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Abstract. Rigid meromorphic cocycles were introduced in [DV21] to formulate a notion of singular

moduli for real quadratic �elds. The present work further develops their foundations and �eshes out

their analogy with meromorphic modular functions with CM divisor by describing a real quadratic

analogue of the Borcherds lift mapping certain weakly holomorphic modular forms of weight 1/2
to the group of rigid meromorphic cocycles with rational RM divisor.
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1. Introduction

Let p be a rational prime and let Hp denote Drinfeld’s p-adic upper half plane, a rigid analytic

space whose Cp-points are identi�ed with Cp−Qp. The Ihara group Γ := SL2(Z[1/p]) acts by

Möbius transformations onHp (with non-discrete orbits), and, by translation, on the multiplicative

group M× of non-zero rigid meromorphic functions on Hp. This action preserves the subset

HRM
p ⊂ Hp of real multiplication, or RM points, namely, points of Hp that lie in a real quadratic

�eld. A henceforth �xed choice of embeddings of Q̄ into bothCp andC gives an inclusionHRM
p ↪→

R and allows one to view RM points as real numbers, and to make sense of their sign.
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A rigid meromorphic cocycle is an element of the �rst cohomology group H1(Γ,M×). Such a

class is said to be parabolic if it admits a (necessarily unique, up to torsion) representative cocycle

J whose restriction to the group Γ∞ of upper triangular matrices is C×p -valued. A parabolic rigid

meromorphic cocycle is often con�ated with this distinguished representative. In this setting,

Theorem 1 of [DV21] asserts that the meromorphic function J(S), where S ∈ Γ is the standard

matrix of order 4, can be written as a �nite product

(1) J(S)(z) =
∏

τ∈Γ\HRM
p

ατ (z)nτ , nτ ∈ Z,

where ατ (z) is a rigid meromorphic function whose zeroes (resp. poles) are concentrated at the

negative norm elements in the Γ-orbit of τ which are positive (resp. negative):

Divisor(ατ ) =
∑
w∈Γτ,
ww′<0

sign(w) · (w).

While Divisor(ατ ) is an in�nite sum of points on Hp, its intersection with any a�noid subset of

Hp is a �nite divisor.

The divisor of the cocycle J satisfying (1) is then de�ned to be

Divisor(J) :=
∑

τ∈Γ\HRM
p

nτ [τ ] ∈ Div(Γ\HRM
p ),

where Div(X) denotes the group of �nite formal integer linear combinations of elements of a set

X . Rigid meromorphic cocycles can be envisaged as real quadratic analogues of meromorphic

functions on a modular or Shimura curve whose divisors are concentrated on CM points, such as

those arising in the image of Borcherds’ singular theta lift. One of the goals of this note is to bring

this analogy into sharper focus by showing that the principal parts of certain weakly holomorphic

modular forms of weight 1/2 on Γ0(4p) encode divisors of rigid meromorphic cocycles.

1.1. The main theorem. The discriminant of τ ∈ HRM
p is the discriminant of the unique primi-

tive integral binary quadratic form of which τ is a root. The setHDp of RM points of discriminant

D is non-empty if and only if p is inert or rami�ed in the real quadratic �eld Q(
√
D). One then

has (
D

p

)
6= 1, D ≡ 0, 1 (mod 4).

The setHDp is stable under the action of SL2(Z) ⊂ Γ by Möbius transformations, and the quotient

SL2(Z)\HDp is naturally identi�ed with the narrow ideal class group of the order of discriminant

D, with composition given by the classical Gauss composition of binary quadratic forms.

Let −d1 and −d2 be a pair of negative discriminants satisfying the following conditions:

(1) −d1 is fundamental, and prime to p;

(2) ordp(−d2) ≤ 1;

(3)

(
d1d2
p

)
6= 1.
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Under these assumptions,D := d1d2 is the discriminant of a real quadratic order which is maximal

at p, and HDp is non-empty. As in [Ko85, p. 238], the pair (−d1,−d2) gives rise to a character

ω−d1 of the narrow class group Cl+(D) of discriminant D sending the equivalence class of Q =
ax2 + bxy + cy2

to

ω−d1(Q) =

{
0 if gcd(a, b, c, d1) > 1;(
−d1
r

)
if gcd(a, b, c, d1) = 1, with Q representing r, and gcd(r, d1) = 1.

We associate to the pair (−d1,−d2) the RM divisors

D−d1,−d2 :=
∑

Q∈Cl+(D)

ω−d1(Q) · [τQ],

D+
−d1,−d2 :=

∑
Q∈Cl+(D)

ω−d1(Q) · ([τQ] + [pτQ]),(2)

D−−d1,−d2 :=
∑

Q∈Cl+(D)

ω−d1(Q) · ([τQ]− [pτQ]),

where, for Q(x, y) = ax2 + bxy + cy2
,

τQ :=
−b+

√
D

2a
,

and [τQ] denotes the class of τQ in Γ\Hp. These divisors do not depend on the choice of p-adic

embedding of Q̄ into Q̄p that was made to de�ne them; i.e., replacing

√
D by−

√
D leavesD−d1,−d2

unchanged. This follows from the fact that

ω−d1(−Q) = −ω−d1(Q), τ−Q = τ ′Q :=
−b−

√
D

2a
, sign(τ ′Q) = −sign(τQ).

De�nition (2) is extended to arbitrary discriminants −d1 by setting

(3) D+
−d1,−d2p2m := D+

−d1,−d2 , D−−d1,−d2p2m := (−1)m · D−−d1,−d2 , for all m ≥ 1.

For any integer N ≥ 1 and a weight k ∈ 1
2 Z, let

Sk(N) ⊂Mk(N) ⊂M !
k(N)

denote the usual spaces of weight k cusp forms, modular forms, and weakly holomorphic modular

forms on Γ0(N). It will also be convenient to introduce the subspaceM !!
k (N) ⊂M !

k(N) consisting

of the weakly holomorphic modular forms that are regular at all the cusps except∞. Any form

φ ∈M !
k(N) admits a Fourier expansion at the cusp∞ of the form

φ(q) =
∑

n>>−∞
cφ(n)qn, q := e2πiz.

The space M !!
k (N) is an in�nite-dimensional complex vector space and admits a basis consisting

of modular forms with integer Fourier coe�cients.

The main result of this paper is
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Main Theorem. Let φ :=
∑

n>>−∞ cφ(n)qn ∈ M !!
1/2(4p) be a weakly holomorphic modular form

with integer Fourier coe�cients.

(1) If
(
−d1
p

)
= 1, there exists a rigid meromorphic cocycle J−d1,φ ∈ H1(Γ,M×)⊗Q with

Divisor(J−d1,φ) =
∑

d2≡0,3 mod 4

cφ(−d2) · D+
−d1,−d2 ,

where the sum runs over the positive integers d2 satisfying
(
−d2
p

)
6= 1.

(2) If
(
−d1
p

)
= −1, there exists a rigid meromorphic cocycle J−d1,φ ∈ H1(Γ,M×)⊗Q with

Divisor(J−d1,φ) =
∑

d2≡0,3 mod 4

cφ(−d2) · D−−d1,−d2 ,

where the sum runs over the positive integers d2 satisfying
(
−d2
p

)
6= −1.

The rigid meromorphic cocycle J−d1,φ is called a real quadratic Borcherds lift attached to the dis-

criminant −d1 and to the weakly homolorphic modular form φ.

1.2. Outline. The proof of the main theorem relies on the classi�cation of rigid meromorphic

cocycles of [DV21, Theorem 1.23], which rests on the study of the group H1(Γ,M× /C×p ) of

rigid meromorphic cocycles modulo scalars. These objects are called theta-cocycles because of

their analogy with the p-adic theta functions arising in the uniformisation theory of Jacobians

of Mumford–Schottky curves, discussed in the Appendix.

In § 2 general rigid theta-cocycles and their RM values are discussed. The subgroup of analytic

cocycles is determined in § 3, and it is intimately connected to classical weight two modular forms

on Γ0(p) by the Schneider–Teitelbaum lift. It is shown in § 4 that the group of rigid meromorphic
theta-cocycles is of in�nite rank; more precisely, that any RM divisor arises as the divisor of a (not

necessarily unique) meromorphic theta-cocycle. No essential information is lost in passing from

a rigid meromorphic cocycle to its associated theta-cocycle, because the natural map

H1(Γ,M×)−→H1(Γ,M× /C×p )

has �nite kernel (of exponent dividing 12). However, this map fails to be surjective in general. We

analyse the obstruction to lifting a rigid meromorphic theta-cocycle with given RM divisor to an

actual meromorphic cocycle in § 5, and relate it to the Stark–Heegner point attached to that divisor.

Such a relation suggests that these lifting obstructions can be packaged into modular generating

series of weight 3/2 for Γ0(4p), which is done in § 6 by building on the Gross–Kohnen–Zagier

theorem for Stark–Heegner points proved in [DT08]. The main theorem then follows from a simple

application of Serre duality.

2. Generalities on theta cocycles and theta symbols

2.1. Rational functions onHp. Let Cp be a completion of an algebraic closure of Qp. Although

it is a natural ground �eld for the theory of rigid analytic spaces, most of our calculations (and all

of the interesting ones) take place over the compositum Cp of all the quadratic extensions of Qp,
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which is biquadratic when p 6= 2, and may be viewed as a suitable p-adic analogue of C in the

setting of this paper.

Every z ∈ P1(Cp) can be represented in projective coordinates by a pair [z1:z2] where (z1, z2)
belongs to the set (OCp ×OCp)

′
of primitive vectors having at least one coordinate in O×Cp . If

(a, b) ∈ (Z2)′ is a primitive vector, satisfying gcd(a, b) = 1, then ordp(z1b − z2a) ∈ Q∪{∞}
depends only on z and not on its representation. It belongs to Q when z /∈ P1(Qp), and is a half

integer when z ∈ P1(Cp)− P1(Qp).

Let T be the Bruhat-Tits tree of PGL2(Qp), whose set V(T ) of vertices is in bijection with the

homothety clases of Zp-lattices in Q2
p, two vertices being joined by an (unordered) edge if they

admit representative lattices containing each other with index p. Write E(T ) for the set of such

unordered edges of T and identify T with its combinatorial realisation

T := V(T ) ∪ E(T ).

The group GL2(Qp) acts on T via its left multiplication action on Q2
p viewed as column vectors.

The subgroup Γ acts transitively on E(T ) and breaks up V(T ) into two distinct orbits, in such a

way that adjacent vertices lie in distinct Γ-orbits. The vertex v◦ attached to the standard lattice

Z2
p ⊂ Q2

p is called the standard vertex. Its stabiliser Γv◦ in Γ is equal to SL2(Z). More generally, the

vertex and edge stabilisers in Γ are GL2(Z[1/p])-conjugate to SL2(Z) and to the Hecke congruence

group Γ0(p), respectively. This leads to a description of Γ as an amalgamated product

Γ = SL2(Z) ∗Γ0(p) SL2(Z)′,

which is useful in relating the cohomology of Γ with the cohomology of SL2(Z) and Γ0(p). If G
is any �nite subgraph of T , the stabiliser of G in Γ is denoted ΓG . The groups ΓG are conjugate to

�nite index subgroups of SL2(Z) and act discretely onH.

Let Hp denote Drinfeld’s upper half-plane, a rigid analytic space whose underlying set of Cp-
points is identi�ed with P1(Cp) − P1(Qp). The group GL2(Qp) acts on Hp by Möbius transfor-

mations, and there is a natural GL2(Qp)-equivariant reduction map

red : Hp−→T

which satis�es the following properties.

• The standard a�noid region

(4) H◦p := {z = (z1:z2) ∈ OCp such that ordp(z1b− z2a) = 0 for all (a, b) ∈ (Z2
p)
′},

which is the complement in P1(Cp) of p + 1 residue discs, maps to the standard vertex v◦ under

the reduction map.

• The standard annulus

(5) U := {z ∈ OCp such that 1 < |z| < p}

maps to the edge of T attached to the lattice pair (Z2
p ⊃ Zp⊕pZp), which is denoted e◦ and called

the standard edge of T . Its stabiliser Γe◦ is equal to Γ0(p).
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These two properties determine the reduction map, because Hp is the union of the GL2(Qp)-

translates of H◦p and U . The set HDp of RM points of p-discriminant D maps to V(T ) under the

reduction map if p - D, and to E(T ) if p|D.

If v is a vertex of T , let

(6) Av := red−1({v}), Wv := red−1({v, e1, . . . , ep+1}),

where e1, . . . , ep+1 are the edges of T having v as an endpoint. The sets Av and Wv are called

the standard a�noid and standard wide open space attached to v, respectively.

The distance d(v, w) between two vertices v and w of T is the number of edges in the shortest

path joining them. This notion extends to edges by setting, for all edges e = (v, v′) and all edges

e′ 6= e:

d(w, e) = d(e, w) =
1

2
(d(v, w) + d(v′, w)), d(e, e′) =

1

2
(d(v, e′) + d(v′, e′)).

With this de�nition, the distance between two vertices or two edges is a positive integer, while

the distance between a vertex and an edge is a half of an odd integer. For each integer n ≥ 0,

let T ≤n and T <n denote the subgraphs of T consisting of vertices and edges that are at distance

≤ n and < n respectively from v◦, and let H≤np and H<np denote their inverse images under the

reduction map. The collection ofH≤np andH<np give coverings ofHp by a�noid subsets and wide

open subsets, respectively, that are preserved under the action of SL2(Z). They can be described

directly as

(7) H≤np = {[z1:z2] ∈ (OCp ×OCp)
′

with ordp(z1b− z2a) ≤ n for all (a, b) ∈ (Z2)′},

and likewise forH<np .

A rational function t on P1(Cp) can be evaluated on divisors on P1(Cp) in the usual way, by

setting

t

(∑
i

ni · (zi)

)
:=
∏
i

t(zi)
ni .

Given a degree zero divisor D on P1(Cp), there is a unique rational function tD with that divisor,

up to multiplication by a non-zero scalar. In particular, if D1 and D2 are degree zero divisors with

disjoint supports, the quantity

(8) [D1; D2] := tD2(D1) ∈ C×p
does not depend on the choice of tD2 . The quantity [(z1) − (z2); (z3) − (z4)] is just the familiar

cross-ratio of (z1, z2, z3, z4). The symbol [D1; D2] is bilinear, symmetric (by Weil reciprocity) and

GL2(Cp)-equivariant. The following lemma controls the p-adic valuation of [D1; D2].

Lemma2.1. IfD1 is a degree zero divisor supported onH≤np , andD2 is a degree zero divisor supported
onWv with d(v, v◦) = m > n, then [D1; D2] belongs to 1 + pm−nOCp .

