
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

JOURNAL OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 30, Number 3, July 2017, Pages 601–672
http://dx.doi.org/10.1090/jams/861

Article electronically published on June 10, 2016

DIAGONAL CYCLES AND EULER SYSTEMS II:

THE BIRCH AND SWINNERTON-DYER CONJECTURE

FOR HASSE-WEIL-ARTIN L-FUNCTIONS

HENRI DARMON AND VICTOR ROTGER

Contents

Introduction 601
1. Global Λ-adic cohomology classes 610
2. Local Λ-adic cohomology classes 628
3. The syntomic Abel-Jacobi map on products of semistable curves 641
4. Bloch-Kato logarithms of weight two specializations 646
5. The explicit reciprocity law 658
6. Application to the Birch and Swinnerton-Dyer conjecture 662
Acknowledgments 670
References 670

Introduction

Let E be an elliptic curve over Q and let

� : GQ = Gal (Q̄/Q) −→ AutL(V�) � GLn(L)

be an Artin representation with coefficients in a finite extension L ⊂ Q̄ ⊂ C of Q,
factoring though the Galois group of a finite extension H/Q. The Hasse-Weil-Artin
L-series L(E, �, s) of E twisted by �, defined on the right half-plane Re(s) > 3/2
by an absolutely convergent Euler product of degree 2n, is expected to admit an
analytic continuation to the whole complex plane.

Let E(H)� := HomGQ
(V�, E(H) ⊗ L) denote the �-isotypical component of the

Mordell-Weil group E(H), and define the analytic and algebraic rank of the twist
of E by � as

ran(E, �) = ords=1L(E, �, s), r(E, �) = dimL E(H)�.

A Galois-equivariant refinement of the Birch and Swinnerton-Dyer conjecture pre-
dicts that

(1) ran(E, �)
?
= r(E, �).
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The main object of this article is to study conjecture (1) when � = �1⊗�2, where

�1, �2 : GQ −→ GL2(L)

are odd, irreducible two-dimensional Artin representations satisfying

det(�1) = det(�2)
−1.

This last condition implies that � has real traces, i.e., is isomorphic to its dual, or
contragredient, representation.

Thanks to the major advances achieved in the past two decades, the elliptic curve
E and the Artin representations �1 and �2 are known to be associated to cuspidal
newforms

f ∈ S2(Nf ), g ∈ S1(Ng, χ), h ∈ S1(Nh, χ
−1)

of weights 2, 1, 1, respectively. The nebentype character χ = det(�1) of g is an odd
Dirichlet character whose conductor divides both Ng and Nh.

The L-function L(E, �, s) can be identified with the triple-product convolution
L(f, g, h, s), whose analytic continuation and functional equation follow from the
work of Garrett, Piatetski-Shapiro, and Rallis. In particular, the analytic rank
ran(E, �) is defined unconditionally, suggesting that (1) might repay closer scrutiny
in this setting.

It is assumed throughout this work that the level Nf of f is relatively prime to
NgNh. This implies (cf. [Pr, Theorem 1.4]) that all the local signs in the functional
equation of L(f, g, h, s) = L(E, �, s) are +1, and hence that the same is true for the
global sign, implying that ran(E, �) is even. Subject to these hypotheses, the main
results of this article are Theorems A and B below. (Cf. Theorems 6.7 and 6.13 for
somewhat more general statements.)

Theorem A. If L(E, �, 1) �= 0, then E(H)� = 0.

Theorem A has broad implications for the arithmetic of E over ring class fields
of quadratic fields, both imaginary and real. For any ring class character ψ of a
quadratic field K (of conductor relatively prime to Nf =: NE), let H/K denote the
ring class field cut out by it, and define

E(H)ψ = {P ∈ E(H)⊗ L such that P σ = ψ(σ)P for all σ ∈ Gal (H/K)}.
When K is a real quadratic field, assume further that the pair (E,K) satisfies the
non-vanishing hypothesis of Definition 6.8. This mild hypothesis is expected to
always hold and is satisfied, for example, as soon as E has quadratic twists E′ of
both possible signs for which L(E′/K, 1) �= 0.

Corollary A1. If L(E/K,ψ, 1) �= 0, then E(H)ψ = 0.

When K is imaginary quadratic, theorems of this sort were already established
by a variety of approaches (cf. [Ko89], [BD97, Theorem B], [BD99, Theorem 1.2.],
[BD05, Corollary 4] and [Ne3, Theorem A’], for example) using Heegner points on
modular or Shimura curves, combined with p-adic techniques and/or congruences
between modular forms. Their common feature is that they ultimately rely on
Kolyvagin’s Euler system of Heegner points and on some variant (either classical or
p-adic) of the Gross-Zagier formula [GZ86]. The approach followed in this article
makes no use of Heegner points, which accounts for why it extends unconditionally
to more general settings, including the case where K is a real quadratic field.
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The intimate connection between Corollary A1 for K real quadratic and the the-
ory of Stark-Heegner points initiated in [Da] is suggested by the articles [BDD07]
and [LRV13], which give a conditional proof of Corollary A1 resting on the al-
gebraicity of Stark-Heegner points, essentially by replacing Heegner points with
their conjectural real quadratic counterparts in the proof of [BD99, Theorem 1.2].
Stark-Heegner points are still poorly understood, but the hope that the structures
developed in the proof of Corollary A1 might shed light on their algebraicity was
an important motivation for the present work.

Specializing Theorem A to the case where the representation � = �1 ⊗ �2 is
irreducible establishes the Birch and Swinnerton-Dyer conjecture in analytic rank
zero, in scenarios lying beyond the scope of both Heegner and Stark-Heegner points.
For instance, in the case where the projective representations attached to �1 and
�2 cut out the same A5-extension of Q, but where �1 and �2 are not twists of each
other, Theorem A leads to the following instance of the Birch and Swinnerton-Dyer
over quintic fields, which is spelled out in Theorem 6.11.

Corollary A2. Let E be an elliptic curve over Q, let K be a non-totally real
quintic field with Galois group A5, and assume that the discriminants of E and K
are coprime. Then

ords=1L(E/K, s) = ords=1L(E/Q, s) ⇒ rankE(K) = rankE(Q).

The second main theorem of this article is concerned with the case where
L(E, �, s) vanishes at s = 1 (and hence to order at least 2). Note that �1 and
�2 are both regular; i.e., there exists σ ∈ GQ acting on each of these Galois repre-
sentations with distinct eigenvalues.

Fix an odd prime p not dividing N := lcm(Nf , Ng, Nh) at which f is not Eisen-
stein and fix throughout an embedding Q̄ ↪→ Q̄p. Let Frobp ∈ GQ denote the
Frobenius element at p induced by this embedding. Let Lp denote the completion
of L in Q̄p. Let (αg, βg) and (αh, βh) be the pairs of eigenvalues of �g(Frobp) and
�h(Frobp), respectively. It shall be assumed throughout this article that

E is ordinary at p, and αg �= βg, αh �= βh.

Such a prime exists by the Chebotarev density theorem.
Theorem B below relates the p-Selmer group attached to E and � to the behavior

of the Garrett-Hida p-adic L-functions attached to f , g, and h. In order to describe
these p-adic L-functions more precisely, let Sord

Λ̃
(M,ψ) denote the space of ordinary

Λ-adic modular forms of tame level M ≥ 1 and tame character ψ with coefficients
in a finite flat extension Λ̃ of the Iwasawa algebra Λ = Zp[[1 + pZp]]. These spaces

are locally free Λ̃-modules of finite rank and are equipped with a natural Λ̃-linear
action of the Hecke operators.

A Hida family φ can be viewed concretely as a formal q-series with coefficients

in Λ̃ whose specializations give rise to a p-adically coherent collection {φx} of over-
convergent ordinary modular forms indexed by the points x in the rigid analytic
space Ω̃ := Homcts(Λ̃,Cp). This space is equipped with a finite flat morphism

w : Ω̃ −→ Ω to the weight space Ω := Homcts(Λ,Cp), which is also equipped with
a natural embedding Z ⊂ Ω. When k = w(x) ∈ Z, the form φx belongs to the
space Soc

k (M,ψω1−k) of overconvergent modular forms of weight k, and is classical
when k ≥ 2 by [Hi93, Chapter 7.3, Theorem 3]. When k = 1, the form φx may be
classical or not.
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If φ is a Hida family of eigenforms of tame level M and tame character ψ, let

(2) Sord
Λ̃

(M,ψ)[φ] :=

{
ϕ ∈ Sord

Λ̃
(M,ψ) s.t.

∣∣∣∣ T�ϕ = a�(φ)ϕ, ∀� � Mp,
Upϕ = ap(φ)ϕ,

}
,

Sord
Λ̃

(M,ψ)∨[φ](3)

=

{
γ : Sord

Λ̃
(M,ψ) → Λ̃ s.t.

∣∣∣∣ γ(T ∗
� ϕ) = a�(φ)γ(ϕ), ∀� � Mp,

γ(U∗
pϕ) = ap(φ)γ(ϕ) ϕ ∈ Sord

Λ̃
(M,ψ)

}

denote the φ-isotypic subspaces of Sord
Λ̃

(M,ψ) and of its Λ̃-linear dual, in which the
latter is endowed with the adjoint action of the Hecke operators, as described in
(24) below, the adjoints being taken relative to Poincaré duality.

Let fα ∈ S2(Nfp) denote the unique ordinary p-stabilization of f , and write gα,
gβ ∈ S1(Ngp, χ) (resp., hα, hβ ∈ S1(Nhp, χ

−1)) for the pair of ordinary stabiliza-
tions of g (resp., h). By [Hi93, Chapter 7.3, Theorem 3] combined with a recent
result of Belläıche and Dimitrov [BeDi], there is a unique triple of Hida families,
denoted by (f, g, h), which specializes to (fα, gα, hα) in weights (2, 1, 1). These
Hida families are normalized eigenforms

f ∈ Sord
Λf

(Nf ), g ∈ Sord
Λg

(Ng, χ), h ∈ Sord
Λh

(Nh, χ
−1),

with coefficients in suitable finite flat extensions Λf , Λg, and Λh of Λ.
The Garrett-Hida p-adic L-functions denoted

Lp
fα(f̆

∗
, ğ, h̆), Lp

gα(f̆ , ğ∗, h̆), Lp
hα(f̆ , ğ, h̆

∗
)

depend on the choice of a triple (f̆ , ğ, h̆) of Λ-adic test vectors

(4) f̆ ∈ Sord
Λf

(N)[f ], ğ ∈ Sord
Λg

(N,χ)[g], h̆ ∈ Sord
Λh

(N,χ−1)[h],

as well as on a triple of dual test vectors

(5) f̆
∗ ∈ Sord

Λf
(N)∨[f ], ğ∗ ∈ Sord

Λg
(N,χ−1)∨[g], h̆

∗ ∈ Sord
Λh

(N,χ)∨[h].

The specializations f̆x, ğy, and h̆z at points of weight k, �,m ∈ Z belong to the space
of overconvergent oldforms of tame level N and weights attached to fx, gy, and hz,

respectively, while f̆∗
x , ğ

∗
y , and h̆∗

z belong to the Cp-linear duals S
oc
k (N,ω1−k)∨[f∗

x ],

Soc
� (N,χ−1ω1−�)∨[g∗y ], and Soc

m (N,χω1−m)∨[h∗
z].

The space Sn-oc
k (N,χ) of nearly overconvergent p-adic modular forms is described

for instance in [DR13, Section 2.4]. Lemma 2.7 of loc. cit. asserts that the image
of Hida’s ordinary projector eord := limUn!

p on Sn-oc
k (N,χ) is contained in the

ordinary part of Soc
k (N,χ). Let d = q d

dq be the Atkin-Serre operator on p-adic

modular forms, and let φ[p] denote the p-depletion of a classical or p-adic modular
form φ of weight k, level N , and character χ, so that dtφ[p] is determined by the
fourier expansion

dtφ[p](q) =
∑
p�n

ntan(φ)q
n.

For t ≥ 0, this modular form belongs to the space Sn-oc
k+2t(N,χ). In particular,

the modular form dtğ
[p]
y × h̆z is a nearly overconvergent modular form of weight

2t+ �+m.
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With these basic notions and the Λ-adic test vectors in hand, the Garrett-Hida

p-adic L-function attached to (f̆
∗
, ğ, h̆) is defined (as described in [DR13, Defini-

tion 4.4], but adopting a somewhat more flexible point of view) to be the p-adic
rigid-analytic function on Ωf × Ωg × Ωh satisfying

(6) Lp
fα(f̆

∗
, ğ, h̆)(x, y, z) := f̆∗

x (eord(d
tğ[p]y × h̆z)), t := (k − �−m)/2,

as (x, y, z) ranges over the dense set of points in Ωf × Ωg × Ωh of integral weights
(k, �,m), with k ≡ �+m (mod 2). Viewing this as a p-adic L-function attached to
the triple convolution of the Hida families f , g, and h is justified by fundamental
results of Garrett, Harris-Kudla, and Ichino relating the quantity in (6) to the
central critical values

L(fx, gy, hz, c), c := (k + �+m− 2)/2, when k, �,m ≥ 1, k ≥ �+m,

up to a product of local factors which are non-zero for a suitable choice of test

vectors. Identical definitions apply to Lp
gα(f̆ , ğ∗, h̆) and Lp

hα(f̆ , ğ, h̆
∗
), with the

difference that their regions of classical interpolation are defined by the inequalities
� ≥ k +m and m ≥ k + �, respectively.

The point (x0, y0, z0) ∈ Ωf×Ωg×Ωh of weight (2, 1, 1) for which (fx0
, gy0

, hz0) =

(fα, gα, hα) thus lies within the region of interpolation defining Lp
fα(f̆

∗
, ğ, h̆), and

its value at this point is given by the formula

(7) Lp
fα(f̆∗, ğα, h̆α) := Lp

fα(f̆
∗
, ğ, h̆)(x0, y0, z0) = f̆∗

x0
(eord(ğ

[p]
α × h̆α))

arising from (6). Ichino’s explicit form of Garrett’s formula asserts that the square
of the expression on the right is a simple (non-zero, for a judicious choice of test
vectors) multiple of the central critical value L(E, �, 1) = L(f, g, h, 1). In particular,

although Lp
fα(f̆

∗
, ğ, h̆) depends crucially on the Hida families f , g, and h, and

hence on the p-stabilizations of g and h that were chosen to define these Hida
families, the resulting values at the classical point (x0, y0, z0) do not depend in an
essential way on the choices αg and αh of Up-eigenvalues, or on the concomitant
choice of test vectors. It is therefore not too egregious an abuse of notations to set

Lp
fα(f, g, h) := Lp

fα(f̆∗, ğα, h̆α) ∼ Lp
fα(f̆∗, ğα, h̆β) ∼ Lp

fα(f̆∗, ğβ, h̆α)

∼ Lp
fα(f̆∗, ğβ , h̆β),

where ∼ denotes an equality up to an algebraic factor (in the field generated by
the Fourier coefficients of fα, gα, and hα) which can be made non-zero with a good
choice of test vectors.

