
the introduction. The coefficients λ′

0 and λ′
f were calculated to 200 digits of 11-adic

precision, and we found that

λ′
0 = −12

5
log11(u)
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where u is the root of a sextic polynomial a6x6 + · · · + a1x + a0 which generates the
narrow Hilbert class field of Q(

√
316), and whose coefficients are given by

a0 = 112

a1 = 110 × −23684126
a2 = 114 × 38858607
a3 = 118 × 1575649852
a4 = 1114 × 38858607
a5 = 1120 × −23684126
a6 = 1132

The constant λ′
f was slightly more difficult to identify because of the large height

of the polynomials involved. Using the efficient implementation in Sage by Guitart–
Masdeu [18] of the polynomial time algorithm of [7] for computing Stark–Heegner
points on elliptic curves, Marc Masdeu verified that

λ′
f = 1

100
log11

(
Pψ

)
(mod 11200),

where Pψ = (x, y) is a global point on X0(11) defined over the narrow Hilbert class
field of Q(

√
316), whose x-coordinate satisfies the polynomial

72456194397209968278659172637696x3 − 175475962538109348211894597561280x2

−183621530533243510414048237467536x + 103446014224118434016969398063313 = 0

The authors are grateful to Marc Masdeu for his help with this calculation.
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