Proof. This is a special case of a more general result: if G1 and G2 are oriented subgraphs of

T satisfying

∂ G1 = red(D1), ∂ G2 = red(D2),
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then [D1; D2] is a p-adic unit when G1 and G2 can be taken to be disjoint, and it is congruent

to 1 modulo pm, where m is the distance between G1 and G2, de�ned in the natural way as

the minimum distance between vertices and edges of G1 and of G2. �

When D2 is supported on elements of P1(Q), the de�nition of [D1,D2] extends to divisors D1

of arbitrary degree, in a way that continues to be equivariant under the action of SL2(Z). To see

this, assume for simplicity that D2 = (r) − (s), and write r = a/b and s = c/d as fractions in

lowest terms, adopting the usual convention that ∞ = 1/0. The quantity [z; (r) − (s)] is then

de�ned by setting

[z; (r)− (s)] =
bz − a
dz − c

.

The resulting symbol, extended by bilinearity to Div(P1(Cp))×Div0(P1(Q)), coincides with the

earlier one on degree zero divisors and satis�es the weaker equivariance properties

(9)

[γz; (γr)− (γs)] = [z; (r)− (s)] for all γ ∈ SL2(Z),
[γz; (γr)− (γs)] = [z; (r)− (s)] (mod pZ) for all γ ∈ Γ,

which can be checked directly.

It shall be useful to control the p-adic valuation of the restriction of the rational function of [z; (r)−
(s)] to the a�noid subsetsH≤np . For r = a/b and s = c/d as above, de�ne

det(r, s) := ±(ad− bc).

Lemma 2.2. Let 0 ≤ n < m be integers. For all (r, s) ∈ P1(Q)2 with ordp(det(r, s)) = m,

(1) the restriction of [z; (r)− (s)] toH≤np takes values in v + pm−nOCp for some v ∈ Z×p ;
(2) If D is a degree zero divisor supported onH≤np , then [D ; (r)− (s)] belongs to 1 +pm−nOCp .

Proof. If r = a
b and s = c

d , the fact that pm divides ad− bc implies that the primitive vectors

(a, b) and (c, d) in Z2
are proportional to each other modulo pm. Hence there exists v ∈ Z×p

for which (a, b) = v · (c, d) + pm(e, f) for some (e, f) ∈ Z2
. It follows that

[z; (r)− (s)] = v + pm
fz − e
dz − c

.

But as z ranges overH≤np , the rational function
fz−e
dz−c takes values in p−nOCp by (7), and the

�rst statement follows. The second follows directly from the �rst. �

2.2. Theta cocycles and symbols. Because all the examples that are relevant to this work are

de�ned over Cp, it will be convenient to slightly modify the set up in the introduction, by letting

A× denote the multiplicative group of nowhere vanishing rigid analytic functions onHp, andM×
the group of nonzero rigid meromorphic functions on this domain, which are de�ned over Cp. This

point of view shall remain in force throughout this article. The groups A× andM× continue to

be equipped with their standard (weight zero) left action by the group Γ = SL2(Z[1/p]).

De�nition 2.3. A rigid analytic theta-cocycle is a class in H1(Γ,A× /C×p ), and a rigid meromor-

phic theta-cocycle is a class in H1(Γ,M× /C×p ).
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It is useful to dispose of a variant of these objects involving Γ-invariant modular symbols instead

of one-cocycles. The passage from one to the other is akin to working with the cohomology of

a modular curve relative to the cusps instead of the cohomology of the associated open modular

curve, and hence the two notions can be thought of as being in duality with each other.

If Ω is a Γ-module, the Γ-module of modular symbols with values in Ω is the set MS(Ω) of

functions m : P1(Q)× P1(Q)−→Ω satisfying

m{r, s} = −m{s, r},
m{r, t} = m{r, s}+m{s, t},

for all r, s, t ∈ P1(Q). If Π is any subgroup of GL2(Q), let MSΠ(Ω) := H0(Π,MS(Ω)) denote the

group of Π-invariant modular symbols, satisfying

m{γr, γs} = γm{r, s} for all γ ∈ Π, r, s ∈ P1(Q).

If Π is a congruence subgroup of SL2(Z), there is a well-known identi�cation between MSΠ(Ω)
and the cohomology of the associated modular curve XΠ relative to the cusps:

MSΠ(Ω) = H1(XΠ, cusps; Ω).

The natural map from the relative cohomology to the cohomology of the complete curve corre-

sponds to the map

MSΠ(Ω)−→H1
par(Π,Ω)

sending the Π-invariant Ω-valued modular symbol m to the class on the one-cocycle

(10) c(γ) := m{∞, γ∞}.

This map is de�ned for any subgroup Π of SL2(Q) such as the group Γ = SL2(Z[1/p]) (cf. [DV21,

Lemma 1.3]), and it �ts into the exact sequence

(11) ΩΠ ↪→
⊕

x∈Π\P1(Q)

ΩΠx −→ MSΠ(Ω)
δ−→ H1(Π,Ω) −→

⊕
x∈Π\P1(Q)

H1(Πx,Ω),

where the direct sums are taken over a system of representatives for the Π-orbits on P1(Q) and

Πx is the stabiliser of x in Π. The image of δ shall be referred to as the parabolic cohomology of

Π with values in Ω, although the reader is cautioned that for p-arithmetic groups like Π = Γ, the

cusp stabilisers do not consist solely of parabolic matrices.

De�nition 2.4. A rigid analytic theta-symbol is a class in MSΓ(A× /C×p ), and a rigid meromor-

phic theta-symbol is a class in MSΓ(M× /C×p ).

Lemma 2.5. The invariants (A× /C×p )Γ∞ = (M× /C×p )Γ∞ are trivial. In particular, the map δ of
(11) is injective, and every parabolic theta-cocycle is described by a unique theta-symbol.

Proof. LetN be the parabolic subgroup of Γ∞. Any homomorphism in H1(Γ∞, C
×
p ) is trivial

on the commutator subgroup of Γ∞, which contains Np2−1
. It follows that any

f ∈ H0(Γ∞,M× /C×p )

lifts to an element of H0(Np2−1,M×). But there are no non-constant rigid meromorphic

functions invariant under the translation z 7→ z + p2 − 1, and the result follows. �
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Corollary 2.6. A parabolic theta-cocycle admits a unique representative one-cocycle, up to torsion,
whose restriction to Γ∞ is trivial.

Proof. Let Ω := A× /C×p orM× /C×p . A parabolic theta-cocycle J corresponds to a theta-

symbol in MSΓ(Ω) by Lemma 2.5, and the one-cocycle attached to this modular symbol fol-

lowing the recipe of (10) vanishes identically on Γ∞. �

It will be convenient henceforth to identify parabolic theta-cocycles with Γ-invariant modular

symbols. In this way, for a parabolic theta-cocycle J viewed as both a one cocycle and a modular

symbol, we have J(S) = J{0,∞}−1
. The description of J as a theta-symbol often leads to more

transparent calculations.

2.3. RM values. Recall that the value of a rigid meromorphic cocycle J at an RM point τ is

de�ned by setting

J [τ ] := J(γτ )(τ),

where γτ is a generator of the stabiliser of τ in Γ, normalised so that γnτ (z) tends to τ in the real
topology as n tends to∞, and to τ̄ as n tends to −∞. The element γτ is called the automorph of

τ . If J is parabolic, one also has

J [τ ] = J{r, γτr}(τ),

where r ∈ P1(Q) is any base point. These RM values are the main subject of [DV21].

It is useful for the considerations of this paper to extend the notion of RM values to theta-

cocycles and theta-symbols. If v is any vertex of T , the stabilizer Γv ⊂ Γ of v in Γ is conjugate to

SL2(Z) under a matrix in GL2(Z[1/p]). The second cohomology group H2(Γv, C
×
p ) is therefore

trivial, and hence the restriction of a theta-cocycle J to H1(Γv,M× /C×p ) lifts to an element

Jv ∈ H1(Γv,M×).

This lift is unique up to 12-torsion, because H1(Γv, C
×
p ) ' H1(SL2(Z), C×p ) is of order ≤ 12.

To de�ne J [τ ], it is convenient to distinguish two cases:

Case 1. The RM point τ is unrami�ed, i.e., it generates a real quadratic �eld in which the prime p
is inert. In that case, τ maps to a vertex v of the Bruhat-Tits tree under the reduction map, and its

automorph γτ belongs to Γv . We can therefore de�ne

(12) J [τ ] := Jv(γτ )(τ) ∈ Cp ∪ {∞}.

Case 2. The RM point τ is rami�ed, i.e., it generates a real quadratic �eld in which p is rami�ed.

The point τ then reduces to an edge e = (v1, v2) of the Bruhat-Tits tree, and the automorph γτ
belongs to the edge stabiliser Γe = Γv1 ∩ Γv2 . We then de�ne

(13) J [τ ]2 := Jv1(γτ )(τ)× Jv2(γτ )(τ) ∈ Cp ∪ {∞}.
A direct calculation reveals that the value J [τ ] depends only on the Γ-orbit of τ , i.e., that

J [γτ ] = J [τ ], for all γ ∈ Γ.

When J lifts to a rigid meromorphic cocycle, the two notions of RM values are of course compati-

ble, and the conjectures of [DV21] predict that J [τ ] is an algebraic number lying in a compositum
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of ring class �elds of real quadratic �elds. When such a lift does not exist, the quantities J [τ ] are

expected to be transcendental in general, but still retain some arithmetic interest, insofar as they

are related to Gross–Stark units and Stark–Heegner points, as will be discussed shortly.

3. Analytic theta-cocycles

We now turn to the classi�cation of analytic theta-cocycles, and show they form a �nitely gen-

erated group of rank 2g + 2, where g is the genus of X0(p). The techniques used to prove this

theorem rely on ideas of Stevens and Schneider–Teitelbaum, (cf. [PS11], [Sch84], [Te90]) and oc-

cupy § 3.1–3.6, from which the classi�cation is deduced in § 3.7. This results in a list of three types

of generators for the group of theta-cocycles, each with their concomitant idiosyncracies:

• The boundary theta cocycle,

• The Dedekind–Rademacher cocycle,

• The modular cocycles attached to newforms in S2(Γ0(p)).

A discussion of known results about their RM values, which notably include Gross–Stark units and

Stark–Heegner points, can be found in § 3.7. These classes are all proper for the action of the Hecke

algebra. In § 3.8 the toric cocycles, which are attached to a pair of cusps, are introduced. These

theta-cocycles behave less straightforwardly with respect to the action of the Hecke algebra, but

are completely explicit, and play an important role in what follows.

3.1. Rigid analytic functions and boundary distributions. The classi�cation begins with a

study of the module of additive analytic functions on Hp endowed with the weight k action of Γ,

denoted Ak. It rests on the fact that Ak is isomorphic to a space of locally analytic distributions

on the boundary P1(Qp) ofHp. Assume henceforth that k = 2 for simplicity, although the results

described below can certainly be extended to more general positive even weights.

The dual of the space of locally analytic functions onP1(Qp), equipped with the strong topology

of uniform convergence on compact open subsets, is called the space of locally analytic distributions
on P1(Qp), and is denoted D(P1(Qp)). Given µ ∈ D(P1(Qp)), the notation

µ(h) =:

∫
P1(Qp)

h(t)dµ(t)

shall be adopted. More generally, if U is a compact open subset of P1(Qp) and 1U is its character-

istic function, we de�ne ∫
U
h(t)dµ(t) :=

∫
P1(Qp)

1U (t)h(t)dµ(t).

A distribution µ ∈ D(P1(Qp)) satisfying µ(1) = 0, where 1 denotes the constant function 1 on

P1(Qp), is said to be of total volume zero, and the space of such locally analytic distributions is

denoted D0(P1(Qp)).
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The group PGL2(Qp) acts naturally on D(P1(Qp)) and on D0(P1(Qp)) via the weight zero

action on locally analytic functions on P1(Qp). More precisely,∫
P1(Qp)

h(t)d(µ|γ)(t) =

∫
P1(Qp)

h(γt)dµ(t), where γt :=
at+ b

ct+ d
.

To any rigid analytic function f ∈ A2, we attach a locally analytic distribution µf on P1(Qp)
by setting, for all analytic functions h(t) on a compact open Ue ⊂ P1(Qp) corresponding to an

oriented edge e ∈ T ∗1, ∫
Ue

h(t)dµf (t) := rese(f(z)h(z)dz).

Here, rese denotes the p-adic annular residue along the oriented annulusWe. The distribution µf
is called the boundary distribution attached to f . It is a direct consequence of the residue theorem

that µf belongs to D0(P1(Qp)).

Proposition 3.1. The map f 7→ µf induces a topological isomorphism

BD : A2
∼−→ D0(P1(Qp))

that is compatible with the PGL2(Qp)-actions on both sides.

Proof. Setting k = 2 in the statement of Theorem 2.2.1 of [DaTe], the dual of the map denoted

I2 in loc.cit. induces an isomorphism

D0(P1(Qp))−→A2,

in light of the fact that A2 is a re�exive Frechet space and hence is identi�ed with its double

dual. The “boundary distribution map" BD is just the inverse of this isomorphism. �

The map BD induces an isomorphism on the parabolic cohomology groups, denoted by the

same symbol by a slight abuse of notation:

(14) BD : MSΓ(A2)
∼−→ MSΓ(D0(P1(Qp))).

This reduces the problem of understanding MSΓ(A2) to that of classifying the Γ-invariant mod-

ular symbols with values in D0(P1(Qp)). An element µ of the latter is simply a collection of

distributions µ{r, s} on P1(Qp), indexed by elements r, s ∈ P1(Q), that satisfy the usual modular

symbol relations

µ{r, s} = −µ{s, r}, µ{r, s}+ µ{s, t} = µ{r, t},
together with the equivariance property

(15)

∫
γB
h(t)dµ{r, s}(t) =

∫
B
h(γt)dµ{γ−1r, γ−1s}(t), for all γ ∈ Γ.

Let w∞ and wp be elements of determinant −1 and p respectively in GL2(Z[1/p]). Their classes

modulo Γ generate the normaliser of Γ, and thus they act as involutions on various cohomology

groups for Γ. If µ is an eigensymbol for these involutions, then the invariance property of (15)

even holds for all γ ∈ PGL2(Z[1/p]):

(16)

∫
γB
h(t)dµ{r, s}(t) = ±

∫
B
h(γt)dµ{γ−1r, γ−1s}(t), for all γ ∈ PGL2(Z[1/p]),
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where the sign is given by

sgn∞(µ)sgn(det(γ)) × sgnp(µ)vp(det(γ)), with

{
µ | w∞ = sgn∞(µ)µ,
µ | wp = sgnp(µ)µ.