The value

(8) Lp
gα(f̆ , ğ∗α, h̆α) := Lp

gα(f̆ , ğ∗, h̆)(x0, y0, z0) = ğ∗α(eord(d
−1f̆ [p] × h̆α))

of Lp
gα(f̆ , ğ∗, h̆) at the point (x0, y0, z0), which now lies outside the region of clas-

sical interpolation, is somewhat more subtle. It depends critically on the choice of

stabilization of g, but [DR13, Lemma 2.17] shows that Lp
gα(f̆ , ğ∗α, h̆α) is left un-

changed upon replacing h̆α with the other p-stabilization h̆β of h. Furthermore,
a change in the choice of test vector (belonging to the same (f, gα, h)-isotypic
subspaces for the action of the Hecke operators) has the effect of multiplying

Lp
gα(f̆ , ğ∗, h̆) by explicit local zeta integrals at the places dividing N , of exactly
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the same type as occur in Ichino’s formula for the Garrett-Rankin triple product.
One is hence justified in adopting the slightly abusive but simpler notations

(9) Lp
gα(f̆ , ğ∗, h̆) := Lp

gα(f̆ , ğ∗α, h̆α) = Lp
gα(f̆ , ğ∗α, h̆β),

and likewise for the other p-stabilizations of g and of h. The four non-classical
p-adic L-values

(10) Lp
gα(f̆ , ğ∗, h̆), Lp

gβ (f̆ , ğ∗, h̆), Lp
hα(f̆ , ğ, h̆∗), Lp

hβ (f̆ , ğ, h̆∗)

ostensibly bear no simple direct relation to L(f, g, h, 1), or to each other. When
L(f, g, h, 1) = 0, they should rather be viewed as different p-adic avatars of
L′′(f, g, h, 1).

Let Selp(E, �) := H1
fin(Q, Vp(E) ⊗ V� ⊗L Lp) denote the �-isotypic component

of the Bloch-Kato Selmer group of E/H; cf. (154) for the precise definition of this
group. The following theorem shows that the above p-adic values convey non-trivial
information about Selp(E, �).

Theorem B. If L(E, �, 1) = 0 and Lp
gα(f̆ , ğ∗, h̆) �= 0 for some choice of test

vectors, then
dimLp

Selp(E, �) ≥ 2.

The same conclusion applies, of course, when any of the four p-adic L-values in
(10) is non-zero. Recent joint work with Lauder [DLR] describes an algorithm for

calculating the expressions in (8), and hence Lp
gα(f̆ , ğ∗α, h̆α), and uses this to verify

their non-vanishing in many instances of analytic rank two, showing that Theorem
B is not vacuous.

Theorem D below formulates a more precise version of Theorem B, in which
two canonical elements in Selp(E, �) are associated to the data (f, gα, h) and shown
to be linearly independent under the hypotheses of Theorem B. One of the main
contributions of [DLR] and [DR15] is the formulation of a conjecture expressing
these two elements as explicit p-adic linear combinations of global points in the
Mordell-Weil group attached to E(H)�. (Cf. loc. cit. for the precise statement of
this conjecture and a summary of the experimental evidence that has been gathered
in its support.)

Theorem B can be compared to the Theorem B of Skinner and Urban [SU],
which asserts that the rank of the Selmer group of an elliptic curve is ≥ 2 when the
associated L-function vanishes to even order ≥ 2. There is little overlap between
both theorems, whose methods of proof are very different. The result of [SU] has the
virtue of requiring no non-vanishing hypotheses on an auxiliary p-adic L-function,
while Theorem B applies to a different class of Artin representations, typified by
the settings described in Corollaries A1 and A2.

The proofs of Theorems A and B rest on a system of global cohomology classes
for the Rankin convolution of three modular forms of weights (2, 1, 1), whose con-
struction is one of the main contributions of the present work. These classes arise
from generalized Gross-Kudla-Schoen cycles in the product of three Kuga-Sato va-
rieties fibered over a classical modular curve, and (crucially) from their variation
in Hida families.

The prequel [DR13] to the present work initiated the authors’ study of general-
ized Gross-Kudla-Schoen cycles, relating their images under the p-adic Abel-Jacobi
map to special values of Garrett-Hida p-adic L-series attached to the triple con-
volution of three (Hida families of) cusp forms. The p-adic Abel-Jacobi map has
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the feature—not present in its complex analogue, or in related complex and p-adic
heights—of factoring through the restriction to GQp

of its p-adic étale counterpart.
This turns out to be crucial in arithmetic applications relying on the theory of Eu-
ler systems. More precisely, the étale Abel-Jacobi images of generalized diagonal
cycles give rise, after applying suitable projections, to distinguished global Galois
cohomology classes

(11) κ(fx, gy, hz) ∈ H1(Q, Vfxgyhz
(N)),

where

• fx, gy, and hz are classical specializations of weights k, �, and m which are
balanced in the sense that each weight is strictly smaller than the sum of
the other two;

• Vfxgyhz
(N) is the Kummer self-dual twist of the direct sum of several copies

of the tensor product of the p-adic representations Vfx , Vgy , Vhz
of GQ

attached by Eichler-Shimura and Deligne to these forms, occurring in the
middle cohomology of a Kuga-Sato variety Ek (resp., E�, Em) of dimension
k − 1 (resp., �− 1, m− 1).

The extensions of p-adic Galois representations associated to the classes κ(fx, gy, hz)
arise from geometry; namely, they are realized in the p-adic étale cohomology of
an open subvariety of the product of Kuga-Sato varieties Ek,�,m := Ek × E� × Em,
which have good reduction at p. In particular, thanks to the work of Saito their
restrictions to a decomposition group at p are known to be crystalline.

The main theorem of [DR13] can be interpreted as a direct relationship between
the Bloch-Kato p-adic logarithms of the class κ(fx, gy, hz) and the special values of
Garrett-Hida p-adic L-functions at points which lie outside their range of classical
interpolation. The concluding paragraphs of the introduction to [DR13] stressed
the desirability of deforming this result along p-adic families and, in particular, of
p-adically interpolating the classes κ(fx, gy, hz) themselves as the triple (fx, gy, hz)
is made to vary over the classical, balanced specializations of ordinary Hida families
f , g, and h. Such a p-adic interpolation would be described by a global cohomology
class

(12) κ(f, g, h)
?
∈ H1(Q,Vf g h(N)),

where Vf g h(N) is the direct sum of several copies of the tensor product of Hida’s

Λ-adic representations Vf , Vg, Vh attached to f , g, and h, twisted in such a way

that for each triple (fx, gy, hz) of classical (balanced or unbalanced) specializations
of (f, g, h) there are GQ-equivariant specialization homomorphisms

νxyz : Vf g h(N) −→ Vfxgyhz
(N).

The putative class κ(f, g, h) would be uniquely determined by the requirement
that its specializations at balanced triples (fx, gy, hz) should agree, up to normal-
ization by elementary fudge factors, with the classes κ(fx, gy, hz) of (11). Guided
by this ideal goal but falling somewhat short of it, Section 1 attaches a one-variable
cohomology class to a triple (f, g, h) formed by an eigenform f of weight two and
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trivial nebentype and two Hida families g and h of tame character χ and χ−1,
respectively. This Λ-adic class is described by

• a finite flat algebra Λfgh over the Iwasawa algebra Λ = Zp[[1 + pZp]];

• a Λfgh[GQ]-module Vfgh(N) whose classical specializations are of the form

Vfgyhz
(N) where the pairs (gy, hz) range over the specializations of g and

h at classical points of the same weight � and nebentype character at p;
• a cohomology class κ(f, gh) ∈ H1(Q,Vfgh(N)).

The class κ(f, gh) gives rise to a collection of global classes in H1(Q, Vfgyhz
(N)),

varying p-adic analytically as (gy, hz) varies over pairs of specializations of g and h
with common weight and nebenytpe character at p. In order to construct κ(f, gh),
Section 1.3 introduces a family {Δs}s≥1 of null-homologous twisted diagonal cycles
on certain twists of finite quotients of the threefolds X0(Np)×X1(Nps)×X1(Nps),
satisfying an explicit compatibility under the natural push-forward maps as s varies.
The class κ(f, gh) is then manufactured in Sections 1.4–1.6 as the inverse limit of
the cohomology classes one obtains as the image of Δs under a suitable projection
of the p-adic étale Abel-Jacobi map.

Although κ(f, gh) is constructed by interpolating geometric constructions at-
tached only to the weight two specializations of g and h, it makes sense to consider
its specializations

(13) κ(f, gy, hz) := κ(f, gh)y,z ∈ H1(Q, Vfgyhz
(N))

at any point (y, z) attached to a pair (gy, hz) of classical modular forms of arbitrary
weight � ≥ 1 with inverse tame nebentype characters. The relevance of this class to
the proof of Theorems B and C arises when f is the weight two newform associated
to the elliptic curve E, and gy = gα and hz = hα are (ordinary) p-stabilizations of
the forms g and h associated to the Artin representations �1 and �2.

Since gα �= gβ and hα �= hβ , the construction described above yields four relevant
cohomology classes, denoted
(14)

κ(f, gα, hα), κ(f, gα, hβ), κ(f, gβ, hα), κ(f, gβ, hβ) ∈ H1(Q, Vfgh(N)),

where again Vfgh(N) is just a direct sum of several copies of Vp(E) ⊗ V� ⊗L Lp.
These classes are called the generalized Kato classes attached to the triple (f, g, h)
of modular forms of weights (2, 1, 1). Justifying this terminology is the fact that
the classes of (14) were first constructed and studied by Kato in the special case
where both g and h are weight one Eisenstein series, where they form the basis for
his remarkable proof of the Birch and Swinnerton-Dyer conjecture in analytic rank
zero for L-functions of elliptic curves twisted by Dirichlet characters.

The Kummer–self-dual representation Vfgh is still crystalline, but there is no a
priori reason for the classes in (14) to be crystalline at p because the weights (2, 1, 1)
of the triple (f, g, h) are unbalanced, with f being the eigenform of dominant weight
in the sense of [DR13], and thus the points in weight space attached to the classes
in (14) lie outside the range of “geometric interpolation” defining κ(f, gh).

Theorem 6.4 of Section 5.2 establishes a reciprocity law relating the image of the
classes in (14) under the Bloch-Kato dual exponential map to the central critical
value L(E, �, 1). It is the main ingredient in the proof of Theorem A.

Theorem C. The generalized Kato class κ(f, gα, hα) is crystalline at p if and only
if L(E, �, 1) = 0.
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When L(E, �, 1) �= 0, Theorem C combined with the regularity of Vg and Vh at
p implies that the cohomology classes in (14) are linearly independent, and more
precisely, that their natural images generate the “singular quotient” of the local
cohomology at p. A standard argument involving the global Poitou-Tate exact
sequence then implies that the image of the Selmer group of Vfgh maps to zero in
the local cohomology H1(Qp, Vfgh) at p. The fact that the Mordell-Weil group of
global points always injects into the group of local points then shows the triviality
of the �-isotypical component of the Mordell-Weil group of E, thereby proving
Theorem A.

One also expects (as a consequence of the Shafarevich-Tate conjecture) that
Selp(E, �) is trivial when E(H)�L is, but the proof of Theorem A described above
does not yield the finiteness of the associated Selmer group or Shafarevich-Tate
group. The Gross-Schoen diagonal cycles can be viewed as a special instance of a
broader class of examples, namely the “Euler systems of Garrett-Rankin-Selberg
type” described in [BCDDPR], which also encompass Kato’s Euler system of Beilin-
son elements and the Euler system of Beilinson-Flach elements. In both these set-
tings, finiteness results for the Shafarevich-Tate groups have been obtained by Kato
[Ka98] and Lei, Loeffler, and Zerbes [LLZ1], respectively. It would be of great in-
terest to extend these authors’ refinements to the setting of diagonal cycles. The
recent work of Liu makes striking progress in a closely related setting, where diag-
onal cycles are replaced by twisted variants on the product of a modular curve and
a Hilbert modular surface [Liu1] and on a Hilbert modular threefold [Liu2], and
the Selmer groups that are studied are those attached to Galois representations of
weights (2, 2, 2) (in the region of “balanced weights,” which can thus be treated
without recourse to the p-adic deformation of Abel-Jacobi images of cycles).

When L(E, �, 1) = 0, and hence ran(E, �) ≥ 2, Theorem C implies that the
four classes in (14) belong to the Selmer group Selp(E, �). The submodule of
Selp(E, �) generated by these four classes is expected to be non-trivial precisely
when ran(E, �) = 2, i.e., when L′′(E, �, 1) �= 0. The following result, whose proof

is described in Theorem 6.13 of Section 6.4, involves Lp
gα(f̆ , ğ∗, h̆) rather than

L′′(f, g, h, 1) and directly implies Theorem B above.

Theorem D. If L(E, �, 1) = 0 and Lp
gα(f̆ , ğ∗, h̆) �= 0 for some choice of test

vectors, there exist GQ-equivariant projections jα, jβ : Vfgh(N) → Vp(E)⊗ V� such
that the classes καα = jα(κ(f, gα, hα)) and καβ = jβ(κ(f, gα, hβ)) are linearly
independent in Selp(E, �).

The canonical nature of the elements in Selp(E, �) described in Theorem D is key
to the formulation of the conjectures of [DLR] and [DR15], which seem to admit
no direct counterpart for the Selmer classes constructed in [SU, Theorem B]. To
further compare Theorem D with the results of [SU], note that generalized Kato
classes can only contribute to the pro-p Selmer group Selp(E/Q) of E over Q when
� contains the trivial representation as a constituent, which occurs precisely when
g and h = ḡ are dual to each other, so that � = 1⊕Ad0(�g), where Ad0(�g) denotes
the three-dimensional adjoint of �g, consisting of the trace zero endomorphisms
of �g. In the scenario where L(E/Q, s) admits a double zero at the center, the
elliptic Stark conjectures of [DLR] predict that all of the p-adic L-values in (10)
vanish and that the generalized Kato classes attached to (f, g, ḡ) never generate
the Selmer group or Mordell-Weil group of E. However, they are expected to
generate a one-dimensional subspace of Selp(E/Q) whenever L(E,Ad0(�g), 1) �= 0,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

610 HENRI DARMON AND VICTOR ROTGER

consisting of the classes whose restriction to Qp lies in the kernel of the logarithm
map logp : E(Qp) −→ Qp. The non-triviality of such a class only implies that
dimSelp(E/Q) ≥ 1, but it does imply that rank(E(Q)) ≥ 2 under the further
(highly non-trivial) assumption that LLI(E/Q) is finite. See [DR15, Section 4.5] for
a more detailed discussion of this intriguing scenario.

Underlying the crucial reciprocity law relating the local behavior at p of the
global classes in (14) to p-adic L-values is a precise relationship between the p-adic
families κ(f, gh) of global cohomology classes (more precisely, their restriction to
a decomposition group at p) and the Garrett-Hida p-adic L-functions alluded to
above. See Theorem 5.3 for the precise statement. Such relationships are part
of a long tradition of explicit reciprocity laws going back to the seminal work of
Coates and Wiles, and even further to the work of Kummer, Iwasawa, and Kubota-
Leopoldt on the arithmetic of cyclotomic fields. For more on how the approach of
this paper fits into the larger perspective of Euler systems and explicit reciprocity
laws, notably with Kato’s work on Beilinson elements and the work of Bertolini
and the authors on Beilinson-Flach elements, the reader is invited to consult the
survey [BCDDPR].

1. Global Λ-adic cohomology classes

1.1. Cycles, Chow groups, and correspondences. This section collects a few
general facts and notations concerning algebraic cycles and correspondences for
future reference.

Given a smooth proper irreducible variety W of dimension d over a field F , and
any integer c ≥ 0, let Cc(W )(F ) denote the group of codimension c cycles in W
defined over F with coefficients in Zp, and let

CHc(W )(F ) = Cc(W )/∼

denote the Chow group of rational equivalence classes of such cycles. The field F
is sometimes suppressed from the notation when this leads to no ambiguity.

The standard conventions are employed for Tate twists: if H is a Zp[GQ]-module
and k is an integer, then H(k) = H ⊗ εkcyc, where

(15) εcyc : GQ −→ Z×
p

denotes the p-adic cyclotomic character.
If Δ is a cycle in Cc(W ), the same symbol Δ will often be used as well to denote

the class of this cycle in the Chow group CHc(W ). There is a fundamental p-adic
étale cycle class map over F

(16) clF : CHc(W )(F ) −→ H2c
et (W,Zp(c)),

which is described in [Mi, Section 23] when F is algebraically closed. For more gen-
eral fields F (such as number fields), the cycle class map is described in [Ja, Equa-
tion (0.3)], and its target is to be interpreted as the continuous étale cohomology of
loc. cit. After choosing an embedding of F into an algebraic closure F̄ , the symbol
W is used to denote the variety over F̄ deduced from W by extension of scalars,
and

(17) cl : CHc(W )(F ) −→ H2c
et (W,Zp(c))

denotes the natural map that is deduced from (16). A cycle in CHc(W ) which is in
the kernel of cl is said to be null-homologous, and the subgroup of null-homologous
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cycles defined over F is denoted CHc(W )0(F ). The Hochschild-Serre spectral se-
quence

Hi(F,Hj
et(W,Zp(c)) ⇒ Hi+j

et (W,Zp(c))

of [Ja] relating continuous étale cohomology with the continuous group cohomology
of GF = Gal (F̄ /F ) gives rise to the p-adic étale Abel-Jacobi map

(18) AJet : CH
c(W )0(F ) −→ H1(F,H2c−1

et (W̄ ,Zp)(c)),

as described, for instance, in the penultimate displayed equation of [Ja]. This map
plays a key role in the constructions of the global cohomology classes alluded to in
the Introduction.

A correspondence between two varieties W1, W2 of dimension d is an element
T ∈ Corr(W1,W2) := Cd(W1 ×W2). As indicated, the symbol T is used to denote

both the cycle and its class in CHd(W1 ×W2). Let T
* ∈ Cd(W2 ×W1) denote the

transpose correspondence from W2 to W1. An element T ∈ Corr(W1,W2) gives
rise to a homomorphism from CHc(W1) to CHc(W2) for any c ≥ 0 by the rule
T (Δ) := πW2,∗(T · π∗

W1
(Δ)), where · denotes the intersection product on W1 ×W2,

the maps πW1
and πW2

denote the natural projections of W1 × W2 to its first
and second factors, and π∗

W1
and πW2,∗ denote the induced pullback and proper

pushforward maps associated to πW1
and πW2

, respectively.

When W = W1 = W2, set Corr(W ) := CHd(W × W ). There is a natural
identification

H2d(W ×W,Qp)(d) = ⊕2d
i=0End(H

i(W,Qp))

arising from the Künneth decomposition combined with Poincaré duality, and the
image of a correspondence T ∈ Corr(W ) under the map cl of (17) gives rise to
a degree 0 endomorphism of the cohomology of W , which is compatible with the
action on Chow groups via the cycle class map. Given a correspondence T on
W , the same symbol is routinely used to describe this induced endomorphism on
Chow groups and on cohomology. The transpose correspondence T * gives rise to
the adjoint endomorphisms on cohomology relative to Poincaré duality.

1.2. Modular curves. Let M ≥ 1 be a positive integer and X0(M) and X1(M)
denote the classical modular curves over Q attached to the Hecke congruence sub-
groups Γ0(M) and Γ1(M), respectively.

Several distinct models over Q of X1(M) occur in the literature; in what follows,
the affine curve Y1(M) obtained by removing the cusps from X1(M) is taken to be
the coarse moduli space of pairs (A, i) where A is an elliptic curve and i : μM → A
is an isomorphism between the group scheme μM and a closed finite flat subgroup
scheme of A. This model of X1(M) is characterized as being the one whose field of
rational functions Q(X1(M)) is the subfield of C(X1(M)) given by those functions
whose q-expansion at the cusp i∞ have rational coefficients.

Fix an integer N ≥ 3 and an odd prime p � N . For any s ≥ 1, let Xs := X1(Nps).
It will be convenient to view Xs as classifying triples (A, iN , ip) where iN : μN → A
and ip : μps → A are embeddings of finite group schemes. It will also be useful to
consider the curve X†

s/Q which arises as the coarse moduli space associated to the
problem of classifying triples (A, iN , P ) where (A, iN ) is as above and P ∈ A is a
point of exact order ps. The curves Xs and X†

s are not naturally isomorphic over
Q, but are twists of each over the cyclotomic field of psth roots of unity. See below
for more details.
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The curves Xs are endowed with the following additional structures:

Diamond operators. Let

(19) js : Xs −→ X0(Nps)

be the forgetful map sending a triple (A, iN , ip) to (A,C), where C = 〈Im(iN ),
Im(ip)〉 is the subgroup generated by the images of iN and ip. It is a Galois cover,
whose Galois group is identified with the group

G(N)
s = {〈d〉, d ∈ (Z/NpsZ)×} � (Z/NpsZ)×/〈±1〉

of diamond operators, acting on Xs by the rule 〈d〉(A, iN , ip) := (A, d · iN , d · ip).
Let

Γs ⊂ Gs ⊂ G(N)
s , Γs = 1 + p(Z/psZ), Gs = (Z/psZ)×

be the natural subgroups, and write

(20) Λs := Zp[Γs], Λ̃s := Zp[Gs], Λ̃(N)
s := Zp[G

(N)
s ]

for the associated group rings with Zp-coefficients. The corresponding completed
group rings are

(21) Λ := lim
←

Λs, Λ̃ := lim
←

Λ̃s, Λ̃(N) := lim
←

Λ̃(N)
s .

All of the group rings in (20) and (21) act naturally on spaces of modular forms on
Γ1(Nps) as well as on the various cohomology groups attached to Xs.

Given a ∈ (Z/NZ)× and b ∈ (Z/psZ)×, it will sometimes be convenient to
denote by 〈a; b〉 the diamond operator 〈d〉, where d ∈ (Z/NpsZ)× is congruent
to a modulo N and to b modulo ps. This automorphism acts on Xs by the rule
〈a; b〉(A, iN , ip) = (A, a · iN , b · ip).

Let ζs be a primitive psth root of unity and let εs : GQ −→ (Z/psZ)× denote
the mod ps cyclotomic character, factoring through Gal (Q(ζs)/Q). The curve X†

s

introduced above is isomorphic to the twist of Xs by the cocycle

(22) 〈ε−1
s 〉 : GQ −→ Aut(Xs), 〈ε−1

s 〉(σ) := 〈1; ε−1
s (σ)〉,

and therefore Xs is isomorphic to X†
s over Q(ζs).

Duality. The (étale and de Rham) cohomology groups of Xs are endowed with
perfect pairings
(23)
〈 , 〉s : H1

et(X̄s,Zp)×H1
et(X̄s,Zp) −→ Zp(−1), H1

dR(Xs/Q)×H1
dR(Xs/Q) −→ Q

arising from Poincaré duality. The symbol 〈 , 〉s is used to denote both the étale
and de Rham Poincaré pairing; relying on the context will make it clear which is
being used. The de Rham pairing is defined on classes of differentials of the second
kind by the usual formula

〈ω1, ω2〉s :=
∑

P∈Xs

resP (Fω1,P · ω2),

where the sum is taken over the closed points P of Xs, and Fω1,P denotes a local
primitive of ω1 at P .
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Hecke operators. There is a commuting algebra of Hecke correspondences Tn in-
dexed by the integers prime to Np (defined for instance as in [DS05, Chapter 5]).
For all s ≥ 1, write T0(Nps) and T1(Nps) for the Q-algebra generated by these
Hecke operators, together with the diamond operators in the latter case, in the
ring of correspondences of the curves X0(Nps) and Xs, respectively. These “good”
Hecke operators commute with their adjoints relative to the pairings 〈 , 〉s and, more
generally, relative to the Poincaré duality on any modular curve. More precisely,

(24) T *
n = 〈n〉Tn, for all n with gcd(n,Np) = 1.

Atkin-Lehner automorphisms. Fix a norm-compatible collection {ζs}s≥1 of primi-
tive roots of unity of order ps. Associated to ζs is the Atkin-Lehner automorphism
denoted ws which is defined on triples (A, iN , ip) by the rule

ws(A, iN , ip) = (A/Cp, iN , i′p), Cp := 〈ip(ζs)〉,

where i′p(ζs) = x′ (mod Cp) and x′ is a point on A of order ps satisfying
〈i(ζs), x′〉Weil = ζs. Likewise, the choice of a primitive Nth root of unity ζN gives
rise to a similar Atkin-Lehner operation at N , which shall be denoted w, and is
defined on any of the curves Xs. The automorphisms ws and w do not commute
with the diamond and Hecke operators, and instead satisfy

ws〈a; b〉 = 〈a; b−1〉ws, wsTn = 〈1;n〉Tnws, w2
s = 〈−ps; 1〉,(25)

w〈a; b〉 = 〈a−1; b〉w, wTn = 〈n; 1〉Tnw, w2 = 〈1;−N〉.(26)

Moreover, the operators ws are not defined over Q, but only over Q(ζs) and Q(ζN ),
respectively. More precisely, for all σ ∈ GQ,

(27) (ws)
σ = 〈1; ε−1

s (σ)〉ws, (w)σ = 〈ε−1
N (σ); 1〉w,

where εN denotes the mod N cyclotomic character. The actions of w and ws on
differentials, functions, and de Rham cohomology via pullback will commonly be
denoted by w and ws rather than by the more strictly correct (but more notationally
cumbersome) w∗ and w∗

s .

The Up operator. The Hecke operator Up on Xs is realized by a correspondence of
bi-degree p, which is given on geometric points by the rule

(28) Up(A, iN , ip) =
∑

ϕ:A−→A′

(A′, ϕ ◦ iN , ϕ ◦ ip),

where the sum is taken over the p distinct isogenies ϕ : A −→ A′ of degree p whose
kernel is not equal to ps−1 · Im(ip). The Hecke operator Up acts on modular forms

of weight two, and its action on differentials of the form f(τ )dτ =
∑

n≥1 anq
n dq

q is

given by the familiar rule

(29) Up(f(τ )dτ ) =
1

p

p−1∑
j=0

f

(
t+ j

p

)
dτ =

∑
n≥1

anpq
n.

Note that while Up commutes with the diamond operators, it does not commute

with its adjoint U*
p relative to the Poincaré pairings 〈 , 〉s, which is given by the

formula

U*
p = wsUpw

−1
s .
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A modular form (or cohomology class) φ on Xs is said to be ordinary if there
exists a polynomial P (T ) ∈ Q̄p[T ] such that P (Up)(φ) = 0 and P (0) is a p-adic unit.
If instead φ has a similar property relative to U∗

p , it is designated as anti-ordinary.
The ordinary and anti-ordinary projectors, which play a key role in the construc-

tions of this article, are defined as

(30) eord := lim
n→∞

Un!
p , e∗ord := lim

n→∞
(U∗

p )
n!.

Projective systems. The curves Xs form projective systems in two different ways,
relative to the collections of degeneracy maps

(31) �1, �2 : Xs+1 → Xs,

{
�1(A, iN , ip) = (A, iN , p · ip),
�2(A, iN , ip) = (A, iN , ip)/C, C := ip(μp),

where the quotient of the triple (A, iN , ip) by the subgroup scheme C is to be
understood in the obvious sense. The degeneracy maps �1 and �2 are of degree p2

if s ≥ 1, and of degree (p2−1) if s = 0. With respect to the analytic uniformization
by the upper-half plane, the map�1 corresponds to the natural map Γs+1·τ �→ Γs·τ ,
while �2 corresponds to Γs+1 · τ �→ Γs · (pτ ). Both maps commute with the
good Hecke operators and the diamond operators, and factor through the natural
projection μ : Xs+1 −→ X


s, where X

s denotes the modular curve associated to

Γ1(Nps) ∩ Γ0(p
s+1). More precisely, they can be written as �1 = π1 ◦ μ, �2 =

π2 ◦ μ, and fit into the diagram below in which the vertical map is a Galois cover
(with Galois group Z/pZ, generated by suitable diamond operators) and the two
horizontal maps are non-Galois morphisms of degree p,

(32) Xs+1

μ

��

�1,�2

���
��

��
��

�

X

s π1,π2

�� Xs.

The Hecke operator Up acting on Ω1(Xs) or on H1
dR(Xs) is described by the stan-

dard formula

(33) Up = (π2)∗π
∗
1 ,

as can be verified directly from the formula for Up in terms of the coordinate τ
given in (29) (cf. also, for example, [DS05, Example 7.9.3]). It follows from this
that

(34) (�2)∗�
∗
1 = (π2)∗μ∗μ

∗π∗
1 = pUp.