3.2. Restriction to Zp. The compact open subset Zp ⊂ P1(Qp) is a ball whose stabiliser in Γ is

the usual congruence group Γ0(p). The restriction map D0(P1(Qp))−→D(Zp) to the space of

distributions on Zp therefore induces a map on modular symbols:

resZp : MSΓ(D0(P1(Qp)))−→MSΓ0(p)(D(Zp)).
The target of this map is called the space of overconvergent modular symbols of weight two and

level p.

Lemma 3.2. The map resZp is injective.

Proof. The matrix ιp :=

(
0 −1
p 0

)
interchanges Zp and its complement Z′p := P1(Qp)−Zp,

and normalises Γ0(p). It therefore induces mutually inverse isomorphisms

MSΓ0(p)(D(Zp))
ιp←→ MSΓ0(p)(D(Z′p))

for which the diagram

MSΓ(D0(P1(Qp)))
wp //

resZp
��

MSΓ(D0(P1(Qp)))

resZ′p
��

MSΓ0(p)(D(Zp))
ιp // MSΓ0(p)(D(Z′p))

commutes. In particular, the involutionwp interchanges the kernels of resZp and of resZ′p , and

it su�ces to show that resZ′p is injective. If µ is in the kernel of resZ′p , then

(17) µ{r, s}|Z′p = 0, for all r, s ∈ P1(Q).

The domain P1(Qp) admits a decomposition as a disjoint union of p+ 1 open balls,

(18) P1(Qp) = B0 tB1 t · · · tBp−1 t Z′p,

where Bj ⊂ Zp is the mod p residue disc of −j. The group SL2(Z) acts transitively on the

collection {B0, B1, . . . ,Z′p}. Let γj ∈ SL2(Z) be a matrix satisfying Z′p = γjBj . Then for all

j = 0, . . . , p− 1, and for all r, s ∈ P1(Q),

µ{r, s}|Bj = µ{r, s}|γ−1
j Z′p

= (µ{γjr, γjs}|Z′p)|γj = 0,

where the last equality follows from (17). It now follows from (18) that µ{r, s} = 0 as a

distribution on P1(Qp), for all r, s ∈ P1(Q). The lemma follows. �

The space of overconvergent modular symbols is equipped with a Hecke operator Up, de�ned

explicitly by

(19)

∫
Zp
h(t)d(Upµ){r, s}(t) :=

p−1∑
j=0

∫
Zp
h(α−1

j t)dµ{αjr, αjs}(t), where αj =

(
1 j
0 p

)
.
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The space MSΓ(D0(P1(Qp)) decomposes as a direct sum

MSΓ(D0(P1(Qp)) = MSΓ(D0(P1(Qp))
+ ⊕MSΓ(D0(P1(Qp))

−,

where MSΓ(D0(P1(Qp))
ε

denotes, for ε ∈ {+,−}, the ε-eigenspace for the action of the involu-

tion wp. Let MSΓ0(p)(D(Zp))Up=ε
denote the space of overconvergent modular symbols on which

Up acts as multiplication by ε.

Proposition 3.3. The map resZp induces Hecke-equivariant inclusions

resZp : MSΓ(D0(P1(Qp))
ε ↪→ MSΓ0(p)(D(Zp))Up=ε.

Proof. For j = 0, 1, . . . , p− 1, let Bj ⊂ Zp denote, as in the proof of Lemma 3.2, the residue

class of −j modulo p, so that

Zp = B0 tB1 t · · · tBp−1, αjBj = Zp,
with αj as in (19). By the additivity of the distribution µ{r, s} ∈ D(Zp), we have, for any

locally analytic function h on Zp:∫
Zp
h(t)dµ{r, s}(t) =

p−1∑
j=0

∫
Bj

h(t)dµ{r, s}(t) =

p−1∑
j=0

∫
α−1
j Zp

h(t)dµ{r, s}(t)

= ε

p−1∑
j=0

∫
Zp
h(α−1

j t)dµ{αjr, αjs}(t),

where the last equality follow from (16) in light of the fact that the matricesαj ∈ PGL2(Z[1/p])
have determinant p. The proposition now follows from the de�nition of theUp operator given

in (19). �

Proposition 3.3 shows that Up preserves the image of resZp and that the minimal polynomial

of its restriction to this space divides x2 − 1. Composing the map BD of (14) with the restriction

map resZp thus gives an injection

(20) MSΓ(A2) ↪→ MSΓ0(p)(D(Zp))U
2
p=1.

3.3. Stevens’ control theorem. The “total measure" map D(Zp)−→Cp that sends µ to µ(1)
induces a “weight two specialisation map"

(21) ρ : MSΓ0(p)(D(Zp))−→MSΓ0(p)(Cp)

that is compatible with the actions of the Hecke operators on both sides.

Theorem 3.4 (Stevens). The weight two specialisation map ρ induces an isomorphism

(22) ρ : MSΓ0(p)(D(Zp))U
2
p=1−→MSΓ0(p)(Cp).

Proof. The ordinary subspace of a Hecke moduleM is the direct summand of it on which the

Up operator acts with slope zero, and is denotedMord
. The control theorem for overconvergent

modular symbols (cf. the case k = 0 of Theorem 1.1 of [PS11]) asserts that ρ induces an

isomorphism

ρord : MSΓ0(p)(D(Zp))ord−→MSΓ0(p)(Cp)
ord.
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But MSΓ0(p)(Cp) is isomorphic as a Hecke module to the direct sum of an “Eisenstein line"

with two copies of the space of modular forms of weight two on Γ0(p). Since all such modular

forms are new at p, it follows that U2
p acts as the identity on this space, and that

MSΓ0(p)(Cp)
ord = MSΓ0(p)(Cp)

U2
p=1 = MSΓ0(p)(Cp).

The theorem follows. �

Remark 3.5. The statement of Theorem 3.4 relies crucially on the fact that there are no old-forms of

weight two for Γ0(p), and would have to be suitably adapted if Γ0(p) was replaced by a congruence

subgroup obtained by imposing (say) an additional Γ1(M)-level structure with p -M . Note how-

ever that in general, if Γ is then replaced by the corresponding �nite index congruence subgroup Γ′

of Γ, [Dar01, part 3 of lemma 1.3] implies that the Hecke algebra acts on H1
f (Γ′,A× /C×p ) through

its image in the endomorphism ring of the p-new subspace of the space of weight two modular

forms for Γ1(M) ∩ Γ0(p).

Corollary 3.6. The map

η := ρ ◦ resZp ◦BD : MSΓ(A2) ↪→ MSΓ0(p)(Cp)

is injective.

Proof. This follows from Propositions 3.1 and 3.3 combined with Theorem 3.4. �

Our goal in what follows is to show that the map η is surjective as well.

3.4. The residue map. Let Ω be a Γ-module.

De�nition 3.7. A function c : T ∗1−→Ω is said to be harmonic if it satis�es

c(ē) = −c(e), for all e ∈ T ∗1, and

∑
s(e)=v

c(e) = 0, for all v ∈ T 0 .

The space of harmonic functions on the set T ∗1 of oriented edges with values in Ω is denoted

Char(Ω). The action of Γ on T induces a natural right action of Γ on the space Char(Ω). In what

follows we will be primarily interested in the case where Ω = Z or a bounded subgroup of Cp,
equipped with the trivial action of Γ.

Remark 3.8. Elsewhere in the literature (e.g., in [Te90]) it is cusomary to refer to harmonic func-

tions as harmonic cocycles. Since the noun “cocycle” already being used in its more standard form

in this article, a more transparent terminology was chosen for De�nition 3.7.

One can associate to any f ∈ A2 a harmonic function cf ∈ Char(Cp) by the rule

cf (e) = ∂ef(z)dz, for e ∈ T ∗1,
where

∂e : A(We)−→Cp

is the p-adic annular residue on the space of rigid di�erentials on the oriented annulusWe. The

PGL2(Qp)-equivariant map

∂ : A2−→Char(Cp)
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sending f to cf is called the residue map. The same notation and terminology is used to describe

the induced map

(23) ∂ : MSΓ(A2)−→MSΓ(Char(Cp))

on modular symbols. Let e0 denote the standard edge of T ∗, whose stabiliser is Γ0(p) and whose

associated open ball in P1(Qp) is Zp. The evaluation at e0

eve0 : Char(Cp)−→Cp

is Γ0(p)-equivariant, and hence induces a map

(24) eve0 : MSΓ(Char(Cp))−→MSΓ0(p)(Cp).

Our strategy to show the surjectivity of η will be to prove the surjectivity of the maps eve0 and ∂
that �t into the following commutative diagram:

(25) MSΓ(A2)
∂ //

BD
��

q�

η

""

MSΓ(Char(Cp))

eve0

��

MSΓ(D0(P1(Qp)))

resZp
��

MSΓ0(p)(D(Zp))
ρ // MSΓ0(p)(Cp).

The surjectivity of eve0 is elementary:

Lemma 3.9. The map eve0 : MSΓ(Char(Cp))−→MSΓ0(p)(Cp) is an isomorphism.

Proof. The injectivity of eve0 follows from much the same argument as in the proof of the

injectivity of the map resZp given in Lemma 3.2. Namely, an element c of its kernel satis�es

c{r, s}(e0) = 0 for all r, s ∈ P1(Q).

Since Γ acts transitively on T +
1 , it then follows from the Γ-equivariance of c that c{r, s}(e) =

0 for all e ∈ T +
1 , and hence, for all e ∈ T ∗1 by the harmonicity of c{r, s}. To check surjectivity,

given c0 ∈ MSΓ0(p)(Cp), de�ne c ∈ MSΓ(Char(Cp)) by setting, for all e = γ−1e0 ∈ T +
1 ,

c{r, s}(e) := c0{γr, γs} for all r, s ∈ P1(Q),
c{r, s}(ē) := −c{r, s}(e)

Although γ is only well-de�ned up to left multiplication by elements of Γ0(p), the Γ0(p)-

invariance of c0 ensures that the value of c{r, s}(e) does not depend on the choice of γ. Since

for any vertex v ∈ T 0 the quantities

Sv{r, s} :=
∑
s(e)=v

c{r, s}

de�ne an SL2(Z)-invariant modular symbol valued in Cp, they must be trivial, whence we

see that c{r, s} ∈ Char(Cp). It follows from the construction that eve0(c) = c0. �
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3.5. The Schneider–Teitelbaum transform. We now show that the residue map ∂ in (23) is

surjective. The main ingredient for achieving this is the integral “p-adic Poisson transform” of

Schneider and Teitelbaum which allows one to recover certain elements ofA2 from their associated

boundary distributions.

LetCbhar(Cp) ⊂ Char(Cp) denote the subspace of bounded harmonic functions, i.e., those whose

values lie in a bounded subset ofCp. A element c ∈ Cbhar(Cp) can be parlayed into a bounded linear

functional µc on the space of locally constant functions on P1(Qp), by setting∫
Ue

1dµc := c(e).

The boundedness of µc implies that it extends uniquely to a measure on P1(Qp), i.e., a continuous

functional on the space of continuous functions on P1(Qp) endowed with the sup norm. This

extension exploits the fact that every continuous function h(t) on P1(Qp) is a uniform limit of

locally constant functions to express

∫
P1(Qp) h(t)dµc(t) as a limit of (�nite) Riemann sums.

Proposition 3.10 (Schneider, Teitelbaum). There is a unique Γ-equivariant splitting of the residue
map ∂ on Cbhar(Cp), i.e., a map ST : Cbhar(Cp)−→A2 for which the diagram

(26)

A2 Char(Cp)

Cbhar(Cp)

0

⊂
∂

ST

commutes.

Proof. The map ST is constructed by integrating a “Poisson kernel” against this measure, as

in [Te90], namely, one sets

(27) ST(c)(z) =

∫
P1(Qp)

1

z − t
dµc(t), for all z ∈ Hp .

See [Te90] for more details. �

Lemma 3.11. The natural inclusion MSΓ(Cbhar(Cp)) ↪→ MSΓ(Char(Cp)) is an isomorphism.

Proof. Given c ∈ MSΓ(Char(Cp)), consider its image in H1(Γ0(p), Cp) under the map eve0 .

Since Γ0(p) is �nitely generated, there is a bounded subset Ω ⊂ Cp for which eve0(c) ∈
H1(Γ0(p),Ω). But then the commutativity of the diagram

MSΓ(Char(Ω))
eve0 //

� _

��

MSΓ0(p)(Ω)� _

��
MSΓ(Char(Cp))

eve0 // MSΓ0(p)(Cp),

in which the horizontal arrows are isomorphisms by Lemma 3.9, implies that c belongs to

MSΓ(Char(Ω)) ⊂ MSΓ(Char(Cp)). �

Corollary 3.12. The residue map

∂ : MSΓ(A2)−→MSΓ(Char(Cp))
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of (23) is an isomorphism.

Proof. The injectivity of ∂ is apparent from the fact that the injective map η in the commu-

tative diagram (25) factors through it. Given c ∈ MSΓ(Char(Cp)), the harmonic functions

c{r, s} belong to Cbhar(Cp) for all r, s ∈ P1(Q), by Lemma 3.11. We may therefore set

f{r, s} := ST(c{r, s}) ∈ A2 .

The assignment (r, s) 7→ f{r, s} is an element of MSΓ(A2) satisfying ∂(f) = c, and the

result follows. �

Theorem 3.13. The map η of (25) gives a Hecke-equivariant isomorphism

η : MSΓ(A2)
∼−→ MSΓ0(p)(Cp).

Proof. This follows immediately from Lemma 3.9 and Corollary 3.12. �

De�nition 3.14. The inverse of the isomorphism η, denoted

LST : MSΓ0(p)(Cp)
∼−→ MSΓ(A2)

is called the Schneider–Teitelbaum lift.

3.6. Themultiplicative Schneider–Teitelbaum lift. The logarithmic derivative gives a natural

injection

dlog : A× /C×p −→A2

sending the local section f to f ′/f . It induces a map on the space of Γ-invariant modular symbols:

(28) dlog : MSΓ(A× /C×p )−→MSΓ(A2)

The space dlog(A×) ⊂ A2 is called the space of rigid di�erentials of the third kind on Hp, and

consists of di�erentials whose image under ∂ are Z-valued harmonic functions on T ∗1. The image

of (28) is likewise called the space of rigid analytic modular symbols of the third kind.