The endomorphism in (34) is the diagonal arrow in the commutative diagram

H1
dR(Xs)

�∗
1 ��

pUp ����
���

���
���

(�2)∗

��

H1
dR(Xs+1)

(�2)∗

��
H1

dR(Xs−1)
�∗

1

�� H1
dR(Xs)

,

and it is apparent from this description that π∗
1 , �

∗
1 , (π2)∗, and (�2)∗ commute with

Up, while π∗
2 , �

∗
2 , (π1)∗, and (�1)∗ commute with the adjoint U*

p . In particular,
the Hecke operator Up acts naturally on the inverse limit of the (étale or de Rham)
cohomology groups H1(Xs) taken relative to the maps (�2)∗. Whenever inverse
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limits of H1(Xs) are discussed, it should always be understood that the transition
maps are given by the pushforward maps (�2)∗.

Group ring-valued pairings. The action of the diamond operators on Xs can be
combined with Poincaré duality to define group-ring valued pairings
(35)
〈, 〉Γs

: H1
et(X̄s,Zp)×H1

et(X̄s,Zp)−→Zp(−1)[Γs], H
1
dR(Xs/Q)×H1

dR(Xs/Q)−→Q[Γs]

by the formula

〈a, b〉Γs
=

∑
σ∈Γs

〈aσ, b〉s · σ−1 =
∑
σ∈Γs

〈a, bσ〉s · σ.

As before, the same symbols are reserved for the pairings arising from Poincaré
duality on de Rham or étale cohomology, leaving it to the context to determine
which is being used. The pairings 〈 , 〉Γs

are Λs-linear and anti-linear (with respect
to the involution sending a group-like element to its inverse) in the first and second
arguments, respectively.

The pairings 〈 , 〉Γs
and 〈 , 〉s are related by the formula, valid for all characters

ε of Γs,

(36) ε(〈a, b〉Γs
) = 〈θεa, b〉s = 〈a, θε−1b〉s = d−1

s 〈θεa, θε−1b〉s,

where

(37) θε :=
∑
σ∈Γs

ε(σ) · σ−1 ∈ Cp[Γs].

The first identity in (36) is a direct consequence of the definitions, while the second
follows from the identity θ2ε = dsθε. A convenient modification of the 〈 , 〉Γs

pairings
(in both their étale and de Rham incarnations) is given by setting

(38) [a, b]Γs
:= 〈a, wws · Us

p · b〉Γs
.

All the Hecke operators onXs, including Up, are self-adjoint relative to this modified
pairing, which is also Λs-linear relative to both its arguments. In addition, the
pairings [ , ]Γs

have the virtue of being compatible with the maps �2∗ and the ring
homomorphisms

ps+1 : Cp[Γs+1] −→ Cp[Γs]

induced from the natural homomorphism Γs+1 −→ Γs, in the following sense.

Lemma 1.1. For either � ∈ {et, dR}, the diagram below commutes,

H1
�(Xs+1)×H1

�(Xs+1)
[ , ]Γs+1 ��

�2∗×�2∗

��

Cp[Γs+1]

ps+1

��
H1

�(Xs)×H1
�(Xs)

[ , ]Γs �� Cp[Γs].
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Proof. This follows from a direct calculation (in which the symbol 〈 , 〉X�
s
refers to

the Poincaré pairing on the curve X

s):

ps+1([ηs+1, φs+1]Γs+1
) =

∑
σ∈Γs

〈σμ∗ηs+1, μ∗wws+1U
s+1
p φs+1〉X�

s
· σ−1

=
∑
σ∈Γs

〈σμ∗ηs+1, wws+1U
s
pπ

∗
1π2∗μ∗φs+1〉X�

s
· σ−1

=
∑
σ∈Γs

〈σμ∗ηs+1, π
∗
2wwsU

s
pφs〉X�

s
· σ−1

=
∑
σ∈Γs

〈σπ2∗μ∗ηs+1, wwsU
s
pφs〉Xs

· σ−1

=
∑
σ∈Γs

〈σηs, wwsU
s
pφs〉Xs

· σ−1 = [ηs, φs]Γs
. �

Define

H1
�(X∞) := lim←−

s

H1
�(Xs),

the inverse limit being taken relative to the maps (�2)∗. Lemma 1.1 shows that the
pairings [ , ]Γs

can be packaged into Λ-adic pairings with values in the appropriate
completed group rings

[ , ]Γ :H1
dR(X∞)×H1

dR(X∞) −→ Cp[[Γ]],(39)

[ , ]Γ :H1
et(X∞,Zp)×H1

et(X∞,Zp) −→ Zp[[Γ]](−1).(40)

The étale incarnation of [ , ]Γ is even GQ-equivariant, after endowing Zp[[Γ]] with
the tautological GQ-action whereby σ ∈ GQ acts as multiplication by the group-like
element εcyc(σ) ∈ Z×

p .

1.3. Twisted diagonal cycles. For any integer s ≥ 1 define

Ws,s := X0(Np)×X1(Nps)×X1(Nps) = X0(Np)×Xs ×Xs.

This threefold is equipped with a natural action of the group G
(N)
s ×G

(N)
s via the

diamond operators acting on the second and third factors. Let

δ : Xs −→ Xs ×Xs ×Xs, X

s −→ X


s ×X

s ×X


s

denote the natural diagonal embeddings.
Fix a system {ζs} of compatible psth roots of unity and set

(41) 
Δs,s := (j1 ◦�s−1
2 ◦ ws, Id, ws)∗δ∗(Xs) ∈ C2(Ws,s)(Q(ζs)),

where �s−1
2 := �2 ◦ · · · ◦ �2 : Xs → X1 and j1 : X1 → X0(Np) are the maps

introduced in (31) and (19), respectively. This codimension two cycle is just a copy
of the curve Xs embedded diagonally in the threefold product X3

s , but with a twist
by ws in the first and third factors, projected to Ws,s in the natural way. It is the

twist by ws which causes 
Δs,s to only be defined over Q(ζs) in general. The cycle

Δs,s will be referred to as the twisted diagonal of level s. Let

(Id, Up, Id) : C
2(Ws,s) −→ C2(Ws,s)

be the endomorphism induced by the correspondence Up acting on the middle factor
of the triple product Ws,s and whose action on cycles is spelled out in the proof
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of Proposition 1.2 below. The correspondence (Id, Up, Id) is realized as a copy of

X0(Np)×X

s ×Xs embedded in W 2

s,s via the map

(Id1, π1, Id3, Id1, π2, Id3) : X0(Np)×X

s ×Xs −→ (X0(Np)×Xs ×Xs)

× (X0(Np)×Xs ×Xs),

where Id1 and Id3 refer to the identity maps on the first and third factors, respec-
tively, in the direct product, and π1, π2 : X


s −→ Xs are defined on the second
factor. A direct calculation using the definition of the action of correspondences
shows that
(42)

(Id, Up, Id)∗δ∗(Xs) = (π1, π2, π1)∗δ∗(X


s), (Id, U

∗
p , Id)∗δ∗(Xs) = (π2, π1, π2)∗δ∗(X



s).

The next proposition studies the compatibilities of the cycles 
Δs,s for varying s
under the maps

(43) �22 = (Id, �2, �2) : Ws+1,s+1 −→ Ws,s, s ≥ 1,

induced by the degeneracy maps of (31).

Proposition 1.2. For all s ≥ 1, �22,∗(

Δs+1,s+1) = p · (Id, Up, Id)∗(


Δs,s) in
C2(Ws,s).

Proof. The commutativity of the diagram

Xs+1
δ ��

μ

��

Xs+1 ×Xs+1 ×Xs+1

(μ,μ,μ)

��

(j1�
s
2ws+1, Id, ws+1)�� X0(Np)×Xs+1 ×Xs+1

(Id,μ,μ)

��
X


s
δ �� X


s ×X

s ×X


s

(π1,π2,π1)

��

(j1�
s−1
2 π2ws+1, Id, ws+1) �� X0(Np)×X


s ×X

s

(Id,π2,π2)

��
Xs ×Xs ×Xs

(j1�
s−1
2 ws, Id, ws) �� X0(Np)×Xs ×Xs,

in which the composition of the rightmost vertical arrows is the map �22, implies
that

�22∗(

Δs+1,s+1) = (Id, π2, π2)∗ ◦ (Id, μ, μ)∗ ◦ (j1�s

2ws+1, Id, ws+1)∗ ◦ δ∗(Xs+1)

= (j1�
s−1
2 ws, Id, ws)∗ ◦ (π1, π2, π1)∗ ◦ δ∗ ◦ μ∗(Xs+1)

= p · (j1�s−1
2 ws, Id, ws)∗ ◦ (π1, π2, π1)∗ ◦ δ∗(X


s)

= p · (j1�s−1
2 ws, Id, ws)∗ ◦ (Id, Up, Id)∗δ∗(Xs),

where the last equality follows from (42). It follows that

�22∗(

Δs+1,s+1) = p · (Id, Up, Id)∗(j1�

s−1
2 ws, Id, ws)∗ ◦ δ∗(Xs)

= p · (Id, Up, Id)∗(

Δs,s),

as was to be shown. �

Proposition 1.2 shows that, after formally regularizing the cycles 
Δs,s by the
rule

(44) 
Δ
reg

s,s :=
1

ps
· (Id, Up, Id)

−s(
Δs,s),
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the family {
Δreg

s,s} becomes part of a projective system under the pushforward maps

�22,∗. The factor 1
ps arising in (44) is problematic, introducing unwanted denomi-

nators which present a genuine obstruction to piecing the cycles 
Δs,s into a “two-
variable p-adic family.” This is what motivates the passage to a suitable quotient
of Ws,s by a group of automorphisms of (essentially) p-power order, which will now
be explained.

Given s ≥ 1, let Ds denote the “diagonal at N” and “anti-diagonal at p”

subgroup of G
(N)
s × G

(N)
s consisting of elements of the form (〈a; b〉, 〈a; b−1〉) with

(a, b) ∈ (Z/NZ)× × (Z/psZ)×, and let

prs : Ws,s −→ Ws := Ws,s/Ds

be the natural projection from Ws,s to its quotient by the action of this group.

By (25), the action of Ds on Ws,s preserves the cycle 
Δs,s. Identifying 
Δs,s

with the curve Xs, the element (〈a; b〉, 〈a; b−1〉) ∈ Ds acts as the diamond operator
〈a; b〉 on this curve. Let 
Δs ∈ C2(Ws)(Q(ζs)) be the natural image of 
Δs,s in the
quotient Ws. Since prs induces a morphism of degree ds :=

1
2ϕ(N)(p−1)ps−1 from


Δs,s to 
Δs, the latter cycle is defined by the relation

(45) (prs)∗(

Δs,s) =: ds · (
Δs) in C2(Ws)(Q(ζs)).

Note that the curve 
Δs is isomorphic to an embedded copy of X0(Nps) in the
threefold Ws, but that the corresponding closed immersion X0(Nps) � 
Δs ↪→ Ws

is only defined over Q(ζs).
By a slight abuse of notation, let

(46) �11, �22 : Ws+1 = Ws+1,s+1/Ds+1 −→ Ws = Ws,s/Ds

denote the natural projection map “from level s + 1 to level s” induced from the
maps �11 and �22 above, by passing to the quotient via prs+1 and prs.

Proposition 1.3. For all s ≥ 1, �22,∗(

Δs+1) = (Id, Up, Id)∗(


Δs).

Proof. Proposition 1.2 asserts that �22,∗(

Δs+1,s+1) = p · (Id, Up, Id)∗(


Δs,s) in
C2(Ws,s). Applying the pushforward map induced by prs : Ws,s −→ Ws to this
identity, using the fact that prs ◦�22 = �22 ◦ prs+1, and that prs also commutes
with (Id, Up, Id), one obtains

�22,∗ prs+1,∗(

Δs+1,s+1) = p · (Id, Up, Id) prs,∗(


Δs,s).

The sought-for equality then follows from (45), because C2(Ws) is torsion-free. �

It would also have been possible to adapt the proof of Proposition 1.2 to the cycles

Δs on the quotients Ws to show directly that Proposition 1.3 holds at the level of
cycles. In reducing Proposition 1.3 to Proposition 1.2, it was expedient to work with
the groups C2(Ws,s) and C2(Ws) of codimension 2 cycles in Ws,s and Ws, rather

than the Chow groups CH2(Ws,s) and CH2(Ws) of rational equivalence classes,
because the latter are not necessarily torsion-free. This is no longer necessary, and
from now on 
Δs,s and 
Δs will be identified with their classes in CH2(Ws,s) and

CH2(Ws), respectively.
These cycle classes can be made null-homologous by applying to them a suitable

correspondence, denoted

(47) εs,s := (ε, εs, εs) : X0(Np)×Xs ×Xs,
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where

• ε is a correspondence on X0(Np) with coefficients in Zp which annihilates
H0(X0(Np)) and H2(X0(Np)) but fixes the f -isotypic subspace
H1(X0(Np))[f ] of the Introduction (defined as an eigenspace only for the
good Hecke operators T� with � � Np). To fix ideas, recall that the prime
p is assumed to be a non-Eisenstein prime for f , meaning that f is not
congruent to an Eisenstein series modulo p. There is therefore an auxiliary
prime � � Np for which �+ 1− a�(f) lies in Z×

p . Set

ε := (�+ 1− T�)/(�+ 1− a�(f)).

• εs is the correspondence on Xs defined by setting εs := 2−1 · (1− 〈−1; 1〉),
where the standard convention has been adopted of identifying a morphism
ϕ : V −→ W between varieties V and W with the correspondence on V ×W
associated to its graph.

The modified twisted diagonal cycle of level s is then defined by

(48) Δs,s := εs,s(

Δs,s) ∈ CH2(Ws,s).

Proposition 1.4. For all s ≥ 1, the class of Δs,s lies in CH2(Ws,s)0.

Proof. In order to lighten the notations in the proof, write Hi(V ) as a shorthand
for the étale cohomology Hi

et(V ,Zp) of V with coefficients in Zp, and write Ws,s =
C1 × C2 × C3. This variety is a product of curves, whose integral cohomology
is torsion-free. By the Künneth decomposition theorem (cf. [Mi, Theorem 22.4])
H4(Ws,s) can therefore be expressed as a sum of three terms

H2(C1)⊗H2(C2 × C3) + H2(C2)⊗H2(C1 × C3) + H2(C3)⊗H2(C1 × C2).

By (48), cl(Δs,s) = εs,s(cl(

Δs,s)). The correspondence ε annihilates the first term in

the above sum, while εs annihilates the second and third terms, since it annihilates
H2(Xs). It follows that εs,s annihilates the target of the cycle class map and hence
a fortiori that Δs,s is null-homologous. �

Remark 1.5. The element εs,s has the virtue of annihilating H4
dR(Ws,s) while fixing

much of the interesting part of the middle cohomology H3
dR(Ws,s). More precisely,

if ηf̆ is any class inH1
dR(X0(Np))[f ], and ηğ ∈ H1

dR(Xs)[g] and ηh̆ ∈ H1
dR(Xs)[h] are

classes in the isotypic subspaces attached to eigenforms g and h with nebentypus
characters whose prime-to-p parts are the odd Dirichlet characters χ and χ−1,
respectively, then εs,s(ηf̆ ⊗ ηğ ⊗ ηh̆) = ηf̆ ⊗ ηğ ⊗ ηh̆.

Recall that the group G
(N)
s × G

(N)
s acts freely on Ws,s, and that this action

descends to an action on Ws factoring through the quotient (G
(N)
s × G

(N)
s )/Ds �

G
(N)
s . More generally, the linear endomorphism of CH∗(Ws,s) induced by any

element ε ∈ Z[G
(N)
s ×G

(N)
s ] descends to a linear map on CH∗(Ws) which shall be

denoted by the same symbol. With these notations, letting Δs denote the natural
image of Δs,s in the quotient Ws, the classes of the cycles Δs and 
Δs are related
by

(49) Δs = εs,s(

Δs) ∈ CH2(Ws)0(Q(ζs)).

Moreover, similarly as above it again holds that

(50) (prs)∗(Δs,s) = ds ·Δs and �22,∗(Δs+1) = (Id, Up, Id)∗(Δs).
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The first equality in (50) follows exactly as in (45), while the second is a conse-
quence of Proposition 1.3 because the correspondences εs+1,s+1 and εs,s commute
with the diamond operators, with (Id, Up, Id), and with the projections �22,∗ in the
sense that εs,s ◦�22,∗ = �22,∗ ◦ εs+1,s+1.

The cycles Δs,s and Δs are only defined over Q(ζs); the following proposition
describes the action of the Galois group Gal (Q(ζs)/Q) = (Z/psZ)× on these cycles.

Proposition 1.6. For all σ ∈ GQ, σ(Δs,s) = (Id, Id, 〈1; ε−1
s (σ)〉)(Δs,s).

Proof. Equation (27) implies that

(51) σ(
Δs,s) = (Id, Id, 〈1; ε−1
s (σ)〉)(
Δs,s).

Note the correspondence εs,s is defined over Q and hence commutes with the action
of GQ on cycles. It also commutes with the diamond operators and hence with the
morphism (Id, Id, 〈1; ε−1

s (σ)〉). Applying it to (51) and invoking Equation (48), one
obtains that σ(Δs,s) = (Id, Id, 〈1; ε−1

s (σ)〉)(Δs,s). Proposition 1.6 follows because
prs is defined over Q. �

In light of Proposition 1.6, the varieties W †
s,s and W †

s are defined to be the twists

ofWs,s andWs, respectively, by the cocycle σ ∈ GQ �→ 〈ε−1
s 〉(σ) = (1, 1, 〈1; ε−1

s (σ)〉).
Note that W †

s,s = X0(Np) × Xs × X†
s and W †

s = W †
s,s/D

†
N,p, where D†

N,p is the
subgroup of diamond operators acting “diagonally at N” and “anti-diagonally at
p” on W †

s,s, defined in a similar way as for Ds.
Thanks to Proposition 1.6, the cycle Δs can be viewed as a codimension two

cycle in W †
s with coefficients in Zp which is defined over Q, and whose associated

class in the Chow group gives rise to a canonical element

(52) Δs ∈ CH2(W †
s )0(Q).

1.4. Global cohomology classes. Let

(53) AJet : CH
2(W †

s )0(Q) −→ H1(Q, H3
et(W̄

†
s ,Zp)(2))

denote the p-adic étale Abel-Jacobi map arising from (18). Of crucial importance
for the results of this paper are the images of the cycles Δs under this map,

(54) κ(1)
s := AJet(Δs) ∈ H1(Q, H3

et(W̄
†
s ,Zp)(2)) = H1

(
Q, H3

et(W̄s,Zp)(2 〈ε−1
s 〉)

)
.

As was already observed, the Zp-modules H3
et(W̄

†
s,s,Zp) and H3

et(W̄
†
s ,Zp) are

equipped with a natural structure of modules over the rings Zp[G
(N)
s × G

(N)
s ] and

Zp[(G
(N)
s ×G

(N)
s )/Ds] � Zp[G

(N)
s ] via the action of the diamond operators.

Lemma 1.7. For every d ≥ 0, the group Hd
et(W̄

†
s,s,Zp) is free over Zp and admits

a canonical direct sum decomposition (the Künneth formula),

(55) Hd
et(W̄

†
s,s,Zp) =

⊕
i+ j + k = d
0 ≤ i, j, k ≤ 2

Hi
et(X̄0(Np),Zp)⊗Hj

et(X̄s,Zp)⊗Hk
et(X̄

†
s ,Zp).

Proof. This follows from, e.g., Theorem 22.4 of [Mi], in light of the fact that the
integral cohomology of smooth projective curves is torsion-free. �
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The natural projection prs : W †
s,s −→ W †

s induces functorial maps between the
corresponding étale cohomology groups in both directions

pr∗s : H3
et(W̄

†
s ,Zp) −→ H3

et(W̄
†
s,s,Zp)

Ds , prs,∗ : H3
et(W̄

†
s,s,Zp)Ds

−→ H3
et(W̄

†
s ,Zp),

the second map being related to the first by taking duals and invoking Poincaré
duality. These two maps become isomorphisms after tensoring withQp, but working
integrally requires a bit more care.

Recall the correspondence εs,s on Ws,s and Ws introduced in (47). By an abuse
of notation, continue to denote with the same symbol the correspondence on W †

s,s

and W †
s defined exactly in the same way, taking into account that both Xs and X†

s

are equipped with a canonical action of diamond operators.

Lemma 1.8. The kernels and cokernels of the maps pr∗s and prs,∗ are annihilated
by the element εs,s.

Proof. The Hochschild-Serre spectral sequence

Hp(Ds, H
q
et(W̄

†
s,s,Zp)) ⇒ Hp+q

et (W̄ †
s ,Zp)

shows that pr∗s sits in the middle of an exact sequence

K �� H3
et(W̄

†
s ,Zp)

pr∗s �� H3
et(W̄

†
s,s,Zp)

Ds �� H2(Ds, H
2
et(W̄

†
s,s,Zp)),

where the kernel K is canonically a subquotient of

H2(Ds, H
1
et(W̄

†
s,s,Zp))⊕H1(Ds, H

2
et(W̄

†
s,s,Zp)).

Since εs,s annihilates each term in the Künneth decomposition (55) ofHd
et(W̄

†
s,s,Zp)

when 0 ≤ d ≤ 2, the assertion of the lemma for pr∗s follows. The result for prs,∗
then follows by taking duals. �

Since the projector εs,s of (47) is integrally defined over Zp, Lemma 1.8 makes
it possible to define classes

κ(2)
s := εs,s pr

−1
s,∗(εs,sκ

(1)
s ) ∈ H1(Q, H3

et(W̄
†
s,s,Zp)(2))Ds

(56)

= H1(Q, H3
et(W̄s,s,Zp)(2 〈ε−1

s 〉))Ds
,

where the first application of εs,s ensures the existence of the inverse image, and
the second guarantees its uniqueness. Let

(57) V0(Np) = H1
et(X̄0(Np),Zp)(1), V1(Nps) = H1

et(X̄s,Zp)(1),

denote the Tate modules of the jacobians of X0(Np) and Xs, and let

V1(Nps)† = H1
et(X̄

†
s ,Zp)(1) = V1(Nps)(−1)(〈ε−1

s 〉).
Define also

Vs,s := V0(Np)⊗
(
V1(Nps)⊗ V1(Nps)†

)
,(58)

Vs := V0(Np)⊗
(
V1(Nps)⊗Λ̃s

V1(Nps)†
)
.

The projection from H3
et(W̄

†
s,s,Zp) onto the (1, 1, 1)-component in the Künneth

decomposition (55) induces a GQ-equivariant map on the Ds-coinvariants,

pr111 : H3
et(W̄

†
s,s,Zp)(2)Ds

−→ (Vs,s)Ds
= Vs.

The classes κ
(3)
s are now defined by setting

(59) κ(3)
s := pr111(κ

(2)
s ) ∈ H1(Q, Vs).
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By a slight abuse of notation, the symbol �22,∗ is also used to denote the proper
pushforward maps �22,∗ : Vs+1 −→ Vs induced on étale cohomology by the projec-
tions �22 of (46). Denote also by (1⊗ Up ⊗ 1) the endomorphism acting on Vs via
the action of Up on the second factor in (59).

Proposition 1.9. For all s ≥ 1, �22,∗(κ
(3)
s+1) = (1⊗ Up ⊗ 1)(κ

(3)
s ).

Proof. The classes κ
(3)
s arise from the cycles Δs by applying successively the étale

Abel-Jacobi map, the inverse of the pushforward map pr−1
s∗ induced by the pro-

jection prs, the correspondence εs,s constructed using diamond operators and the
projection pr111 arising from the Künneth decomposition. It is immediate to ver-
ify that �22∗ commutes with these four maps. Since in addition �22∗ commutes
with (Id, Up, Id) as proved in the paragraph following (34), the result follows from
(50). �

In order to make the classes κ
(3)
s fit into families that are compatible under the

natural projections, and take values in manageable Λ̃ := lim Λ̃s-modules (locally
free of finite rank, say), it is desirable to cut down the modules Vs by applying
Hida’s ordinary projector eord = limUn!

p to them. Write

V ord
1 (Nps) := eordV1(Nps), V ord

1 (Nps)† := eordV1(Nps)†,

V ord
s := V0(Np)⊗ (V ord

1 (Nps)⊗Λ̃s
V ord
1 (Nps)†)

(60) and set κs := (Id, Up, Id)
−s(1⊗ eord ⊗ eord)κ

(3)
s ∈ H1(Q, V ord

s ).

Note that (60) is well-defined because Up acts invertibly on V ord
1 (Nps). Define the

Λ̃(N)[GQ]-modules

(61) Vord
1 (Np∞) := lim←−

s

V ord
1 (Nps), Vord

1 (Np∞)† := lim←−
s

V ord
1 (Nps)† and

(62) Vord
∞ := lim←−

s

V ord
s � V0(Np)⊗

(
Vord

1 (Np∞)⊗Λ̃ Vord
1 (Np∞)†

)
,

where the inverse limits are taken relative to the maps induced from �2 and �22

by covariant functoriality on the étale cohomology of the towers of curves Xs and
of threefolds Ws.

Since Up commutes with �2∗, it follows from Proposition 1.9 that the classes κs

form a system of global classes satisfying the crucial compatibility�22,∗(κs+1) = κs.
Hence the classes κs can be pieced together into the Λ-adic class

κ∞ := lim←−
s

κs ∈ H1(Q,Vord
∞ ).(63)

The next two sections explain how the Λ̃(N)[GQ]-module Vord
∞ realizes

one-parameter families of p-adic Galois representations interpolating the Kummer
self-dual twists of the triple tensor product of the Galois representations associ-
ated to f , g, and h, as (g, h) range over certain pairs of classical specializations
of common weight � of Hida families of tame level Np. The classes κ∞ likewise
will give rise to p-adic families of Galois cohomology classes with values in these
representations.
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1.5. Modular forms and Galois representations in families.

1.5.1. Classical modular forms and Galois representations. Let Sk(M)R =
Sk(Γ1(M))R denote the space of classical modular forms of weight k ≥ 1 and
level M ≥ 1 with coefficients in some ring R.

If χ is a Dirichlet character mod M , let Sk(M,χ)R denote the subspace of
Sk(M)R on which diamond operators act through χ. Let

(64) φ = q +
∑
n≥2

an(φ)q
n ∈ Sk(Nφp

s, χ)C

be a normalized cuspform of weight k ≥ 1, level Nφp
s, s ≥ 1, and character

χ : (Z/Nφp
sZ)× → C×. Here p is taken to be a prime number not dividing Nφ.

Write χ = χ0χp as the product of Dirichlet characters of the conductor dividing
Nφ and ps, respectively.

Assume φ is an eigenform (with respect to all good Hecke operators T�, � � Nφp),
and let Kφ denote the finite extension of Qp generated by the fourier coefficients
an(φ) of φ. Write Oφ for its valuation ring. Eichler-Shimura, Deligne, and Serre
associated to φ a two-dimensional representation

�φ : GQ −→ GL(Vφ) � GL2(Oφ),

which is unramified at all primes not dividing Nφp and satisfies

Tr(�φ(Frob�)) = a�(φ)

for any such � � Nφp, where Frob� denotes an arithmetic Frobenius element at �.
If φ is ordinary at p, then the Hecke polynomial T 2 − ap(φ)T + χ(p)pk−1 has at

least one root which is a p-adic unit. If k ≥ 2 or χp �= 1, this root is unique. Fix
such a root, call it αφ, and let ψφ : GQp

−→ O×
φ be the unramified character such

that ψφ(Frobp) = αp(φ) ∈ O×
φ . By [W88, Theorem 2], the restriction of Vφ to a

decomposition group at p takes the form

(65) Vφ|GQp
:

(
ψ−1
φ χεk−1

cyc ∗
0 ψφ

)
on a suitable basis. Here εcyc = lim←−

s

εs is the cyclotomic character introduced in

(15).

Definition 1.10. We let V +
φ denote the one-dimensional GQp

-submodule of Vφ on

which GQp
acts via ψ−1

φ χεk−1
cyc , and write V −

φ for the unramified quotient on which
GQp

acts via ψφ.

When k ≥ 2, the representation Vφ arises as the φ-isotypic component of

Hk−1
et (Ēk,Oφ)(k−1), where Ek is the (k−1)-dimensional Kuga-Sato variety fibered

over Xs. In particular, when φ has weight two, Vφ is a quotient of V1(Nφp
s)⊗Oφ

and �φ : V1(Nφp
s)⊗Oφ → Vφ denotes the canonical projection.