Proposition 3.15. There is a Hecke equivariant morphism

L×ST : MSΓ0(p)(Z)−→MSΓ(A× /C×p )

for which the following diagram commutes:

MSΓ0(p)(Z)
L×ST //

� _

��

MSΓ(A× /C×p )

dlog
��

MSΓ0(p)(Cp)
LST // MSΓ(A2)

The map L×ST is called the multiplicative Schneider–Teitelbaum lift. It is constructed, following

[Dar01, §3.3], as a multiplicative re�nement of (27), as we now describe. First note that a class

φ ∈ MSΓ0(p)(Z)
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gives rise to a unique element µφ ∈ MSΓ(D), whereD is the module of Z-valued distributions on

P1(Qp). This element is characterised by the properties

µφ{r, s}(Zp) = φ{r, s}, for all r, s ∈ P1(Q),

µφ{γr, γs}(γU) = µφ{r, s}(U), for all compact open U ⊂ P1(Qp), and γ ∈ Γ.

The existence and uniqueness of µφ exploits the fact that Γ acts transitively on the compact open

balls in P1(Qp) and that the stabiliser ofZp is Γ0(p). Given n ≥ 1 and a := [a1: a2] ∈ P1(Z /pn Z),

let

B(a, n) := {(z1: z2) ∈ P1(Qp) such that |a1z2 − a2z1| ≤ p−n} ⊂ P1(Qp)

be the “mod pn residue disc centered at a", and write

Dφ,n{r, s} =
∑

a∈P1(Z /pn Z)

µφ{r, s}(B(a, n)) · ã ∈ Div0(P1(Qp)),

where ã is any sample point in B(a, n). Then we have

Lemma 3.16. Let J := ST×(φ). Then

Jv◦{r, s} = lim
n−→∞

[z; Dφ,n{r, s}].

Proof. The convergence, modular symbol and SL2(Z)-equivariance properties of the right

hand side follow immediately from the similar properties for the divisors Dφ,n{r, s}, using

Lemma 2.2. The lemma follows from a comparison of divisors. �

This de�nition of the RM values of theta-symbols may have seemed a bit contrived, but �nds a

modicum of justi�cation in the following proposition.

Proposition 3.17. If J = ST×(φ), and τ is an RM point, then J [τ ] belongs to O×Cp .

Proof. If τ is unrami�ed and even, assume without loss of generality that τ reduces to v◦, so

that

J [τ ] = Jv◦{∞, γτ∞}(τ).

But since τ belongs toH◦p, the quantities

[τ ; Dφ,n{∞, γτ∞}]

are p-adic units, and therefore so is their limit J [τ ] as n−→∞. If τ is unrami�ed and odd, a

similar argument applies after replacing the even vertex v◦ by some �xed odd vertex. Finally,

when τ is rami�ed, assume without loss of generality that it reduces to the standard edge

e◦ = (v◦, v1). A direct calculation shows that

ordp(Jv◦{r, s}(τ)) =
1

2
φ{r, s}, ordp(Jv1{r, s}(τ)) = −1

2
φ{r, s},

and the proposition follows from the de�nition of J [τ ] for rami�ed τ . �
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3.7. Classi�cation of analytic theta-cocycles. Using the multiplicative Schneider–Teitelbaum

lift, one may now classify the space of rigid analytic theta-cocycles H1(Γ,A×/C×p )⊗Q.

There are precisely two conjugacy classes of parabolic subgroups of Γ0(p), the group P∞ con-

sisting of the upper triangular matrices, stabilising the cusp ∞, and the group P0 consisting of

lower triangular matrices, stabilising the cusp 0. The Γ0(p)-module F(P1(Q),Q) of Q-valued

functions on P1(Q) therefore decomposes as a direct sum of the two induced modules

F(P1(Q),Q) = Ind
Γ0(p)
P∞

Q ⊕ Ind
Γ0(p)
P0

Q,

and the Γ0(p)-cohomology of the exact sequence (11) with Ω = Q leads to a short exact sequence

(29) 0−→Q−→MSΓ0(p)(Q)−→H1
par(Γ0(p),Q)−→ 0.

The one-dimensional kernel is spanned by the boundary symbol m] ∈ MSΓ0(p)(Z) de�ned by

m]{r, s} =

 0 if Γ0(p)r = Γ0(p)s,
1 if r ∈ Γ0(p)0, s ∈ Γ0(p)∞,
−1 if r ∈ Γ0(p)∞, s ∈ Γ0(p)0.

It accounts for the discrepancy between modular symbols and parabolic cohomology classes. Us-

ing the multiplicative Schneider–Teitelbaum transform above, we therefore see that the space of

modular theta symbols MSΓ(A×/C×p )⊗Q is generated by

• The boundary theta cocycle attached to the boundary symbol m] de�ned above

• The modular cocycles attached to the cohomology classes of newforms in S2(Γ0(p)).

To obtain non-parabolic classes, note that the residue map induces an exact sequence

0−→Q−→Q⊗H1(Γ,A×/C×p )−→H1(Γ0(p),Q)−→ 0,

It is classical that the space H1(Γ0(p),Q) is of dimension 2g + 1, where g is the genus of X0(p),

and has a 2g-dimensional parabolic subspace. Thus the space of analytic theta-cocycles

Q⊗H1(Γ,A×/C×p )

is of dimension 2g + 2, and the quotient by the parabolic classes is a line, accounted for by the

Dedekind–Rademacher cocycle below. We now discuss all these classes in more detail.

3.7.1. The boundary theta-symbol. The simplest example of a theta-symbol is the so-called bound-
ary theta-symbol described by �xing a base point η ∈ P1(Cp) and setting

(30) J]{r, s}(z) := [(z)− (η); (r)− (s)].

The boundary theta-symbol J] is the multiplicative Schneider–Teitelbaum lift of the boundary

symbol m]. When viewed as a parabolic theta-cocycle, it lies in the kernel of the residue map to

H1(Γ0(p),Z). Note that it is easily seen to lift to an element of H1(Γ,A×) de�ned by(
a b
c d

)
7−→ (cz + d)−1
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Because J] is very simple, taking values in the group of rational functions on P1, its RM values

are not very interesting. If F (x, s) = Ax2 +Bxy+Cy2
is a binary quadratic form of discriminant

D = B2 − 4AC , then its root is τF = (−B +
√
D)/2A, while its stabiliser is generated by

γF =

(
u−Bv −2Cv

2Av u+Bv

)
, u2 −Dv2 = 1,

where u+v
√
D is a fundamental solution to Pell’s equation. A straightforward calculation shows

that for any r ∈ P1(Q) we have

J][τF ] = J]{r, γτr}(τF ) = u± v
√
D (mod Z[1/p]×).

It follows that the cocycle J] has algebraic RM values, albeit somewhat uninteresting ones, since

they always belong to the �eld of “real multiplication". To obtain more interesting class invari-

ants we now consider the RM values of analytic theta-cocycles arising from the multiplicative

Schneider–Teitelbaum lifts of richer elements of MSΓ0(p)(Z).

3.7.2. Modular theta-symbols. Let f ∈ S2(Γ0(p)) be a normalised cuspidal newform with Fourier

coe�cients in a �eld Kf ⊂ R, and let ωf := 2πif(z)dz be the associated regular di�erential on

X0(p). The real analytic di�erentials

ω+
f :=

1

2
(ωf + ω̄f ), ω−f :=

1

2
(ωf − ω̄f )

give rise to modular symbols ϕ+
f and ϕ−f ∈ MSΓ0(p)(Kf ), de�ned by

(31) ϕ+
f {r, s} := (Ω+

f )−1

∫ s

r
ω+
f , ϕ−f {r, s} = (Ω−f )−1

∫ s

r
ω−f ,

where Ω+
f and Ω−f are so-called real and imaginary periods attached to f , which can be chosen in

such a way that ϕ±f is Kf -valued. This only determines these modular symbols, and the periods

Ω±f , up to multiplication by K×f , and we always have

Ω+
f Ω−f = Ωf := 〈f, f〉 = 〈ω+

f , ω
−
f 〉 (mod K×f ).

We can further insist that ϕ±f takes values inOKf , and maps surjectively to Z when f has integer

Fourier coe�cients, which then determines Ω−f and Ω+
f up to a sign.

The multiplicative Schneider–Teitelbaum lifts of these morphisms are denoted

J+
f , J

−
f ∈ MSΓ(A× /C×p )⊗OKf .

They are called the modular theta-symbols attached to f . Recall again that we can exploit the

natural injection

MSΓ(A× /C×p )−→H1(Γ,A× /C×p )

to view J±f as elements of the latter group when this is convenient. Assume now for simplicity that

f has rational Fourier coe�cients and hence corresponds to an elliptic curve Ef of conductor p,

and let ΦTate : C×p −→Ef (Cp) be the Tate p-adic uniformistion ofEf . One of the main conjectures

of [Dar01] is
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Conjecture 3.18. After eventually replacing the theta-symbols J±f by suitable powers, the local
points ΦTate(J

±
f [τ ]) ∈ E(Cp) are de�ned over Hτ , for all τ ∈ HRM,◦

p .

The algebraicity of Stark–Heegner points attached to genus characters was proved in [BD09],

and later extended in [Mo11]. The general case remains open.

3.7.3. The Dedekind–Rademacher theta-cocycle. Let

E
(p)
2 (z) =

p− 1

12
+ 2

∑
n≥1

σ
(p)
1 (n)e2πinz, where σ

(p)
1 (n) =

∑
p-d|n

d

be the weight two Eisenstein series on Γ0(p), and let ωEis := 2πiE
(p)
2 (z)dz be the associated

regular di�erential on the open modular curve Y0(p). The periods of ωEis are encoded in the

Dedekind–Rademacher homomorphism ϕDR : Γ0(p)−→Z de�ned by

(32) ϕDR := (2πi)−1

∫ γz0

z0

ωEis.

The Dedekind–Rademacher cocycle JDR ∈ H1(Γ,A× /C×p ) was de�ned in [DPV2, § 1]. Its image

under the residue map is equal to ϕDR. It is a prototypical instance of a non-parabolic theta-

cocycle, and in fact generates (up to �nite index) the cokernel of the natural inclusion

MSΓ(A× /C×p )−→H1(Γ,A× /C×p ).

Concerning the RM values of JDR, one has the following

Theorem 3.19. For all τ ∈ HRM,◦
p , the value JDR[τ ] is a p-unit in the class �eld Hτ attached to τ ,

and generates it if the order attached to τ does not admit a unit of norm −1.

This algebraicity result follows from the proof of the p-adic Gross-Stark conjecture given in

[DDP11] and from the proof of Gross’s “tower of norms” conjecture in [DK]. An independent

and somewhat more direct approach based on the antiparallel deformations of p-irregular Hilbert

modular Eisenstein series and modeled on the “analytic proof” of the factorisation of norms of

singular moduli [GZ85] is described in [DPV2].

3.8. Toric theta-cocycles. If (r, s) ∈ P1(Q)2
is an ordered pair, its stabiliser in GL2(Q) is a split

torus whose Z[1/p]-points are a group of rank one, generated up to �nite index by a loxodromic

transformation with eigenvalues of the form p±e. This section asssociates to such an ordered pair a

rigid analytic theta-cocycle, referred to as a toric cocycle. Unlike the Hecke eigensymbols described

in previous subsections, Jr,s is not an eigenvector for the action of the Hecke operators, but admits

an explicit description which shall be useful in later calculations.

If ξ1 and ξ2 are two points of the extended upper-half planeH∗ = H∪P1(Q), the symbol [ξ1, ξ2]
is used to denote the hyperbolic geodesic segment on H going from ξ1 to ξ2. The intersection of

two (open or closed) geodesic segments on H is de�ned in the natural way. A point ξ ∈ H∗ is

said to be (r, s)-admissible if it does not lie on any geodesic in Γ[r, s]. Clearly, all p-admissible

ξ belong to H, and the set of p-admissible base points is preserved by the action of Γ. Since the

non-admissible points are contained in a countable union of sets of measure zero, the existence of

admissible base points is clear.
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Let Σr,s denote the Γ-orbit of the pair (r, s), and let Σ
(m)
r,s ⊂ Σr,s be the subset of pairs (u, v)

with ordp(det(u, v)) = m. It is not hard to see that Σ
(m)
r,s is non-empty for all m ≥ 0 and that

Σr,s =
∞⋃
m=0

Σ(m)
r,s .

Fix a base point η ∈ Hp and an (r, s)-admissible base point ξ ∈ H, and set

Jr,s(γ)(z) =
∏

(u,v)∈Σr,s

[(z)− (η); (u)− (v)][u,v]·[ξ,γξ] :=

∞∏
m=0

J (m)
r,s (γ)(z),

where

J (m)
r,s (γ)(z) :=

∏
(u,v)∈Σ

(m)
r,s

[(z)− (η); (u)− (v)][u,v]·[ξ,γξ].

Lemma 3.20. For each γ ∈ Γ, the in�nite product de�ning Jr,s(γ) converges to a rigid analytic
function onHp and its image in A× /C×p satis�es a cocycle condition modulo scalars, namely

Jr,s(γ1γ2) = Jr,s(γ1)× γ1 · Jr,s(γ2).

Proof. Observe �rst that Γ◦ := SL2(Z) acts on the set Σ
(m)
r,s by Möbius transformations, and

that there are �nitely many orbits for this action:

Σ(m)
r,s = Γ◦ · (r1, s1) t Γ◦ · (r2, s2) t · · · t Γ◦ · (r`,m`).

But the cardinality of the set

{(u, v) ∈ Γ◦(rj , sj) such that [u, v] · [ξ, γξ] = ±1}

represents the number of intersection points between the images of the geodesics [rj , sj ] and

[ξ, γξ] in the quotient SL2(Z)\H. Since this number is �nite, it follows that the product

de�ning J
(m)
r,s (γ)(z) has �nitely many factors that are 6= 1, and hence is a rational function

of z. To prove convergence of

Jr,s(γ)(z) :=

∞∏
m=0

J (m)
r,s (γ)(z)

as a rigid meromorphic function of z ∈ H≤np , it su�ces to show that the restriction of J
(m)
r,s (γ)

to H≤np converges uniformly to 1 as m−→∞. But this follows directly from Lemma 2.2.

We have hence showed that the in�nite product de�ning Jr,s(z) converges absolutely and

uniformly on a�noid subsets ofHp. The cocycle condition for Jr,s modulo scalars also follows

by a direct calculation. �

Lemma 3.21. The class of Jr,s inH1(Γ,A× /C×p ) does not depend on the choice of base point η ∈ Hp
and of admissible base point ξ ∈ H that were made to de�ne it.

Proof. Changing the base point η to η′ merely multiplies the functions Jr,s(γ) by a non-zero

scalar, and hence does not a�ect the cocycle Jr,s ∈ Z1(Γ,A× /C×p ). As for replacing ξ by ξ′
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in the de�nition of Jr,s, a direct calculation reveals that the associated cocycles di�er by the

coboundary dF , where

F (z) =
∏

(u,v)∈Σr,s

[(z)− (η); (u)− (v)][u,v]·[ξ,ξ′] ∈ A× .