If N is any multiple of Nφ, let Vφ(Nps) denote the φ-isotypical component of
V1(Nps)⊗Oφ, which is isomorphic to a direct sum of several copies of Vφ, and write
�φ : V1(Nps)⊗Oφ → Vφ(Nps) for the resulting projection. Define Vφ(Nps)+ and
Vφ(Nps)− analogously as above, and likewise for V ord

1 (Nps)+ and V ord
1 (Nps)−. It

will also be convenient to introduce the representation

(66) V ∗
φ := Vφ ⊗ χ−1

p ε1−k
cyc , V ∗

φ |GQp

:

(
ψ−1
φ χ0 ∗
0 ψφε

1−k
cyc χ−1

p

)
,
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whose restriction to GQp
contains an étale submodule (instead of having an étale

quotient like Vφ). If k = 2, note that V ∗
φ � Vφ(−1)(〈ε−1

s 〉) � Vφ(−1)(χ−1
p ), which

is consistent with (57). Geometrically, the Galois representation V ∗
φ is naturally

realized in the anti-ordinary quotient of H1
et(X̄

†
s ,Zp).

1.5.2. Λ-adic modular forms. A Dirichlet character ε of conductor dividing ps, re-
garded either as a character of Γs or as a locally constant character of Γ = lim←−Γs �
1 + pZp, gives rise to a natural ring homomorphism, denoted ε : Cp[[Γ]] −→ Cp, by
extending ε to a linear homomorphism on the group ring Cp[Γs].

Let ω : Z×
p → μp−1 denote the Teichmüller character, so that zω−1(z) ∈ 1+ pZp

for any z ∈ Z×
p .

Definition 1.11. A Λ-adic modular cuspform of tame level N and character χ :
(Z/NZ)× → C×

p is a formal q-series

φ :=
∑
n

an(φ)q
n ∈ Λ[[q]]

with the property that, for all finite order Dirichlet characters ε : Γ −→ Γs −→ C×
p ,

the specialization

ε(φ) :=
∑
n

ε(an(φ))q
n ∈ Cp[[q]]

is the q-expansion of a modular cuspform of weight two, level Nps, and character
χεω−1.

Write SΛ(N,χ) for the space of such Λ-adic modular forms, and SΛ(N) for the
direct sum of the spaces SΛ(N,χ) as χ ranges over all characters mod N .

The natural projection of φ to Zp[Γs][[q]], denoted φ
s
, can be written as

φ
s
=

∑
σ∈Γs

φσ
s · σ−1 ∈ Zp[Γs][[q]],

where φs ∈ S2(Nps) = Ω1(Xs) is a classical modular form that will be referred to as
the level s specialization of φ. With these notations, note that ε(φ) = ε(φ

s
) = θεφs.

Of course, the system {φs}s≥1 of classical modular forms determines φ completely,
and vice versa.

While the forms φs fail to be compatible under pushforward by either of the
transition maps �1 or �2, they do satisfy

μ∗(φs+1) = π∗
1(φs), (�1)∗(φs+1) = pφs, (�2)∗(φs+1) = Upφs,

where the first relation is merely a restatement of the fact that the forms φ
s
are

compatible under the natural projections Zp[Γs+1] −→ Zp[Γs], and the second and
third follow directly from the first in light of (33). In particular, the systems of
modular forms {p−sφs} and {U−s

p φs} are compatible under the pushforward maps
(�1)∗ and (�2)∗, respectively. It is thus natural to define the maps

�s : S2(Nps) → H1
dR(Xs) and �∞ : SΛ(N) → H1

dR(X∞)

given by �s(φ) = U−s
p ωφ and �∞(φ) = {U−s

p ωφs
}s.

For any integrally closed subring O of OCp
, set

H1
dR(X∞)O

:=
{
η ∈ H1

dR(X∞) such that [η,�∞(φ)]Γ ∈ O[[Γ]]] for all φ ∈ SΛ(Np)
}
.
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Recall the group ring element θε ∈ Cp[Γs] introduced in (37). The next lemma
records the behavior of the Λ-adic pairing [ , ]Γ and the inclusion map �∞ under
specialization.

Lemma 1.12. Let η = {ηs} and φ = {φs} be elements of H1
dR(X∞)O and SΛO (N).

For all Dirichlet characters ε of conductor ps
′
with 1 ≤ s′ ≤ s,

ε([η,�∞(φ)]Γ) = 〈ηs, wwsθε(φs)〉s =
1

ds
〈θε(ηs), wwsθε(φs)〉s.

Proof. The first equality follows directly from the definitions, since

ε([η,�∞(φ)]Γ) = ε

(∑
σ∈Γs

〈σηs, wwsU
s
pU

−s
p φs〉s · σ−1

)
=ε

(∑
σ∈Γs

〈ηs, wwsσφs〉s · σ−1

)

= 〈ηs, wwsθε(φs)〉s = 〈w−1w−1
s ηs, θε(φs)〉s.

The second identity is a direct consequence of the first in light of the fact that θε and
θε−1 are adjoint to each other relative to Poincaré duality, that θε−1wws = wwsθε,
and that θ2ε = dsθε. �

Note that the formula of Lemma 1.12 does not depend on the value of s ≥ s′,
since

〈ws+1ηs+1, ε(φs+1
)〉s+1 = 〈ws+1ηs+1, �

∗
1ε(φs

)〉s+1 = 〈�1∗ws+1ηs+1, ε(φs
)〉s

= 〈ws(�2∗ηs+1), ε(φs
)〉s = 〈ws(ηs), ε(φs

)〉s.

1.5.3. Hida families. Let O be a finite extension of Zp containing the values of all
Dirichlet characters of conductor Np. For any Zp-module M , writeMO = M⊗Zp

O.

Assuming that p does not divide ϕ(N) = |(Z/NZ)×|, the semi-local ring Λ̃
(N)
O

decomposes as a sum over the characters ψ : (Z/NpZ)× −→ O×,

Λ̃
(N)
O = ⊕ψΛ

ψ
O, Λψ

O := eψ(Λ̃O) � ΛO,

where eψ is the O-algebra homomorphism defined on group-like elements by

eψ(〈a; b〉) = ψ(〈a; b〉)〈1; bω−1(b)〉 ∈ ΛO.

The weight space Ω is defined to be the rigid analytic space underlying the formal
spectrum of Λ, so that for any complete Zp-algebra R, the set of R-rational points
of Ω is

Ω(R) = Hom(Λ, R) = Homcts(Γ, R
×).

An element of Ω is said to be classical if it corresponds to a character of Γ, denoted
νk,ε, of the form

νk,ε(n) = nk−1ε(n), for all n ∈ 1 + pZp,

for some integer k and some continuous character ε of finite order (hence, conductor

ps for some s ≥ 1, factoring through a primitive character of Γ/Γps−1 � Z/ps−1Z ⊂
(Z/psZ)×).

More generally, if Λ̃ is a finite flat extension of Λ, let Ω̃ := Hom(Λ̃,Cp) denote the

space of continuous algebra homomorphisms and write w : Ω̃ → Ω for the natural
“weight map” induced by pullback from the structure map Λ ↪→ Λ̃. A point in Ω̃
is said to be classical if its image under w is classical.
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Generalizing Definition 1.11 slightly, a Λ-adic ordinary modular form of tame
level N and character χ : (Z/NZ)× → O× with coefficients in Λ̃ is a pair (Ω̃cl, φ),
where

(i) Ω̃cl is a dense subset of the classical points in Ω̃ for the rigid analytic
topology;

(ii) φ :=
∑

anq
n ∈ Λ̃[[q]] is an element of SΛ̃(N,χ) := SΛ(N,χ) ⊗Λ Λ̃, such

that for all x ∈ Ω̃cl of weight w(x) = νk,ε, with k ≥ 2 and character ε of
conductor ps, the power series

φx :=
∞∑

n=1

an(x)q
n ∈ Cp[[q]], an(x) := x(an),

is the q-expansion of a classical ordinary cuspform in Sk(Nps, χεω1−k;Cp).

The Λ̃-module of Λ-adic ordinary modular forms of tame level N and character χ
is denoted Sord

Λ̃
(N,χ).

Definition 1.13. An element φ ∈ Sord
Λ̃

(N,χ) whose classical specializations φx are

eigenforms (that is to say, simultaneous eigenvector for the good Hecke operators
T� with � � Np) is called a Λ-adic eigenform or a Hida family.

If the subset Ω̃cl ⊂ Ω̃ can be clearly inferred from the context, such a form will
simply be denoted as φ, suppressing the datum of Ω̃cl from the notation.

If in addition the specialization φx of a Λ-adic eigenform φ does not share the
same eigenvalues with any eigenform of level N0p

r with N0 | N , N0 < N , and
r ≤ s, then φ is called a Λ-adic newform. Note that a form φ as in Definition 1.13
above is in particular a Λ-adic modular form in the weaker sense of Definition 1.11,
and hence the material of Section 1.5.2 applies to it.

Recall the Hecke algebras T1(N) and T1(Nps) that were introduced in Section
1.2, and let

T1(Np∞) := eord

(
lim←−
s

(T1(Nps)⊗ Zp)

)
.

It follows from a theorem of Hida (cf. [Hi86], [Em99]) that the algebra T1(Np∞) is

locally free of finite rank as a Λ̃(N)-module, and the algebra

Tχ
1 (Np∞) = eχω−1T1(Np∞)O = T1(Np∞)⊗eχω−1 ΛO

is therefore free of finite rank over the local ring ΛO. Let L denote the fraction
field of ΛO, and write

Tχ
1 (Np∞)L := Tχ

1 (Np∞)⊗ΛO L.
It is a finite-dimensional étale L-algebra, and hence decomposes as a product of
finite extensions Lj of L,

Tχ
1 (Np∞)L = ⊕t

j=1Lj .

Furthermore, for each 1 ≤ j ≤ t, the integral closure of the image of Tχ
1 (Np∞) in

Lj , denoted Λj , is a finite flat extension of ΛO. The Λ-adic newforms φ of character
χ (of conductor dividing N) and primitive tame level Nφ (with Nφ ranging over
the divisors of N that are multiples of the conductor of χ) are in bijection with the
resulting homomorphisms

ηj : T
χ
1 (Np∞) −→ Λj .
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If φ is one such Λ-adic eigenform, let Λφ denote the corresponding finite flat exten-

sion of Λ and corresponding homomorphism ηφ : T1(N0p
∞)O → Tχ

1 (Np∞) → Λφ.
Let

(67) εcyc : GQ −→ Λ×

be the Λ-adic cyclotomic character characterized by νk,ε ◦ εcyc = ε · εk−1
cyc · ω1−k.

Theorem 1.14 (Hida). Let φ be a Λ-adic newform of tame level Nφ and tame
character χ. The modules

(68) Vφ := Vord
1 (Nφp

∞)⊗T1(Nφp∞)O,ηφ
Λφ, V∗

φ := Vφ ⊗ ε−1
cyc

are both locally free of rank two over Λφ.

The representations Vφ and V∗
φ will be referred to, respectively, as the ordinary

and anti-ordinary Λ-adic representation of GQ attached to the Hida family φ. Their
restrictions to a decomposition group at p are reducible and can be written in upper
triangular form as

(69) (Vφ)|GQp
:

(
Ψ−1

φ χεcyc ∗
0 Ψφ

)
, (V∗

φ)|GQp
:

(
Ψ−1

φ χ ∗
0 Ψφε

−1
cyc

)
,

where Ψφ : GQp
−→ Λ×

φ is the unramified character defined by

Ψφ(Frobp) = ap(φ) ∈ Λ×
φ .

As in Definition 1.10, let V+
φ denote the one-dimensional GQp

-submodule of Vφ on

which GQp
acts via Ψ−1

φ χεcyc, and write V−
φ for the unramified quotient on which

GQp
acts via Ψφ.

More generally, if N is any multiple of Nφ, set

Vφ(N) := Vord
1 (Np∞)⊗T1(Np∞)O,ηφ

Λφ, V∗
φ(N) := V∗

φ(N)⊗ ε−1
cyc,

and write �φ and �∗
φ for the canonical projections

�φ : Vord
1 (Np∞) −→ Vφ(N), �∗

φ : Vord
1 (Np∞)† −→ V∗

φ(N).

The quotient Vφ(N) is (non-canonically) isomorphic to a finite direct sum of the

Λ-adic representations Vφ, and likewise for V∗
φ(N). If x ∈ Ω̃cl is a classical point

of weight w(x) = νk,ε, with k ≥ 2 and character ε of conductor ps, it gives rise to
GQ-equivariant specialization homomorphisms (which are all denoted by x)

x : Vφ −→ Vφx
, x : V∗

φ −→ V ∗
φx
, x : Vφ(N) −→ Vφx

(Nps),

x : V∗
φ(N) −→ V ∗

φx
(Nps),

where Vφx
and V ∗

φx
are the Galois representations associated in (66) to the eigen-

form φx.
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1.6. The Λ-adic class attached to two Hida families. Let f ∈ S2(Nf ) be the
newform associated to the elliptic curve E in the Introduction, and let g and h be

two Λ-adic newforms of tame levels Ng and Nh and tame characters χ and χ−1,
respectively. The prime p arising as the residual characteristic of Λ is taken here
not to divide either N = lcm(Nf , Ng, Nh) or ϕ(N). Moreover, as we assumed in
(47), we also take p to be a non-Eisenstein prime for f .

Recall the Λ-adic representation Vord
∞ := V0(Np)⊗

(
Vord

1 (Np∞)⊗Λ̃ Vord
1 (Np∞)†

)
,

and define

Vfgh := Vf ⊗ (Vg ⊗Λ V∗
h), Vfgh(N) := Vf (Np)⊗ (Vg(N)⊗Λ V∗

h(N)),

which are modules over the ring

Λfgh := Of ⊗ (Λg ⊗Λ Λh),

a finite flat extension of the Iwasawa algebra Λ. The rigid analytic space Ωfgh

attached to the formal spectrum of Λfgh is a finite covering of the weight space Ω.

The “classical points” in Ωfgh correspond to pairs of classical points of the form

(y, z) ∈ Ωg ×Ωh satisfying w(y) = w(z), that is to say, having the same weight and
the same nebentypus at p.

Let gy and hz denote as in the previous section the specializations of g and
h at the points y and z, respectively. Following similar notations as above, let
K = Kfgyhz

denote the finite extension of Qp generated by Kf , Kgy , and Khz
,

and let O = Ofgyhz
denote the valuation ring of K. The specialization Vfgyhz

of
Vfgh at the classical point (y, z) of weight � and nebentype character ε is a Galois
representation of rank 8 over O, and there are natural identifications

(70) Vfgyhz
= Vf ⊗ Vgy ⊗ V ∗

hz
, Vfgyhz

(N) := Vf (Np)⊗ Vgy (Nps)⊗ V ∗
hz
(Nps).

The reader will note that this Galois representation is pure of weight −1, since a
geometric Frobenius element at � acting on Vf has eigenvalues of complex absolute

value �−1/2, while its eigenvalues on Vgy ⊗V ∗
hz

have complex absolute value 1. Note
that Vfgh interpolates only the Kummer self-dual Tate twists of the tensor product
of the representations Vf , Vgy , and Vhz

.
The canonical projections �f , �g, and �∗

h associated to f , g, and h give rise to
a surjective Λ-module homomorphism

(71) �f,g,h : Vord
∞ −→ Vfgh(N).

Definition 1.15. The one-variable Λ-adic cohomology class attached to the triple
(f, g, h) is the class

κ(f, gh) := �f,g,h(κ∞) ∈ H1(Q,Vfgh(N)).

This class takes values in the Galois representation Vfgh(N), which is (non-

canonically) isomorphic to a finite sum of copies of the representation Vfgh.

2. Local Λ-adic cohomology classes

2.1. Local Galois representations. Let f ∈ S2(Nf ) be a newform, and let p � Nf

be a prime at which f is ordinary. Let g and h be two Λ-adic newforms of tame

levels Ng and Nh and characters χ and χ−1, respectively. Set N = lcm(Nf , Ng, Nh)
as usual. This section analyzes the restrictions to GQp

of the Galois representation
Vfgh and of the Λ-adic cohomology class κ(f, gh).
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Lemma 2.1. The Galois representation Vfgh is endowed with a four-step filtration

0 ⊂ V++
fgh ⊂ V+

fgh ⊂ V−
fgh ⊂ Vfgh

by GQp
-stable Λfgh-submodules of ranks 0, 1, 4, 7, and 8, respectively. The Galois

group GQp
acts on the successive quotients for this filtration as a direct sum of

Λfgh-adic characters. More precisely,

V++
fgh � Λfgh(Υ

+),

V+
fgh/V

++
fgh = Vf

fgh ⊕ Vg
fgh ⊕ Vh

fgh � Λfgh(Υ
+
f )⊕ Λfgh(Υ

+
g )⊕ Λfgh(Υ

+
h ),

V−
fgh/V

+
fgh = Vf

fgh ⊕ Vg
fgh ⊕ Vh

fgh � Λfgh(Υ
−
f )⊕ Λfgh(Υ

−
g )⊕ Λfgh(Υ

−
h ),

Vfgh/V
−
fgh � Λfgh(Υ

−),

where the characters arising on the right are described in the following table:

Subquotient Rank Galois action

V++
fgh 1 Υ+ = (ψfΨgΨh)

−1 × εcycεcyc

V+
fgh/V

++
fgh 3 Υ+

f = ψfΨ
−1
g Ψ−1

h × εcyc
Υ+

g = ψ−1
f ΨgΨ

−1
h × χ−1 × εcyc

Υ+
h := ψ−1

f Ψ−1
g Ψh × χ× εcyc

V−
fgh/V

+
fgh 3 Υ−

h = ψfΨgΨ
−1
h × χ−1

Υ−
g = ψfΨ

−1
g Ψh × χ

Υ−
f = ψ−1

f ΨgΨh × εcycε
−1
cyc

Vfgh/V
−
fgh 1 Υ− = ψfΨgΨh × ε−1

cyc.

Proof. The lemma follows directly from (65), (68), and (69). �

Since Vfgh(N) is a finite sum of copies of the representation Vfgh, in view of the
above lemma it also admits a natural filtration

0 ⊂ Vfgh(N)++ ⊂ Vfgh(N)+ ⊂ Vfgh(N)− ⊂ Vfgh(N)

of Λfgh[GQp
]-modules, and

V+
fgh(N)/V++

fgh(N) =: Vf
fgh(N)⊕ Vg

fgh(N)⊕ Vh
fgh(N).(72)

For each φ = f, g, h, the subquotient Vφ
fgh(N) is a direct sum of finitely many

copies of Vφ
fgh, on which GQp

acts via the character Υ+
φ .

Let

(73) κp(f, gh) := resp(κ(f, gh)) ∈ H1(Qp,Vfgh)

denote the natural image of the global class κ(f, gh) in the local cohomology at p,
and set

ξfgh = (1− αfap(g)ap(h)
−1χ−1(p))(1− αfap(g)

−1ap(h)χ(p)).

Proposition 2.2. The class ξfgh · κp(f, gh) belongs to the natural image of

H1(Qp,V
+
fgh(N)) in H1(Qp,Vfgh(N)) under the map induced from the inclusion

V+
fgh(N) ↪→ Vfgh(N).
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Proof. Recall the natural projection Λ −→ Λs to the finite group ring of level ps.
The Galois representation Vfgh(N) ⊗Λ Λs is realized in the middle p-adic étale

cohomology of the quotient Ws of X0(Np) × Xs × X†
s , and the natural image of

κp(f, gh) in H1(Qp,Vfgh(N) ⊗Λ Λs) is proportional to the image of the cycle Δs

under the p-adic étale Abel-Jacobi map. The threefold Ws is smooth and proper
over Qp, and the purity conjecture for the monodromy filtration is known to hold
by the work of Saito (cf. [Sa97], [Ne2, (3.2)]). By Theorem 3.1 of [Sa97], it follows
that the natural image of κp(f, gh) belongs to H1

fin(Qp,Vfgh(N)⊗Λ Λs), where

(74) H1
fin(Qp,Vfgh(N)⊗Λ Λs) ⊂ H1(Qp,Vfgh(N)⊗Λ Λs)

denotes the finite submodule in the sense of Bloch-Kato, as defined in [BK93,
Section 3] or [Ne2, (2.2)]. Lemma 1.15 implies that Vfgh(N)⊗Λ Λs is an ordinary

p-adic representation in the sense of Greenberg (cf. [Gr89, (4)], [Fl90]). Hence the
finite subspace may be described concretely as

H1
fin(Qp,Vfgh(N)⊗Λ Λs)

= ker
(
H1(Qp,Vfgh(N)⊗Λ Λs) −→ H1(Ip, (Vfgh(N)/V+

fgh(N))⊗Λ Λs)
)
,

where Ip denotes the inertia group at p. (See [Fl90, Lemma 2, p. 125] for a proof
of this useful fact. Note that H1

fin(Qp,Vfgh(N)) = H1
g (Qp, Vfgh(N)) in this case,

by [Ne2, (3.1) and (3.2)].) By passing to the inverse limit and using the fact that
lim←−
s

Vfgh(N)⊗Λ Λs = Vfgh(N), one concludes that

κp(f, gh) ∈ ker
(
H1(Qp,Vfgh(N)) −→ H1(Ip,Vfgh(N)/V+

fgh(N))
)
.

The kernel of the restriction map

H1(Qp,Vfgh(N)/V+
fgh(N)) −→ H1(Ip,Vfgh(N)/V+

fgh(N))

is naturally a quotient of

H1(Qur
p /Qp, (Vfgh(N)/V+

fgh(N))Ip).

The local Galois representation (Vfgh/V
+
fgh) lies in the middle of an exact se-

quence

0 −→ Vf−
fgh ⊕ Vg−

fgh ⊕ Vh−
fgh −→ (Vfgh/V

+
fgh) −→ (Vfgh/V

−
fgh) −→ 0,

which induces an isomorphism Vg−
fgh⊕Vh−

fgh −→ (Vfgh/V
+
fgh)

Ip by Lemma 2.1. The

term

H1(Qur
p /Qp,V

g−
fgh ⊕ Vh−

fgh) = (Λfgh(Υ
−
g )⊕ Λfgh(Υ

−
h ))/(Frobp − 1),

is annihilated by ξfgh, as can be read off from the table in Lemma 2.1, and the

same is therefore true of H1(Qur
p /Qp, (Vfgh/V

−
fgh)

Ip) as well as of

H1(Qur
p /Qp, (Vfgh(N)/V−

fgh(N))Ip).
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It follows that ξfgh · κp(f, gh) belongs to the kernel of the natural map to

H1(Qp,Vfgh(N)/V+
fgh(N)). �

It will be convenient for the discussion that follows and in the remainder of this
article to replace the ring Λfgh and all modules over it (such as Vfgh and its various

subquotients) with their localizations by the multiplicative set generated by ξfgh.
Since the element ξfgh is non-zero at all classical points of weight � ≥ 1, the passage

to this localization is harmless and still makes it permissible to specialize the Λ-
adic class κ(f, gh) at these points. With this convention in place, the following is
immediate.

Corollary 2.3. The class κp(f, gh) belongs to the image of H1(Qp,V
+
fgh(N)) in

H1(Qp,Vfgh(N)) under the map induced from the inclusion V+
fgh(N) ↪→ Vfgh(N).

The decomposition (72) induces a corresponding decomposition of the local coho-
mology group H1(Qp,V

+
fgh(N)/V++

fgh(N)) into a direct sum of three contributions.

Write

κf
p(f, gh) ∈ H1(Qp,V

f
fgh(N)), κg

p(f, gh) ∈ H1(Qp,V
g
fgh(N)),(75)

κh
p(f, gh) ∈ H1(Qp,V

h
fgh(N))

for the projections of the local class κp(f, gh) in each direct summand.

The reader will note that the Λfgh-adic characters Υ+
g and Υ+

h agree with the
cyclotomic character when restricted to the inertia group at p, and thus are not
“truly varying,” while the character Υ+

f is somewhat more interesting, since it
involves the Λ-adic cyclotomic character εcyc.

2.2. Classical specializations. Let (y, z) ∈ Ωg×Ωh be a classical point of weight
� and character ε. The goal of this section is to analyze the specialization

κ(f, gy, hz) := κ(f, gh)(y,z) ∈ H1(Q, Vfgyhz
(N))

of the global Λ-adic class κ(f, gh) at (y, z), with special emphasis on its local be-
havior at p.

A one-dimensional character Υ : GQp
−→ C×

p is said to be of Hodge-Tate weight
−j if it is equal to a finite order character times the jth power of the cyclotomic
character. The following is an immediate corollary of Lemma 2.1 of the previous
section.

Corollary 2.4. The Galois representation Vfgyhz
is endowed with a four-step GQp

-
stable filtration

0 ⊂ V ++
fgyhz

⊂ V +
fgyhz

⊂ V −
fgyhz

⊂ Vfgyhz
,
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and the action of GQp
on its successive quotients is via the one-dimensional repre-

sentations described in the following table:

Subquotient Galois action Hodge-Tate � = 2 � = 1
weights

V ++
fgyhz

Υ+(y, z) := (ψfψgyψhz
)−1 × ε× ω1−� × ε�cyc −� −2 −1

V +
fgyhz

/V ++
fgyhz

Υ+
f (y, z) := ψfψ

−1
gy ψ−1

hz
× ε× ω1−� × ε�−1

cyc 1− � −1 0

Υ+
gy
(y, z) := ψ−1

f ψgyψ
−1
hz

× χ−1 × εcyc −1 −1 −1

Υ+
hz
(y, z) := ψ−1

f ψ−1
gy ψhz

× χ× εcyc −1 −1 −1

V −
fgyhz

/V +
fgyhz

Υ−
hz
(y, z) := ψfψgyψ

−1
hz

× χ−1 0 0 0

Υ−
gy (y, z) := ψfψ

−1
gy ψhz

× χ 0 0 0

Υ−
f (y, z) := ψ−1

f ψgyψhz
× ε−1 × ω�−1 × ε2−�

cyc �− 2 0 −1

Vfgyhz
/V −

fgyhz
Υ−(y, z) := ψfψgyψhz

× ε−1 × ω�−1 × ε1−�
cyc �− 1 1 0

2.2.1. Weight two specializations. When � = 2, the classes κ(f, gy, hz) are then, by
their very construction, directly related to the étale Abel-Jacobi images of twisted
diagonal cycles. Recall that αgy denotes the eigenvalue of Up acting on the ordinary
modular form gy.

Proposition 2.5. Assume that the classical points (y, z) have weight � = 2 and
character ε of conductor ps. Then

κ(f, gy, hz) = α−s
gy �fgyhz

(AJet(Δs)) ∈ H1(Q, Vfgyhz
(N)).

Proof. By Definition 1.15 and Equation (63),

κ(f, gy, hz) = �fgyhz
◦�fgh(κ∞) = �fgyhz

(κs).

But since �fgyhz
(1 ⊗ Up ⊗ 1) = αgy�fgyhz

and the projection �fgyhz
factors

through the ordinary projection eord⊗eord, Equation (60) implies that κ(f, gy, hz) =

α−s
gy �fgyhz

(κ
(3)
s ). The projection �fgyhz

also factors through the Künneth projec-

tion pr111 of Equation (59), and thus κ(f, gy, hz) = α−s
gy

�fgyhz
(κ

(2)
s ). Now, us-

ing Equation (56) and the fact that �fgyhz
εs,s = �fgyhz

, it can be seen that

κ(f, gy, hz) = α−s
gy �fgyhz

(κ
(1)
s ). Proposition 2.5 now follows from the definition of

κ
(1)
s given in (54). �

Corollary 2.6. For all classical (y, z) ∈ Ωg ×Ωh of weight two and character ε of
conductor ps, the class κp(f, gy, hz) belongs to the image of H1(Qp(ζs), V

+
fgyhz

(N))

in H1(Qp(ζs), Vfgyhz
(N)) under the map induced from the inclusion V +

fgyhz
(N) ↪→

Vfgyhz
(N).

Proof. This follows by specializing Corollary 2.3 to the point (y, z). (It could also be
deduced from Proposition 2.5 in light of the known properties of étale Abel-Jacobi
images of algebraic cycles.) �

2.2.2. Weight one specializations. The richest arithmetic phenomena arise when
studying the specialization of κ(f, gh) at a point (y, z) of weight � = 1 and trivial
nebentype character at p, which will be assumed in this section. The specializations
of g and h at y and z need not be classical in general; let us assume, however, that
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they are. The departure point of this section is the assumption that there exist
newforms g ∈ S1(Ng, χ) and h ∈ S1(Nh, χ

−1) such that

gy = gα ∈ S1(Ngp, χ), hz = hα ∈ S1(Nhp, χ
−1).

Recall from the Introduction that associated to g and h there exist Artin represen-
tations �g and �h with coefficients in a finite extension L/Q. Setting � = �g ⊗ �h,
we have Vgh := Vg ⊗ Vh � V� ⊗L Lp.

After labeling the two (distinct, by the hypothesis imposed in the Introduction)
roots of the pth Hecke polynomial x2 − ap(g) + χ(p) as αg and βg, one may define
the global cohomology class

κ(f, gα, hα) := κ(f, gh)y,z ∈ H1(Q, Vfgh(N))

with values in the Galois representation Vfgh(N) = Vf (Np)⊗ Vg(Np)⊗ Vh(Np) �
(Vf ⊗ Vgh)

a for some a ≥ 1. Let also κf
p(f, gα, hα) ∈ H1(Qp, V

f
fgh(N)) denote the

associated local cohomology class arising likewise from (75).
The weight one setting distinguishes itself in (at least) two further respects.