�

We now ask whether the theta-cocycle Jr,s ∈ H1(Γ,A× /C×p ) lifts to a genuine analytic cocycle

J̃r,s
?
∈ H1(Γ,A×).

As mentioned before, the cocycle Jr,s need not admit such a lift, but its restriction to Γ◦ := SL2(Z)
does, by the essential triviality of H2(SL2(Z), C×p ). To describe such a lift, we �rst restrict Jr,s to

H1(Γ◦,A× /C×p ) and construct an explicit lift of it to a class

J◦r,s ∈ H1(Γ◦,A×).

The �rst part of Lemma 2.2 suggests that replacing [(z) − (η); (r) − (s)] by [z; (r) − (s)] in the

de�nition of Jr,s leads to an in�nite product which need not converge in general. However, we

have

Proposition 3.22. For all γ ∈ Γ◦, the in�nite product

J◦r,s(γ)(z) :=
∞∏
m=0

J◦,(m)
r,s (γ)(z), where J◦,(m)

r,s (γ)(z) :=
∏

(u,v)∈Σ
(m)
r,s

([z; (u)− (v)])[u,v]·[ξ,γξ]

converges to a rigid analytic function on Hp, up to 12-th roots of unity, and gives rise to an element
of H1(Γ◦,A× /µ12).

Proof. For integers m > n ≥ 0, consider the restriction of J
◦,(m)
r,s (γ)(z) to the a�noidH≤np .

By Lemma 2.2, this restriction is constant modulo pm−n and hence its mod pm−n reduction

de�nes a cocycle in H1(Γ◦, (Z /pm−n Z)×). Since the abelianisation of Γ◦ is of order 12, it

follows that

J◦,(m)
r,s (γ)(z)|H≤np ∈ µ12 (mod pm−n).

The convergence of the in�nite product de�ning J◦r,s (up to 12-th roots of unity) follows. The

fact that it is a cocycle for Γ◦ follows from the Γ◦-equivariance of the expression [z; (u) −
v)]. �

This proposition gives some information about the RM values of the theta-cocycle Jr,s:

Corollary 3.23. For all RM points τ ∈ Hp, the value Jr,s[τ ] belongs to O×Cp .

Proof. If τ is an unrami�ed point, we can assume without loss of generality, by translating

it by an appropriate element of GL2(Z[1/p]), that it belongs to the standard a�noidH◦p. The

de�nition of this a�noid implies that

[τ ; (r)− (s)] ∈ O×Cp ,

and hence that J
◦,(m)
r,s (γτ )(τ) is a p-adic unit, for allm. The corollary follows in this case. The

proof for rami�ed τ proceeds along similar lines. �
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Let us now compute the image of the theta-cocycle Jr,s in H1(Γ0(p),Z) under the residue map.

Let Σ
(00)
r,s be the subset of Σ

(0)
r,s consisting of pairs (u, v) satisfying

u /∈ Zp, v ∈ Zp .

This subset is nonempty, stable under the action of Γ0(p), and breaks up as a �nite union of Γ0(p)-

orbits:

Σ(00)
r,s = Γ0(p)(r1, s1) ∪ · · · ∪ Γ0(p)(rt, st).

Let [rj , sj ]X0(p) be the image of the geodesic path [rj , sj ] onH∗ in the relative homology ofX0(p)
relative to the cusps. It does not depend on the choice of orbit representatives, and their sum

depends only on (r, s). Let ϕr,s : Γ0(p)−→Z be the homomorphism de�ned by

ϕr,s(γ) = ([r1, s1]X0(p) + · · ·+ [rt, st]X0(p)) · γ,

where · denotes the intersection pairing

H1(X0(p); {0,∞},Z) × H1(Y0(p),Z) −→ Z .

Proposition 3.24. The image of Jr,s under the residue map is equal to ϕr,s.

Proof. Recall the standard annulus U of (5) having Γ0(p) as its stabiliser in Γ. The residue

map takes a cocycle J ∈ H1(Γ,A× /C×p ) to the homomorphism

φJ : Γ0(p)−→Z, φJ(γ) := resU (dlog J(γ)),

where resU is the p-adic annular residue attached to U . Consider the in�nite product expres-

sion of Proposition 3.22 for Jr,s and observe that the terms dlog J
(m)
r,s (γ) form ≥ 1 contribute

nothing to the annular residue at U : indeed, two cusps u, v for which p| det(u, v) belong to

the same component of the complement of U , and hence resU (dlog tu,v(z)) = 0 for such

pairs. On the other hand, if (u, v) belongs to Σ
(0)
r,s , then

resU (dlog[z; (u)− (v)]) =

 1 if u /∈ Zp, v ∈ Zp,
−1 if u ∈ Zp, v /∈ Zp,

0 otherwise.

Hence, any pair (u, v) for which the residue of dlog[z; (u)− (v)] is equal to 1 (resp. −1) is of

the form (αrj , αsj), (resp. (αsj , αrj)) for some α ∈ Γ0(p). It follows that

resU (dlog Jr,s(γ)) =

t∑
j=1

∑
α∈Γ0(p)

(+1)[αrj , αsj ] · [ξ, γξ] +
∑

α∈Γ0(p)

(−1)[αsj , αrj ] · [ξ, γξ]

= 2
t∑

j=1

∑
α∈Γ0(p)

[αrj , αsj ] · [ξ, γξ].

In this last expression one can recognise the intersection product of the relative homology

class attached to [r1, s1] + · · · [rj , sj ] with the class of γ in H1(Y0(p),Z). The proposition

follows. �
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4. Meromorphic theta-symbols

Following [DV21], this section recalls the construction of certain meromorphic theta-symbols

Jτ ∈ MSΓ(M× /C×p )

which are indexed by orbits of RM points τ ∈ Γ\HRM
p and generate, along with the space of

analytic theta symbols MSΓ(A× /C×p ), the group of meromorphic theta-symbols up to torsion.

The RM values of meromorphic theta symbols appear to be of great arithmetic signi�cance, and

yield in particular the singular moduli for real quadratic �elds that were introduced in [DV21].

In the current paper, we investigate instead their toric values, de�ned in § 5, which are of central

importance to the Gross–Kohnen–Zagier theorem obtained in § 6.

4.1. Divisors. Let τ ∈ Hp(Cp) be an RM point of p-discriminantD, and letF be the real quadratic

�eld that it generates. The element τ is the root of a unique (up to sign) primitive integral binary

quadratic form, whose discriminant is of the formDp2n
with n ≥ 0. Our �xed complex and p-adic

embedding of Q̄ allows us to view F simultaneously as a sub�eld of R and of Cp.

For w ∈ F , let (w,w′) denote the geodesic on H joining w to its Galois conjugate w′, which

maps to a countable union of copies of the same basic closed geodesic on Π\H for any subgroup

Π ⊂ Γ. Likewise, if r, s are elements of P1(Q), recall that [r, s] denotes the hyperbolic geodesic

on H joining these two elements, which maps to a compact (but not necessarily closed) geodesic

on any quotient Π\H. The geodesics (w,w′) and [r, s] always intersect properly, and we set

(33) δr,s(w) := (w,w′) · [r, s] =

 1 if the two geodesics intersect positively;
−1 if they intersect negatively;

0 otherwise.

The in�nite formal sum

(34) ∆τ{r, s} :=
∑
w∈Γτ

δr,s(w) · (w)

de�nes a Γ-invariant modular symbol with values in the Γ-module Z〈Γτ〉 of (possibly in�nite)

Z-linear combinations of points of Γτ . Set

∆≤nτ {r, s} :=
∑

w∈(Γτ)∩H≤np

δr,s(w) · (w),

and de�ne ∆<n
τ {r, s} analogously, replacingH≤np byH<np .

Lemma 4.1. The expressions ∆≤nτ {r, s} and ∆<n
τ {r, s} are degree zero divisors onHp.

Proof. The RM points w in the support of ∆≤nτ {r, s} consist of zeroes of binary quadratic

forms of discriminant Dp2m
with 1/2 ordp(D) + m ≤ n for which δr,s(w) 6= 0, i.e., for

which the geodesic (w,w′) intersects [r, s] non-trivially. There are �nitely many binary qua-

dratic forms of a given discriminant satisfying this condition, and hence ∆≤nτ {r, s} belongs

to Div(HRM
p ) for all (r, s) ∈ P1(Q)2

. Since H≤np is preserved by the action of SL2(Z), the

function

(r, s) 7→ deg ∆≤nτ {r, s}
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de�nes an element in MSSL2(Z)(Z). Since this space of modular symbols is trivial, it follows

that deg ∆≤nτ {r, s} is identically zero for all n, τ and (r, s). The proof for ∆<n
τ {r, s} is the

same. �

If v is a vertex of T , recall the wide open subsetWv ofHp associated to v, consisting of the points

whose image under the reduction map is either v or an edge containing v. The same reasoning as

in the proof of Lemma 4.1 shows that the expression

∆v
τ{r, s} :=

∑
w∈(Γτ)∩Wv

δr,s(w) · (w)

is a degree zero divisor. If τ is unrami�ed, then for all n ≥ 0 we have

∆≤nτ {r, s} =
∑

v∈V(T ≤n)

∆v
τ{r, s}.

When τ is a rami�ed RM point, and hence reduces to an edge of T , the situation is a bit more

subtle. Namely, we can write ∆≤nτ {r, s} = ∆<n
τ {r, s} as

∆<n
τ {r, s} =

∑
v∈V(T <n)

∆v
τ{r, s},

with the righthand sum ranging only over the even vertices of T when n is odd, and over the odd

vertices of T , when n is even.

4.2. De�nitions and convergence. To de�ne the rigid meromorphic theta symbols Jτ , one starts

from the association (r, s) 7→ ∆≤nτ {r, s} which yields, by Lemma 4.1, an element of the group of

SL2(Z)-invariant modular symbols valued in divisors:

MSSL2(Z)(Div0(H≤np )).

These modular symbols are now upgraded to meromorphic theta symbols. Since the combinatorial

structures are di�erent, the cases where τ is unrami�ed or rami�ed are treated separately.

Suppose �rst that the RM point τ in Hp is unrami�ed. Recall the symbols [D1,D2] de�ned in

(8) for a pair of divisors D1,D2. Fix an auxiliary base point η ∈ Hp.

Lemma 4.2. Assume that τ is unrami�ed. The rational functions

J≤nτ {r, s}(z) := [(z)− (η); ∆≤nτ {r, s}]
converge uniformly on a�noid subsets ofHp to a rigid analytic function Jτ{r, s}(z) onHp.

Proof. Let A ⊂ H≤Np be some a�noid subset of Hp, and assume without loss of generality

(by enlarging A if necessary) that η ∈ A. For all N < n < m,

J≤mτ {r, s}(z)÷ J≤nτ {r, s}(z) = [(z)− (η); ∆≤mτ {r, s} −∆≤nτ {r, s}](35)

=
∏

n<d(v,v◦)≤m

[(z)− (η); ∆v
τ{r, s}].

By Lemma 2.1, each factor in this product belongs to 1+pn−N OCp as z ranges overH≤Np ⊃ A.

It follows that the sequence (J≤nτ {r, s})n≥1 of partial products is uniformly Cauchy when

restricted to A, and hence converges to a rigid meromorphic function on this domain. �
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The proof of Lemma 4.2 yields the following corollary giving a more �exible expression for the

rigid meromorphic function Jτ{r, s} when τ is unrami�ed. We recall that a rational a�noid is an

a�noid subset of Hp which can be expressed as the inverse image under the reduction map of a

(�nite) subgraph of T . For instance, any Γ-translate ofH≤np is a rational a�noid.

Corollary 4.3. Assume that τ is unrami�ed. Suppose thatH[n]
p is an increasing sequence of rational

a�noids satisfyingHp = ∪n≥1H[n]
p , and let

∆[n]
τ {r, s} :=

∑
w∈(Γτ)∩H[n]

p

δr,s(w) · (w).

Then ∆
[n]
τ {r, s} is a degree zero divisor and

Jτ{r, s} = lim
n−→∞

[(z)− (η); ∆[n]
τ {r, s}].

Suppose now that the RM point τ in Hp is rami�ed. In this case, Lemma 4.2 and Corollary

4.3 cease to be true, since the sequence (J≤nτ {r, s})n≥0 need not converge uniformly on a�noid

subsets. The next lemma shows that it is made up of two a priori distinct convergent subsequences

{J≤nτ {r, s}(z)}n even, {J≤nτ {r, s}(z)}n odd.

Lemma 4.4. Assume that τ is a rami�ed RM point. The rational functions

J≤nτ {r, s}(z) := [(z)− (η); ∆≤nτ {r, s}]

as n ranges over the odd (resp. even) integers converge uniformly on a�noid subsets of Hp to rigid
analytic functions J+

τ {r, s}(z) (resp. J−τ {r, s}(z)) onHp.

Proof. The uniform convergence of each subsequence follows from the identity, generalising

(35)

(36) J≤n+2
τ {r, s}(z)÷ J≤nτ {r, s}(z) =

∏
d(v,v◦)=n+1

[(z)− (η); ∆v
τ{r, s}].

�

One can give a more intrinsic expression for the rigid meromorphic functions J±τ {r, s} in terms

of more general a�noid coverings of Hp. Namely, a closed, connected, �nite subgraph G of T is

said to be full if every vertex v of G is either of degree 1 or p + 1. The vertices that are of degree

1 are called the boundary vertices of G. The graph G is then said to be even (resp. odd) if every

boundary vertex of G is odd (resp. even). An a�noid region in H is said to be even or odd if it is

the inverse image under the reduction map red of a full subgraph of T of the same parity. The set

of even and odd a�noid subsets is preserved by the action of Γ, while elements of GL2(Z[1/p])
of determinant p interchange these two types of a�noids. When τ is rami�ed, and A is an even

(resp. odd) a�noid subset, the divisor ∆Aτ {r, s} can be uniquely expressed as a sum of the divisors

∆v
τ{r, s} as v ranges over the even (resp. odd) vertices of T that lie in red(A).

The following lemma is the counterpart of Corollary 4.3 when τ is rami�ed:
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Lemma 4.5. Assume that τ is a rami�ed RM point. Let H[n]
p be any increasing sequence of even

rational a�noids satisfyingHp = ∪n≥1H[n]
p , and let

∆[n]
τ {r, s} :=

∑
w∈(Γτ)∩H[n]

p

δr,s(w) · (w).

Then ∆
[n]
τ {r, s} is a degree zero divisor and

J+
τ {r, s} = lim

n−→∞
[(z)− (η); ∆[n]

τ {r, s}].

A similar statement holds for J−τ , with even a�noids replaced by odd ones.

The proof of this lemma proceeds along the same lines as that of Cor. 4.3, and is therefore

omitted.

4.3. Basic properties. A number of formal and foundational properties on the collections of rigid

meromorphic functions Jτ{r, s} will now be established.

Lemma 4.6. Suppose τ is unrami�ed. The functions Jτ{r, s}(z) satisfy the the following properties:

(a) The assignment (r, s) 7→ Jτ{r, s} is a modular symbol with values inM×.
(b) The rigid meromorphic function Jτ{r, s} is independent, up to multiplication by a non-zero

scalar, of the choice of base point η.
(c) The modular symbol Jτ satis�es the Γ-invariance property

Jτ{γr, γs}(γz) = Jτ{r, s}(z), (mod C×p ), for all γ ∈ Γ.

Proof. Property (a) of Jτ{r, s} follows from the similar property of the divisors ∆≤nτ {r, s},
while (b) follows from the fact that the functions Jητ {r, s} and Jη

′
τ {r, s} de�ned using di�erent

base points η and η′ satisfy

Jητ {r, s} = λJη
′

τ {r, s}, where λ = lim
n−→∞

[(η′)− (η); ∆≤nτ {r, s}].

Property (c) holds because

Jτ{γr, γs}(γz) = lim
n−→∞

[(γz)− (η); ∆≤nτ {γr, γs}](37)

= lim
n−→∞

[γ((z)− (γ−1η)); γ∆Anτ {r, s}],(38)

where An := γ−1(H≤np ) and

∆Anτ {r, s} :=
∑

w∈(Γτ)∩An

δr,s(w)(w).

The Γ-equivariance of the symbol [D1; D2] implies that

Jτ{γr, γs}(γz) = lim
n−→∞

[(z)− (γ−1η); ∆Anτ {r, s}].

Property (c) now follows from Corollary 4.3, in light of the fact thatHp = ∪n≥1An, and from

part (b) of Lemma 4.6. �

Likewise, one establishes with the same proofs the following rami�ed counterpart:
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Lemma4.7. Suppose τ ∈ Hp is a rami�ed RMpoint. The elements J+
τ and J−τ belong toMSΓ(M× /C×p ).

Proof. The argument proceeds exactly as in the proof of Lemma 4.6. �

It is instructive to examine the di�erence between the two rigid meromorphic theta-symbols

J+
τ and J−τ attached to a rami�ed RM point τ . To this end, we associate to τ a Γ0(p)-invariant

modular symbol mτ ∈ MSΓ0(p)(Z) by setting

mτ{r, s} := deg(∆U
τ {r, s}) :=

∑
w∈Γτ∩U

δr,s(w),

where U is the standard annulus whose stabiliser in Γ is equal to Γ0(p). The following lemma is

an easy consequence of the de�nitions.

Lemma 4.8. For all rami�ed RM points τ ∈ Hp, the di�erence between J+
τ and J−τ is the rigid

analytic theta-symbol given by
J+
τ ÷ J−τ = ST×(mτ ).

When τ is rami�ed, it is natural to de�ne the theta-symbol Jτ by averaging over J+
τ and J−τ .

De�nition 4.9. Let τ be a rami�ed RM point inHp. The theta-symbol attached to τ is de�ned by

Jτ{r, s} := (J+
τ {r, s} × J−τ {r, s})1/2 = J±τ {r, s} × ST×(mτ )∓1/2.

Lemmas 4.6 and 4.7 imply that Jτ is a Γ-invariant modular symbol with values inM× /C×p . It

is called the meromorphic theta-symbol associated to τ ∈ Γ\HRM
p .

Proposition 4.10. Up to elements ofMSΓ(A× /C×p ), every class inMSΓ(M× /C×p ) can be expressed
as a �nite product of cocycles of the form Jτ , as τ ranges over Γ\HRM

p .

Proof. It is shown in [DV21] that the full collection of theta symbols Jτ , as τ ranges over the

distinct Γ-orbits of both unrami�ed and rami�ed RM points, generates MSΓ(M× /C×p ) up to

analytic theta-symbols. See [DV21, Lemma 2.11, Theorem 2.12]. �

5. Lifting obstructions

5.1. De�nition and basic properties. Applying the exact functor Ω 7→ MS(Ω) to the short

exact sequences

1−→C×p −→A×−→A× /C×p −→ 1, 1−→C×p −→M×−→M× /C×p −→ 1

and then taking their Γ-cohomology leads to the commutative diagram in which the rows are exact

up to �nite subgroups, and the vertical maps are injective:

(39) MSΓ(A× /C×p )
Obs

� _

��

Π� _

��
0 // MSΓ(M×) // MSΓ(M× /C×p )

Obs // T (Cp),
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where T is the torus over Qp whose L-valued points are given by

T (L) := H1(Γ,MS(L×)),

and Π is the image of MSΓ(A× /C×p ) under the connecting homomorphism to T (Cp).

De�nition 5.1. If J belongs to MSΓ(M× /C×p ), its image under Obs is called the parabolic lifting
obstruction attached to J .

The terminology is justi�ed by the fact that the theta-symbol J lifts to a genuine rigid mero-

morphic modular symbol if and only if its lifting obstruction vanishes.

The next lemma analyses the rightmost column of diagram (39).

Lemma 5.2. There is a natural map

MSΓ0(p)(C×p ) −→ T (Cp)

with �nite kernel and co-kernel. In particular, the character group of T is isomorphic to Z2g+1, where
g is the genus of the modular curve X0(p). The subgroup Π is a lattice in T (Cp) (i.e., a discrete
subgroup of T (Cp) of rank 2g + 1).

Proof. The asserted map arises from the long exact cohomology sequence

1−→MSΓ0(p)(C×p ))−→H1(Γ,MS(C×p ))−→H1(SL2(Z),MS(C×p ))2−→H1(Γ0(p),MS(C×p )),

which arises from the second exact sequence of [Se80, II. §2.8, Prop. 13] applied to the Γ-

module MS(C×p ) and to the action of Γ on the Bruhat–Tits tree of PGL2(Qp), whose edge and

vertex stabilisers are isomorphic to Γ0(p) and SL2(Z) respectively, and whose fundamental

region consists of a single closed edge. The fact that Π is a lattice in T (Cp) follows from the

fact that the composition

MSΓ0(p)(Z)
ST×// MSΓ(A× /C×p )

Obs // H1(Γ,MS(C×p )) // MSΓ0(p)(C×p )
ordp // MSΓ0(p)(Z)

is the identity. �

Corollary 5.3. The character group X(T ) := hom(T,Gm), and the lattice Π, are isomorphic to
Z2g+1 up to torsion, and their tensor products with Q are isomorphic as Hecke modules.

The lattice Π and the torus T are closely related to the invariants de�ned and studied in [Das05]

in a more general setting.

Lemma 5.4. If R ∈ Div(Γ\HRM
p ) is an RM divisor, there is a unique theta-symbol JR satisfying

(i) Divisor(JR) = R;
(ii) Obs(JR) ∈ H1(Γ,MS(O×Cp)).

Proof. For τ ∈ HRM
p , the theta symbol Jτ has divisor equal to (τ), and hence, it is possible

to construct a J0
R with RM divisor equal to R. The theta-symbol JR can then be de�ned by

setting

JR = J0
R ÷ ST×(ordp(Obs(J0

R))).
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The uniqueness of JR satisfying properties (i) and (ii) follows from the fact that Π is a lattice

and hence that there are no analytic theta cocycles J with Obs(J) ∈ H1(Γ,MS(O×Cp)). �

The parabolic lifting obstruction attached to J is calculated by lifting J to a (not necessarily

Γ-invariant)M×-valued modular symbol J̃ , and setting

(40) Obs(J)(γ){r, s} =
J̃{γr, γs}(γz)
J̃{r, s}(z)

.

Note that the ratio on the right belongs to C×p since the modular symbol J̃ is Γ-invariant modulo

multiplicative scalars.

5.2. Toric values. The quantities on the right of (40) depend on the choice of lift J̃ , and indeed

classes in H1(Γ,MS(C×p )) need not admit a canonical representative 1-cocycle. It is useful to

associate to such a class some well-de�ned numerical invariants arising from Q-split tori in Γ.

More precisely, let (r, s) be an ordered pair of elements of P1(Q)2
. The stabiliser Γr,s of (r, s) in Γ

is the set of Z[1/p]valued points of a global split torus in GL2(Q), and is generated by a – unique,

up to torsion – loxodromic element γrs having r as an attractive and s as a repulsive �xed point.

Given a 1-cocycle κ ∈ Z1(Γ,MS(C×p )), the quantity

κ[r, s] := κ(γrs){r, s} ∈ C×p
is trivial on coboundaries, and therefore leads to a well-de�ned numerical invariant.

De�nition 5.5. The quantity κ[r, s] is called the toric value of κ ∈ H1(Γ,MS(C×p )) at (r, s).

The following lemma gives a simple formula for Obs(J)[r, s].

Lemma 5.6. For all (r, s) ∈ P1(Q)2,

(41) Obs(J)[r, s] = J̃{r, s}(γrsz)÷ J̃{r, s}(z),

where J̃{r, s} is any rigid meromorphic function lifting J{r, s}(z).

Proof. This is an immediate consequence of the de�nitions. It is worth reiterating the useful

fact that the right hand side in (41) does not depend on the choice of lift J̃{r, s}, and hence

that any choice would do. �

The following proposition asserts that the non-triviality of a class κ ∈ H1(Γ,MS(C×p )) can be

detected from its toric values.

Proposition 5.7. Let κ be a class in H1(Γ,MS(C×p )). If ordp κ[r, s] = logp κ[r, s] = 0 for all
(r, s) ∈ P1(Q)2, then κ is a torsion class.

Proof. If T is a Hecke operator and J ∈ H1(Γ,MS(C×p )), then the toric values of T (J) can

be expressed as linear combinations of other toric values, and hence the kernel of the map

toric evaluation map composed with ordp and logp,

(42) H1(Γ,MS(C×p ))−→
∏
(r,s)

Z⊕Cp
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is Hecke stable. Since the Hecke algebra acts semi-simply, the kernel is non-trivial if and only

if it contains a Hecke eigenclass. This eigenclass cannot be a power of the lifting obstruction

of the boundary symbol of (30), since

Obs(J])[0,∞] = p2.

Hence, it must be associated to a weight two cusp form f on Γ0(p). Denote by κf this eigen-

class with trivial toric values. Let c be an integer prime to p, and let ν ∈ Z /cZ. Proposi-

tion 2.16 of [Dar01] shows that the toric value κf [∞, ν/c], which in loc.cit. is denoted WΨν ,

depends only on the image of ν in the group (Z /cZ)×/〈p2Z〉, and that, for any Dirichlet

character χ of conductor c satisfying χ(p) = ±1, we have∑
ν∈(Z /cZ)×

χ(ν) ordp κf [∞, ν/c] ∼ L(f, χ, 1),
∑

ν∈(Z /cZ)×

χ(ν) logp κf [∞, ν/c] ∼ L(f, χ, 1),

where ∼ denotes equality up to multiplication by a simple non-zero scalar depending on κf .

Since there are in�nitely many such Dirichlet characters (in fact, in�nitely many quadratic

ones) for which L(f, χ, 1) 6= 0, it follows that there is no such κf , and hence that the map

(42) is injective. �

5.3. The toric values of the lifting obstruction. An explicit formula for Obs(Jτ )[r, s] will now

be obtained, for unrami�ed τ in Proposition 5.8, and for rami�ed τ in Proposition 5.10. It will play

a central role in the analysis to follow, as well as in the numerical computation of toric values of

the lifting obstruction, which give a computational pathway to the Gross–Stark units and Stark–

Heegner points discussed in § 3.7, as we will see in § 5.4.

Recall the degree zero divisors ∆≤nτ {r, s} supported onH≤np that were used to de�ne Jτ{r, s}(z)
as a limit of rational functions. For the calculation that follows, it will be useful to replace the

a�noid cover {H≤np }n≥0 by another cover involving a�noid domains that are better adapted to

studying the action of the matrix γrs. To this end, consider the in�nite path Υ (r, s) on the Bruhat-

Tits-tree going from r to s, viewed as ends of the tree. When p - det(r, s), this path contains the

standard vertex v◦, and consecutive vertices of Υ (r, s) can be numbered as . . . , v−1, v0, v1, . . .,
in such a way that v0 = v◦. The connected subtree T j of T having vj as its root vertex, and

containing no edge of Υ (r, s), is characterised by the property

ordp([z; (r)− (s)]) = j if and only if red(z) ∈ T j .
Let Υ [vi, vj ] be the subgraph of Υ (r, s) consisting of the path from vi to vj , with all the vertices

between vi and vj included, and let Υ [vi, vj) := Υ [vi, vj ] − {vj}. The Bruhat–Tits tree can be

expressed as the disjoint union

T =
∞⋃

j=−∞

(
T j ∪ Υ [vj , vj+1)

)
.

The matrix γrs preserves the path Υ (r, s), sending the vertex vj to vj+2e where p±e are the eigen-

values of γrs. It also maps the subtree T j to T j+2e. Hence the connected subgraph

T [v0,v2e) := Υ [v0, v2e) ∪ T 0 ∪T 1 ∪ · · · ∪ T 2e−1

is a fundamental domain for the Γr,s-action on T , and

Ω(r, s) := red−1(T [v0,v2e)) = {z ∈ Hp with 0 ≤ ordp([z; (r)− (s)]) < 2e}



REAL QUADRATIC BORCHERDS PRODUCTS 33

is a fundamental region in Hp for this action. Let T ≤nj denote the �nite subtree of T j of depth n
with vj as root vertex, and let

T ≤n[v0,v2e)
:= Υ [v0, v2e) ∪ T ≤n0 ∪T

≤n−1
1 ∪T ≤n2 ∪ · · · ∪ T

≤n−1
2e−1 ,

Ω[n](r, s) := red−1
(
T ≤n[v0,v2e)

)
⊂ Hp .

The sets Ω[n](r, s) form a nested sequence whose union is Ω(r, s), and likewise

(43) H[n]
p := red−1

 n⋃
j=−n

γjrs T
≤n
[v0,v2e)

 =

n⋃
j=−n

γjrsΩ
[n](r, s),

satis�es

(44) Hp = ∪n≥1H[n]
p .

We associate divisors ∆
[n]
τ {r, s} and Π

[n]
τ {r, s} to the setsH[n]

p and Ω[n](r, s) by setting

(45) ∆[n]
τ {r, s} :=

∑
w∈(Γτ)∩H[n]

p

δr,s(w) · (w), Π[n]
τ {r, s} :=

∑
w∈(Γτ)∩Ω[n](r,s)

δr,s(w) · (w).

Note that, by (43),

(46) ∆[n]
τ {r, s} =

n∑
j=−n

γjrsΠ
[n]
τ {r, s}.

Proposition 5.8. For all unrami�ed τ ∈ Γ\HRM
p ,

Obs(Jτ )[r, s] = lim
n−→∞

[Π[n]
τ (r, s); (r)− (s)].

Proof. Choose a base point η, and assume for simplicity that its reduction is equal to the

vertex v◦. This basepoint determines a lift of Jτ{r, s}(z) toM× by setting

J̃τ{r, s}(z) := lim
n−→∞

[(z)− (η); ∆≤nτ {r, s}],

following the de�nition given in Lemma 4.6. In light of (44) and Corollary 4.3, the de�nition of

J̃τ{r, s}(z) remains unchanged after replacing ∆≤nτ {r, s} by the divisors ∆
[n]
τ {r, s} of (45),

i.e.,

J̃τ{r, s}(z) = lim
n−→∞

[(z)− (η); ∆[n]
τ {r, s}].

By de�nition of the lifting obstruction,

Obs(Jτ )[r, s] := J̃τ{r, s}(γrsz)/J̃τ{r, s}(z)
= lim

n−→∞
[(γrsz)− (η); ∆[n]

τ {r, s}]÷ [(z)− (η); ∆[n]
τ {r, s}]

= lim
n−→∞

[(γrsz)− (z); ∆[n]
τ {r, s}].
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By (46), we may rewrite this as

Obs(Jτ )[r, s] = lim
n−→∞

n∏
j=−n

[(γrsz)− (z); γjrsΠ
[n]
τ {r, s}]

= lim
n−→∞

n∏
j=−n

[(γ−j+1
rs z)− (γ−jrs z); Π[n]

τ {r, s}]

= lim
n−→∞

[(γn+1
rs z)− (γ−nrs z); Π[n]

τ {r, s}]

= lim
n−→∞

[(r)− (s); Π[n]
τ {r, s}].

The proposition now follows from Weil reciprocity. �

Corollary 5.9. If τ is unrami�ed and p - det(r, s), then Obs(Jτ )[r, s] belongs to O×Cp .

Proof. The expression [Π
[n]
τ {r, s}; (r) − (s)] occuring in Proposition 5.8 can be written as

a �nite product of [∆v
τ{r, s}; (r) − (s)] for various vertices v, which are p-adic units since

∆v
τ{r, s} is a degree zero divisor supported on a single basic a�noid. �

To deal with the rami�ed case, the following rami�ed version of Proposition 5.8 will be needed.

Since its proof is essentially identical to that of the unrami�ed version, we leave it to the reader.

Proposition 5.10. For all rami�ed τ ∈ Γ\HRM
p ,

Obs(J+
τ )[r, s] = lim

n−→∞
[Π[n]

τ (r, s); (r)− (s)],

Obs(J−τ )[r, s] = lim
n−→∞

[Π[n]
τ (r, s); (r)− (s)],

where the limits are taken over the odd and even values of n, respectively.

Unlike the lifting obstructions attached to Jτ when τ is unrami�ed, the lifting obstructions

attached to J+
τ and J−τ need not be p-adic units. The following result computes their p-adic val-

uations. To state it, one associates to τ and (r, s) the unique harmonic cocycle cτ{r, s} on the

Bruhat–Tits tree T satisfying, for all even oriented edges e

cτ{r, s}(e) = sgn(e) · deg(∆Ue
τ {r, s}),

where Ue is the oriented annulus mapping to e under the reduction map.

Proposition 5.11. For all rami�ed τ ∈ Γ\HRM
p ,

(47) ordp(Obs(J+
τ )[r, s]) = − ordp(Obs(J−τ )[r, s]) =

1

2

∑
e∈Υ [v0,v2e]

cτ{r, s}(e).

In particular, ordp(Obs(Jτ )[r, s]) = 0.

Proof. By Proposition 5.10, Obs(J+
τ )[r, s] can be written as the limit of [Π

[n]
τ (r, s); (r)− (s)]

for n odd, each of which is a �nite product of factors of the form

(48) [∆v
τ{r, s} ∩ Ω[n](r, s) ; (r)− (s)]
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for various vertices v of even distance to v0. There are two cases to consider: When v is a

vertex that does not lie on the path Υ(r, s), we have

∆v
τ{r, s} ∩ Ω[n](r, s) = ∆v

τ{r, s},

and all points w in the support of ∆v
τ{r, s} satisfy ordp[w; (r)− (s)] = j for the same j ∈ Z.

Since the divisor ∆v
τ{r, s} is of degree zero, we �nd that

ordp [∆v
τ{r, s}; (r)− (s)] = j · deg(∆v

τ{r, s}) = 0.

When v = vj is on the path Υ(r, s) the quantity (48) is itself a product of factors indexed

by the points w in the support of ∆v
τ{r, s}. The valuation of [w; (r)− (s)] is

j if e does not lie on Υ(r, s),
j − 1/2 if e = (vj−1, vj),
j + 1/2 if e = (vj , vj+1).

When j 6= 0 we again have ∆v
τ{r, s} ∩Ω[n](r, s) = ∆v

τ{r, s}, which has degree zero. Taking

the weighted sum of all these valuations, it follows that

ordp [∆v
τ{r, s}; (r)− (s)] = −1

2cτ{r, s}(vj , vj−1) + 1
2cτ{r, s}(vj , vj+1)

= 1
2cτ{r, s}(vj−1, vj) + 1

2cτ{r, s}(vj , vj+1).

When j = 0 on the other hand, the valuation simply becomes
1
2cτ{r, s}(v0, v1). This proves

the desired result for Obs(J+
τ )[r, s]. The result for Obs(J−τ )[r, s] follows in exactly the same

way, interchanging even an odd vertices. �

5.4. A reciprocity law. The main result of this section is the following reciprocity law.

Theorem 5.12. Let τ ∈ Hp be an RM point, and (r, s) a pair of elements in P1(Q), and let

Jτ ∈ H1(Γ,M×/C×p ),

Jr,s ∈ H1(Γ, A×/C×p ),

be the associated rigid meromorphic, resp. analytic, theta-cocycles. Then

Obs(Jτ )[r, s] = Jr,s[τ ] (mod torsion).

Proof. Suppose �rst that τ is unrami�ed. By Proposition 5.8, it is enough to show that

Jr,s[τ ] = lim
n−→∞

[Π[n]
τ {r, s}; (r)− (s)].

We begin by treating the case where τ is even. We can then assume without loss of generality,

after translating τ by a suitable element of Γ, that τ reduces to the vertex v◦. The automorph

γτ then belongs to SL2(Z), and one has

Jr,s[τ ] = J◦r,s(γτ )(τ),

where J◦r,s is the lift of Jr,s to an element of MSSL2(Z)(A×). By the formula for J◦r,s given in

Proposition 3.22,

(49) Jr,s[τ ] =
∞∏
n=0

J (n)
r,s (γτ )(τ), where J (n)

r,s (γτ )(z) :=
∏

(u,v)∈Σ
(n)
r,s

[z; (u)− (v)][u,v]·[ξ,γτ ξ].
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Let (Γ/Γr,s)n denote the set of α ∈ Γ/Γr,s satisfying ordp(det(αr, αs)) ≤ n. We may then

rewrite (49) as asserting that Jr,s[τ ] = limn→∞ J
≤n
r,s (γτ )(τ), where

(50) J≤nr,s (γτ )(τ) =
∏

α∈(Γ/Γr,s)n

[τ ; (αr)− (αs)][αr,αs]·[ξ,γτ ξ].

Since γτ belongs to the group SL2(Z) which preserves the determinant of (r, s), it acts on the

set (Γ/Γr,s)n by left multiplication, and therefore

J≤nr,s (γτ )(τ) =
∏

α∈γZτ \(Γ/Γr,s)n

∞∏
j=−∞

[τ ; (γjταr)− (γjταs)]
[γjταr,γ

j
ταs]·[ξ,γτ ξ]

(51)

=
∏

α∈γZτ \(Γ/Γr,s)n

∞∏
j=−∞

[τ ; (αr)− (αs)][αr,αs]·[γ
−j
τ ξ,γ−j+1

τ ξ]
(52)

=
∏

α∈γZτ \(Γ/Γr,s)m

[τ ; (αr)− (αs)][αr,αs]·[τ
′,τ ]

(53)

=
∏

α∈γZτ \(Γ/Γr,s)m

[(α−1τ); (r)− (s)][r,s]·[α
−1τ ′,α−1τ ] (mod pZ).(54)

In this series of equalities, (52) and (54) follow from the SL2(Z) and Γ-equivariance properties

of the expression [z; (r)− (s)], respectively, and (53) follows from the identity

∞∑
j=−∞

[αr, αs] · [γ−jτ ξ, γ−j+1
τ ξ] = lim

M −→∞
[αr, αs] · [γ−Mτ ξ, γM+1

τ ξ]

= [αr, αs] · [τ ′, τ ],

since τ is the attractive �xed point inH for γτ and τ ′ is its repulsive �xed point.

Since the subgraph T [v0,v2e) is a fundamental region in T for the action of the matrix γrs,

the set of matrices α ∈ Γ for which α−1v◦ ∈ T [v0,v2e) gives system of representatives for the

quotient Γ/Γr,s. After identifying the quotient with this particular system of representatives,

the natural map α 7→ α−1τ yields a bijection

Γτ\(Γ/Γr,s)m−→(Γτ) ∩ Ω(m)(r, s),

where we recall that Ω(m)
is the truncated fundamental region for the action of Γr,s. We may

then rewrite (54) as

J≤mr,s (γτ )(τ) =
∏

w∈(Γτ)∩Ω(m)(r,s)

[w; (r)− (s)]δr,s(w) = [Π≤mτ {r, s}; (r)− (s)] (mod pZ).

We have therefore proved that

Jr,s[τ ] = Obs(Jτ )[r, s],

up to powers of p. On the other hand,

(1) The left hand side belongs to O×Cp , by Cor. 3.23.

(2) The right hand side belongs to O×Cp by Corollary 5.9.

The theorem follows. The arguments for τ rami�ed are similar. �
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Remark 5.13. It is in general not expected that the toric values of the lifting obstruction Obs(Jτ )[r, s]
are algebraic numbers. However, the reciprocity law of Theorem 5.12 implies that they are very

closely related to the Gross–Stark units and Stark–Heegner points discussed in § 3. To see why, note

that the reciprocity law equates the toric value to the RM value of the toric cocycle Jr,s, which is

an analytic theta cocycle, and therefore a combination of the cocycles de�ned in § 3.7. Through the

Schneider–Teitelbaum lift, the precise linear combination may be computed easily in homology,

which was done in [DPV1]. For instance, for (r, s) = (0,∞) one �nds that

(55) J0,∞ =

(
12

p− 1

)
· JDR +

∑
f

Lalg(f, 1) · J−f ,

where the sum runs over a basis of normalised eigenforms for S2(Γ0(p)), and additive notation

is used to denote the group operation in H1(Γ,A× /C×p ) ⊗ Qp. The quantity Lalg(f, 1) is the

algebraic part of the L-value attached to f , and may easily be computed in practice.

The explicit description provided by Proposition 5.8 makes the toric values of the lifting ob-

structions eminently suited to explicit computation, using the modular symbol algorithms that

were described in [DV21, § 2.5]. We illustrate this here with a few examples.

Example 5.14. The smallest discriminant of a rigid meromorphic theta-symbol whose parabolic

lifting obstruction has non-trivial toric values is D = 12, which has class number one but narrow

class number two. The primes p = 5, 7 are both inert for this discriminant, so that τ := (1+
√

3)/2
is contained in the corresponding p-adic upper half plane Hp. For these primes all terms of (55)

corresponding to cusp forms must vanish, since S2(Γ0(p)) = 0. This means that the p-adic cocycle

J0,∞ is a multiple of the Dedekind–Rademacher cocycle JDR for both of these primes, and as such

it should have algebraic RM values. Numerical calculations, carried out to 100 digits of p-adic

precision, indicate that

(56) Obs(Jτ )[0,∞]
?
= −1 +2i ∈ Q5, Obs(Jτ )[0,∞]3

?
= (−13 +3

√
−3)/2 ∈ Q7 .

When p = 7 and D = 321, the smallest positive discriminant of narrrow class number 6
in which p is inert, there are three distinct rigid meromorphic cocycles Ji (for i = 1, 2, 3) of

discriminant 321, whose zeroes and poles are concentrated on the Γ-orbits of ±τi where

τ1 =
−17 +

√
321

2
, τ2 =

−17 +
√

321

4
, τ3 =

−17 +
√

321

8
.

Their cuspidal values, calculated to 20 digits of 7-adic accuracy, are

Obs(J1)[0,∞] = 11055762063642167 (mod 720),

Obs(J2)[0,∞] = 27863515261720344− 24701001956851703
√

321 (mod 720),(57)

Obs(J3)[0,∞] = 35228448313023684− 11567417813120589
√

321 (mod 720).

The �rst quantity belongs to Q7 while the second and third are conjugate to each other (up to

inversion) over the unrami�ed quadratic extension of Q7. All three quantities are 7-adic units, but

to 200 digits of 7-adic accuracy it appears that, up suitable powers of 7, all three of them satisfy

the same sextic polynomial with rational coe�cients

(58) 74x6 − 20976x5 − 270624x4 + 526859689x3 − 649768224x2 − 120922465776x+ 716,

whose splitting �eld is the narrow Hilbert class �eld of Q(
√

321).
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Example 5.15. Let τ = 2
√

2, which has discriminant 32, and is contained in the 11-adic upper

half plane. Let J̄τ be the 11-adic theta cocycle attached to τ . Then the reciprocity law proved in

Theorem 5.12 implies that

Obs(Jτ )[0,∞] =
6

5
JDR[τ ] +

1

5
J−E [τ ]

where E is the modular curve of level 11 given explicitly in Weierstraß form by

E : y2 + y = x3 − x2 − 10x− 20

This means that whereas the quantity Obs(Jτ )[0,∞] itself need not be algebraic, we may apply

suitable Hecke operators to obtain algebraic quantities, according to the results discussed in § 3.7.

We observed to a high 11-adic precision that{
Obs((T2 + 2)Jτ )[0,∞] = JDR[τ ]6 =

(√
−2−3
11

)6
∈ C×11

Obs((T2 − 3)Jτ )[0,∞] = J−E [τ ]−1 = (2
√
−2, 4

√
−2− 5) ∈ C×11 /q

Z
E

6. Generating series

6.1. A Gross–Kohnen–Zagier formula for Stark–Heegner points. Let −d1 be a �xed neg-

ative fundamental discriminant prime to p. If −d2 is a second negative discriminant such that

(−d2/p) 6= (−d1/p), we can associate to the pair (−d1,−d2) the RM divisors D±−d1,−d2 as in

(2). If J is any analytic theta-cocycle, the values J [D±−d1,−d2 ] are de�ned in the obvious way, by

extending the de�nition of the RM values J [τQ] by multiplicativity.

Let M(p) ⊂ M3/2(4p) ⊗ Qp denote Kohnen’s subspace tensored with Qp, consisting of mod-

ular forms whose fourier coe�cients are supported on integers d2 ≡ 0, 3 (mod 4). It can be

decomposed as

M(p) = M(p)+ ⊕M(p)−,

where M(p)+
(resp. M(p)−) consists of modular forms whose fourier coe�cients are supported

on integers d2 for which (−d2/p) 6= 1 (resp. (−d2/p) 6= −1).
1

Then M(p)+
is the +1-eigenspace

for the Up2 operator (Cf. [Gr87, §12]), i.e., a form g =
∑
c(D)qD in this space satis�es

(59) c(Dp2m) = c(D).

The following result can be viewed as an analogue of the Gross–Kohnen–Zagier theorem for

Stark–Heegner points:

Theorem 6.1. Let J be any analytic theta-cocycle.

(1) If
(
−d1
p

)
= 1, then the generating series

Θ−d1,J(q) :=
∑
d2≥0

logp J [D+
−d1,−d2 ]qd2

belongs to M(p)+.

1
Note that over C, the space obtained by the conditions de�ning M(p)+ is denoted instead M∗C in [Gr87] and its

cuspidal subspace is denoted S3/2(p)
−

in [Ko82].
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(2) If
(
−d1
p

)
= −1, then the generating series

Θ−d1,J(q) :=
∑
d2≥0

logp J [D−−d1,−d2 ]qd2

belongs to M(p)−.

Sketch of proof. Assume �rst that

(
−d1
p

)
= 1. Since the Hecke algebra of weight two and

level p acts semisimply on the space of rigid analytic theta cocycles, we may assume, after

tensoring this space with Q̄, that J is a Hecke eigenclass. If J is the class J+
f or J−f attached

to a cusp form f of weight 2 on Γ0(p), then J+
f [D+

−d1,−d2 ] = 1, while the modularity assertion

for J−f follows from [DT08, Theorem 5.1 (a)]. More precisely, after replacing the fundamental

discriminant−D2 of loc.cit. by−d1 and the varying discriminants−D1 by−d2, this theorem

asserts that there is a modular form θ :=
∑
b(d2)qd2 ∈M(p)+

for which

logp J
−
f [D+

−d1,−d2 ] = b(d2),

for all d2 satisfying

(60) ordp(d2) ≤ 1, d2 = 0, 3 (mod 4),

(
−d2

p

)
6= 1.

In applying [DT08, Theorem 5.1 (a)], it must be noted that somewhat stronger assumptions

are made in its statement than needed. Namely:

• It is assumed that−d1 and−d2 are both fundamental and relatively prime to each other.

This stronger hypothesis on −d2 is only used in the proof of [DT08, Theorem 5.1 (b)], where

it is necessary that the character ω−d1 be a genus character in order to invoke [BD09, Thm. 1].

The proof of [DT08, Theorem 5.1 (a)], where only Kohnen’s formula is used, applies to the

more general −d2 of Theorem 6.1.

• It is assumed that f has rational fourier coe�cients and hence corresponds to an elliptic

curve, but the proof applies just as well to arbitrary cuspidal eigenforms after extending scalars

to the �eld generated by the fourier coe�cients of f .

• Finally, Theorem 5.1 of [DT08] applies only to the cuspidal eigenclasses, leaving out the

boundary theta-symbol J] of § 3.7.1 and the Dedekind–Rademacher cocycle JDR of § 3.7.3.

The case where J = J] is trivial since J][D+
−d1,−d2 ] = 1, while the case where J = JDR

is handled in [Pa10, Theorem 5.2.] and the discussion that follows it, which shows that the

associated generating series Θ−d1,JDR
(q) is an Eisenstein series of weight 3/2 on Γ0(4p).

The modularity of the coe�cients logp J
−
f [D+

−d1,−d2 ] is thus established, for all rigid an-

alytic theta-cocycles J and for all d2 satisfying (60). The result then follows for all d2 from

the rule (3) satis�ed by the quantities D+
−d1,−d2 , combined with the fact that the fourier coef-

�cients of forms in M(p)+
satisfy the same relation, by (59).

This handles the �rst assertion. The argument for the case

(
−d1
p

)
= −1 proceeds along

the same lines. �

Remark 6.2. While the argument above falls somewhat short of being a complete proof because of

its reliance on the slightly weaker results in [BD09] and [DT08], a simpler and more direct route

to Theorem 6.1 is available, which will be treated in forthcoming work. It builds on the approach
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of [BDG], and produces the generating series Θ−d1,J(q) as the �rst derivative of a p-adic family

of Kudla-Millson theta series in weight 3/2.

Remark 6.3. When

(
−d1
p

)
= 1, the generating series

Θ[
−d1,J(q) :=

∑
d2≥0

logp J [D−−d1,−d2 ]qd2

is not a classical modular form of weight 3/2, but is best envisaged as a p-adic mock modular form
whose “shadow” is a suitable kernel of the Shimura–Shintani correspondence between M(p)− and

S2(p)−, where S2(p)− denotes the (−1)-eigenspace for the Up operator on forms of weight two

and level p. The full generating series∑
d2≥0

logp J [D−d1,−d2 ]qd2

exhibits a somewhat subtle behaviour: it is a classical modular form of weight 3/2 along M(p)+
,

and a “p-adic mock modular form” along M(p)−. For details, see the discussion in [DT08].

Corollary 6.4. Let ι :=
(
−d1
p

)
. For all φ =

∑
d>>0 c(d)qd ∈M !!

1/2(4p), the divisor

D−d1,φ :=
∑
d2≥0

c(−d2)Dι−d1,−d2

satis�es
logp J [D−d1,φ] = 0, for all J ∈ H1(Γ,A× /C×p ).

Proof. This is a direct consequence of Serre duality in light of Theorem 6.1. Namely, the

value

logp J [D−d1,φ] =
∑
d2≥0

c(−d2) · logp J [Dι−d1,−d2 ]

is the zero-th fourier coe�cient of φ(q)Θ−d1,J(q), a weakly holomorphic modular form of

weight 2 and level p with poles only at the cusp ∞. This coe�cient is the residue of the

associated regular di�erential

φ(q)Θ−d1,J(q)
dq

q
∈ Ω1(X0(p)− {∞}),

and is therefore zero by the residue theorem. �

6.2. A principality criterion. Let D be an arbitrary RM divisor. The following criterion for D to

be principal plays a crucial role in our argument.

Proposition 6.5. If logp J [D] = 0 for all analytic theta-symbols J ∈ MSΓ(A× /C×p ), then D is a
principal divisor, i.e., there is a meromorphic modular symbol JD ∈ H1(Γ,M×)⊗Q satisfying

Divisor(JD) = D.

Proof. The hypothesis implies in particular that

logp Jr,s[D] = 0, for all (r, s) ∈ P1(Q)2.
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By the reciprocity law of Theorem 5.12, it follows that

logp Obs(JD)[r, s] = 0, for all (r, s) ∈ P1(Q)2,

where JD is the rigid meromorphic theta-symbol having D as a divisor. Proposition 5.7 then

implies that logp Obs(JD) = 0, and therefore that JD lifts to a meromorphic modular symbol

in H1(Γ,M×)⊗Q. The proposition follows. �

6.3. A real quadratic Borcherds lift. The results of the previous sections can now be combined

to prove the following result. Recall that we have �xed a negative fundamental discriminant −d1

and set ι :=
(
−d1
p

)
.

Theorem 6.6. For all φ =
∑

d>>−∞ cφ(d)qd ∈ M !!
1/2(4p) with integer Fourier coe�cients, there is

a rigid meromorphic cocycle J−d1,φ ∈ H1(Γ,M×)⊗Q satisfying

Divisor(J−d1,φ) =
∑
d2≥0

cφ(−d2)Dι−d1,−d2 ,

where the sum is taken over the negative discriminants −d2 satisfying
(
−d2
p

)
6= ι.

Proof. Corollary 6.4 implies that logp J [D−d1,φ] = 0 for all rigid analytic theta-symbols J ,

and the principality criterion of Proposition 6.5 then shows that the divisorD−d1,φ is principal,

i.e., arises as the divisor of some J−d1,φ in the space H1(Γ,M×)⊗Q. �

Appendix A. The parallel with Mumford’s p-adic theta functions

The purpose of this motivational appendix is to draw the parallel between the p-adic theta

functions that arise in the theory of p-adic uniformisation of Mumford curves by p-adic Schottky

groups acting discretely on Hp, and rigid meromorphic theta-cocycles. Up to a few signi�cant

di�erences between the two settings, one passes from one notion to the other by “shifting the

degree of cohomology by one".

Firstly, let Γ ⊂ SL2(Qp) be a p-adic Schottky group acting freely and discretely on Hp and on

the Bruhat–Tits tree, and let XΓ be the associated Mumford curve over Qp, whose Cp-points are

identi�ed with the quotient Γ\Hp. As before, let A× andM× denote the multiplicative groups

of rigid analytic and rigid meromorphic functions onHp, respectively. The theory of p-adic theta-

functions associates to any degree zero divisor ∆ ofHp a rigid meromorphic function

θ∆(z) :=
∏
γ∈Γ

[(z)− (η) ; γ∆].

The divisor of such a function is Γ-invariant. In fact, θ∆ is invariant modulo scalars, i.e., it belongs

to H0(Γ,M× /C×p ). It lifts to an element of H0(Γ,M×), i.e., to a rational function on XΓ, if any

only if the image of ∆ in XΓ(Cp) is a principal divisor. The obstruction to ∆ being principal is

measured by the automorphy factor κ∆ : Γ−→C×p of θ∆, de�ned by

θ∆(γz) = κ∆(γ)θ∆(z), for γ ∈ Γ.
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The group H1(Γ,C×p ) is isomorphic to (C×p )g where g is the genus of XΓ, and the group ΠΓ of

automorphy factors arising from elements of H0(Γ,A× /C×p ) forms a sublattice in H1(Γ,C×p )
which is commensurable with the Tate period lattice of the Jacobian of XΓ. One obtains a p-adic

uniformisation of this Jacobian as the quotient of H1(Γ,C×p ) by ΠΓ, and the lifting obstruction κ∆

attached to ∆ ∈ Div0(Hp) encodes the image of ∆ in Jac(XΓ). This discussion is summarised in

the following commutative diagram:

(61)

0

��

0

��

0

��

0

��
0 // C×p

��

// C×p

��

// H0(Γ,A× /C×p )

��

δ // ΠΓ
//

��

0

0 // C×p

��

// H0(Γ,M×)

Div

��

// H0(Γ,M× /C×p )

Div
��

δ // H1(Γ,C×p )

��
0 // Prin(XΓ) //

��

Div0(XΓ) //

��

Jac(XΓ) //

��

0,

0 0 0

where δ is the connecting homomorphism arising from in the long exact Γ-cohomology exact

sequence, and

ΠΓ := δ(H0(Γ,A× /C×p )) ⊂ H1(Γ, C×p ).

The analogue of (61) in the setting of rigid meromorphic cocycles is obtained by replacing the

p-adic Schottky group Γ by the multiplicative group of a Z[1/p]-order in an inde�nite quaternion

algebra over Q. The Ihara group Γ := SL2(Z[1/p]) is the simplest, prototypical example of such

a group. It is too large to act discretely on Hp, or on the Bruhat–Tits tree without �xed points.

Indeed, the vertex and edge stablisers in Γ are conjugate to SL2(Z) and to the Hecke congruence

group Γ0(p), respectively. Because of this, the groups H0(Γ,A×) and H0(Γ,M×) contain only

the constant functions, and it becomes natural to replace the group H0(Γ,M×) of rigid mero-

morphic functions on XΓ when Γ is a p-adic Schottky group, with the group H1(Γ,M×) of rigid

meromorphic cocycles.

The theory of theta-cocycles described in § 4 associates to any divisor ∆ ofHp consisting of RM
points a rigid meromorphic cocycle

J∆(z) ∈ H1(Γ,M× /C×p )

modulo multiplicative scalars, and shows that all such cocycles are obtained in this way. The

divisor ∆ is said to be principal if the class J∆ lifts to genuine rigid meromorphic cocycle in

H1(Γ,M×). The obstruction to ∆ being principal is measured by the lifting obstruction κ∆ ∈
H1(Γ,MS(C×p )) and its non parabolic counterpart in H2(Γ, C×p ). The group H2(Γ, C×p ) maps

with �nite kernel to H1(Γ0(p), C×p ), suggesting that it could serve as the domain for a p-adic uni-

formisation of J0(p) (or even, of the generalised Jacobian of the open curve Y0(p)). Indeed, it turns

out that the group ΠΓ generated by the lifting obstructions of analytic cocycles in H1(Γ,A× /C×p )
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forms a sublattice in H2(Γ, C×p ) which is commensurable with two copies of the Tate period lattice

of J0(p), augmented by the discrete group generated by pZ. As explained in [Dar01, §2] and in

[Das05], this is essentially a reformulation of the “exceptional zero conjecture" of Mazur, Tate and

Teitelbaum [MTT86] which was proved by Greenberg and Stevens [GS93]. One obtains a kind of

p-adic uniformisation of two copies of this Jacobian (along with a multiplicative factor of C×p /p
Z

)

as a rigid analytic quotient of H2(Γ, C×p ) by the lattice ΠΓ. The lifting obstruction κτ attached to

any τ ∈ HRM
p encodes the images of the Gross–Stark units and the Stark–Heegner points attached

to τ , in the generalised Jacobian of Y0(p).

This discussion can be summarised in the following commutative diagram in the category of

abelian groups up to isogeny, where morphisms are decreed to be isomorphisms if they have �nite

kernels and cokernels:

(62)

0

��

0

��

0

��
H1(Γ,A×)

��

// H1(Γ,A× /C×p )

��

δ // ΠΓ

��
H1(Γ,M×)

Div
��

// H1(Γ,M× /C×p )

Div
��

δ // H2(Γ, C×p )

��
Prin(Γ\HRM

p ) //

��

Div0(Γ\HRM
p ) //

��

Jac(X0(p))(Cp)
2 ⊕ C×p /pZ

��
0 0 0
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