First, recall the running assumption that αg �= βg, αh �= βh. Let us denote g
α
, g

β
,

hα, hβ the Hida families passing through gα, gβ, hα, hβ, respectively. One thus
obtains four (a priori distinct) global classes
(76)

κ(f, gα, hα), κ(f, gα, hβ), κ(f, gβ, hα), κ(f, gβ, hβ) ∈ H1(Q, Vfgh(N)).

Note that for primes � �= p, it follows from [Ne2, (2.5) and (3.2)] that
H1(Q�, Vfgh(N)) = 0 and hence a fortiori the restriction to GQ�

of the above
cohomology classes are all trivial. This is in general not true for � = p, as we shall
see later in Theorem 6.4.

Since Vgh is an Artin representation which is unramified at p, and for which
both Vg and Vh are regular, the local cohomology group H1(Qp, Vf (Np)⊗Vgh(N))
decomposes into a direct sum of four vector spaces over Lp = Kfgh,

H1(Qp, Vf (Np)⊗ Vgh(N)) = H1(Qp, Vf (Np)⊗ V αα
gh (N))

⊕H1(Qp, Vf (Np)⊗ V αβ
gh (N))

⊕H1(Qp, Vf (Np)⊗ V βα
gh (N))⊕H1(Qp, Vf (Np)⊗ V ββ

gh (N)),

where V αα
gh (N) := Vg(N)αg ⊗ Vh(N)αh denotes the GQp

-stable subspace in Vgh(N)

formed from the tensor product of the two eigenspaces in Vg(N) and Vh(N) on
which Frobp acts with eigenvalue αg and αh, respectively, and likewise for the
other spaces.

Proposition 2.7. The local class κp(f, gα, hα) belongs to the kernel of the natural
homomorphism

H1(Qp, Vf (Np)⊗ Vgh(N)) −→ H1(Qp, Vf (Np)⊗ V αα
gh (N)).

Proof. This follows from Corollary 2.3 after observing that the specialization of
V+

fgh at (y, z) is contained in

Vf (Np)⊗
(
V αβ
gh (N)⊕ V βα

gh (N)⊕ V ββ
gh (N)

)
. �

Although the Galois representation Vfgh, which is independent of the choice of
stabilizations of g and h, is crystalline under our running assumptions, the same
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need not be true of the extension classes in (76). This can be seen by observing
that the Hodge-Tate weights attached to the specializations of the characters Υ+

f

and Υ−
f , which in weight � ≥ 2 are < 0 and ≥ 0, respectively, acquire Hodge-Tate

weights that are ≥ 0 and < 0, respectively, when � = 1, as summarized in the table
of Corollary 2.4. The local condition H1

fin(Qp, Vfgh(N)) at p defining the Selmer
group of Vfgh(N) is given by
(77)
H1

fin(Qp, Vfgh(N)) = ker
(
H1(Qp, Vfgh(N)) −→ H1(Qp, Vf (Np)− ⊗ Vgh(N))

)
,

where Vf (Np)− is the unramified quotient of Vf (Np) of Definition 1.10 and
Vgh(N) = Vg(N)⊗ Vh(N). Let

∂p : H1(Q, Vfgh(N)) −→ H1(Qp, Vf (Np)− ⊗ Vgh(N))

be the natural projection to the “singular quotient” of the cohomology group at p,
whose kernel is H1

fin(Qp, Vfgh(N)).

Proposition 2.8. The class ∂p(κ(f, gα, hα)) belongs to H1(Qp, Vf (Np)− ⊗
V ββ
gh (N)), and is non-zero if and only if κf

p(f, gα, hα) �= 0.

Proof. The second row in the table in Corollary 2.4 shows that the specialization of
Υ+

f at (y, z) is the unramified character that sends Frobp to αf (αgαh)
−1 = αfβgβh,

and hence the local class κf
p(f, gα, hα) belongs to H1(Qp, Vf (N)−⊗V ββ

gh (N)). Since

V+
fgh/(V

+
fgh ∩ (V +

f ⊗ (Vg ⊗Λ V∗
h))) = O(Υ+

f ),

it follows from (72) that ∂p(κ(f, gα, hα)) = κf
p(f, gα, hα) ∈ H1(Qp, Vf (N)− ⊗

V ββ
gh (N)). �

Note that analogous statements hold for the three other classes attached in (76)
to the other p-stabilizations of g and h. In particular, if the four associated singular
parts are non-zero, they are necessarily linearly independent over Lp, and therefore
generate the target of ∂p.

2.3. Dieudonné modules and the Bloch-Kato logarithm. Let BdR denote
Fontaine’s ring of de Rham p-adic periods. Given a representation V of GQp

with
coefficients in a finite extension K/Qp, the de Rham Dieudonné module of V is
defined as

DdR(V ) := (V ⊗BdR)
GQp .

It is a finite-dimensional K-vector space equipped with a descending exhaustive fil-
tration FiljDdR(V ) by K-vector subspaces. Falting’s comparison theorem (cf., e.g.,
[Fa97]) asserts that there is an isomorphism of filtered modules
(78)

DdR(V0(Np)) � H1
dR(X0(Np)/Qp)(1), DdR(V1(Nps)) � H1

dR(Xs/Qp)(1).

For V = V0(Np) and V1(Nps), the filtration on DdR(V ) is given by

Fil−1DdR(V ) = DdR(V ) � Fil0DdR(V ) � Fil1DdR(V ) = 0,

and (78) identifies Fil0DdR(V ) with Ω1(X0(Np)/Qp
) and Ω1(Xs/Qp

), respectively.
Let Bcris ⊂ BdR denote Fontaine’s ring of crystalline p-adic periods. The crys-

talline Dieudonné modules associated to the Galois representations Vf and Vf (Np)
are

Df := (Bcris ⊗ Vf )
GQp , Df (Np) := (Bcris ⊗ Vf (Np))GQp .
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These modules are vector spaces over Qp equipped with a Hodge filtration and
a Qp-linear action of a Frobenius automorphism Φ, with eigenvalues αf and βf .
As filtered modules, forgetting the operator Φ, there is canonical isomorphism
Df (Np) � DdR(Vf (Np)) and (78) identifies Df (Np) with H1

dR(X0(Np)/Qp)(1)[f ].
Via this identification, the regular differential form ωf̆ associated to a test vector

f̆ ∈ S2(Np)[f ] gives rise to an element of Fil0Df (Np). Likewise, given a dual

test vector f̆∗ ∈ S2(Np)∨[f ], let ηf̆∗ ∈ Df (Np) denote the unique class such that

Φ(ηf̆∗) = αf · ηf̆∗ and

(79) 〈ηf̆∗ , w1ω〉X0(Np) = f̆∗(ω) for all ω ∈ eordΩ
1(X0(Np)).

As in (1.5.1), let φ ∈ S2(Nps, χφ) be an eigenform of weight two, level Nps, and
nebentype χφ = χ0χp. Assume that φ is primitive at p in the sense of [MW84,
Section 3]; i.e., the p-part of the primitive level of φ and the primitive conductor
of χp are both ps. The Galois representation Vφ (as well as Vφ(Nps), of course)
is potentially crystalline; more precisely, it becomes crystalline when restricted to
GQp(ζs). The crystalline Dieudonné modules

Dφ := (Bcris ⊗ Vφ)
GQp(ζs) , Dφ(Nps) := (Bcris ⊗ Vφ(Nps))GQp(ζs)

are vector spaces over K = Kφ equipped with

• a Hodge filtration by K ⊗Qp
Qp(ζφ)-submodules of Dφ ⊗Qp

Qp(ζφ), such

that (78) identifies Dφ(Nps) with H1
dR(Xs/Qp(ζs))⊗K(1)[φ];

• a K-linear action of a Frobenius operator Φ, with eigenvalues αφ = ap(φ)

and βφ = χ0(p)ap(φ).

Given a dual test vector φ∗ ∈ Sord
2 (Nps)∨[φ], let us denote by ηφ∗ ∈ Dφ the unique

class satisfying Φ(ηφ∗) = αφ · ηφ∗ and

(80) 〈ηφ∗ , wsω〉s = φ∗(ω) for all ω ∈ Ω1(Xs)
ord.

If φ∗ := {φ∗
s}s≥1 is a collection of elements φ∗

s ∈ Sord
2 (Nps)∨ which are compatible

under the maps (�∗
1)

∨ dual to the pullback by �1, then the corresponding elements
ηφ∗

s
in H1

dR(Xs/Qp(ζs)) are compatible under the transition maps �2∗, and hence

describe an element of H1
dR(X∞).

The weight two specializations of the Λ-adic test vectors ğ ∈ Sord
Λg

(N,χ)[g] and

h̆ ∈ Sord
Λh

(N,χ−1)[h] in the Introduction provide natural examples of eigenforms φ
that are primitive at p. Namely, let ε be a Dirichlet character of conductor ps and
let (y, z) ∈ Ωg ×Ω Ωh be a classical point of weight (2, ε). Assuming that ε �= ω,

the eigenforms gy, hz and ğy ∈ S2(Nps, χεω−1) and h̆z ∈ S2(Nps, χ−1εω−1) are
primitive at p. Let

Dfgyhz
(N) := (Bcris⊗Qp

Vfgyhz
(N))GQp(ζs) � Df (Np)⊗Dgy(Nps)⊗Dhz

(Nps)(−1)

denote the Dieudonné module associated to the Galois representation Vfgyhz
(N)

introduced in (70).
Let

H1
exp(Qp(ζs), Vfgyhz

(N)) ⊆ H1
fin(Qp(ζs), Vfgyhz

(N)) ⊆ H1(Qp(ζs), Vfgyhz
(N))

be the subspaces introduced in [BK93] by Bloch and Kato and let

logp : H1
exp(Qp(ζs), Vfgyhz

(N)) −→ Dfgyhz
(N)/(Fil0(Dfgyhz

(N))+Dfgyhz
(N)Φ=1)

denote the Bloch-Kato logarithm map of loc. cit.
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Since the eigenvalues of the Frobenius operator Φ acting on Dfgyhz
(N) are

αfαgyαhz
, . . . , βfβgyβhz

, they all are algebraic numbers of complex absolute value

p3/2, and it follows from [BK93, Corollary 3.8.4] that Dfgyhz
(N)Φ=1 = 0 and

H1
exp(Qp(ζs), Vfgyhz

(N)) = H1
fin(Qp(ζs), Vfgyhz

(N)). Bloch-Kato’s logarithm map
may therefore be recast as a map
(81)
logp : H

1
fin(Qp(ζs), Vfgyhz

(N))−→Dfgyhz
(N)/Fil0(Dfgyhz

(N)) � Fil0(Dfgyhz
(N))∨,

where the latter isomorphism is induced by Poincaré duality.
The p-adic syntomic Abel-Jacobi map is then defined as the composition

AJp : CH2(Ws)0(Qp(ζs))
�fgyhz◦AJet−−−−−−−−−−−−→ H1

fin(Qp(ζs),(82)

Vfgyhz
(N))

logp−−−−−−→ Fil0(Dfgyhz
(N))∨.

2.4. Ohta’s periods and Λ-adic test vectors. Let Ẑur
p denote the completion

of the ring of integers in the maximal unramified extension Q̂ur
p of Qp. Recall the

convention whereby the symbol ⊗̂ denotes the completed tensor product, so that,
for example, Λ ⊗̂ Ẑur

p is isomorphic to the power series ring Ẑur
p [[T ]].

Define D(V ord
1 (Nps)−) := (V ord

1 (Nps)− ⊗ Ẑur
p )GQp . Since the modules

V ord
1 (Nps)− are unramified, they are admissible for the period ring Ẑur

p and hence

DdR(V
ord
1 (Nps)−) = D(V ord

1 (Nps)−). Define also

D(Vord
1 (Np∞)−) := (Vord

1 (Np∞)−⊗̂Ẑur
p )GQp = lim←−

s

D(V ord
1 (Nps)−).

Recall that the comparison theorem of (78) leads to a natural inclusion

Sord
2 (Nps) = eordΩ

1(Xs) −→ eordH
1
dR(Xs) = DdR(V

ord
1 (Nps)).

Write

cmps : S
ord
2 (Nps) −→ D(V ord

1 (Nps)−)

for the natural map obtained by composing this inclusion with the natural projec-
tion

DdR(V
ord
1 (Nps)) −→ D(V ord

1 (Nps)−)

arising from the GQp
-invariant filtration on V ord

1 (Nps).
We begin by recalling a theorem of Ohta [Oh95], as refined subsequently by Wake

[Wa] which provides a p-adic interpolation of the maps cmps, relating the space
Sord
Λ (N) of ordinary Λ-adic modular forms to the Galois representation Vord

1 (Np∞).

Proposition 2.9 (Ohta). There is a canonical isomorphism

cmp∞ : Sord
Λ (N) −→ D(Vord

1 (Np∞)−)

characterized by the commutativity of the diagram

Sord
Λ (N)

cmp∞ ��

�s

��

D(Vord
1 (Np∞)−)

��
Sord
2 (Nps)

cmps �� D(V ord
1 (Nps)−),

where the left vertical arrow sends the ordinary Λ-adic form g = {gs} to �s(gs) =

U−s
p gs, and the right vertical arrow denotes the natural specialization map of level ps.
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The reader will recall that the system {�s(gs)} of ordinary modular forms on Xs

is compatible under the pushforward maps �2∗, in harmony with the fact that the
inverse limit defining D(Vord

1 (Np∞)−)) is also taken relative to these maps. The
statement differs slightly from the one in Ohta’s work, which focuses on the anti-
ordinary part of the étale cohomology of the tower Xs, in which the inverse limits
are taken relative to the maps �1∗. Working with the ordinary part obviates the
application of the automorphism ws to the specialization at level s which occurs in
Ohta’s result.

Since the Up operator (and hence, the ordinary projector, as well) is self-adjoint
relative to the twisted Λ-adic Weil pairing [ , ]Γ of (40), this pairing induces a
pairing on the ordinary parts, which shall be denoted by the same symbol,

(83) [ , ]Γ : Vord
1 (Np∞)× Vord

1 (Np∞) −→ Λ(εcyc).

The submodule Vord
1 (Np∞)+ is isotropic for this pairing, which therefore induces a

natural Λ(εcyc)-valued duality between Vord
1 (Np∞)+ and the quotient Vord

1 (Np∞)−.
(This duality is the one described, for instance, in Theorem B of [Oh95].) Combin-
ing [ , ]Γ with Ohta’s map cmp∞ yields canonical GQp

-equivariant Λ-linear maps,
as described in [Wa, Theorem 1.3],

c+ :Sord
Λ (N) −→ HomΛ(V

ord
1 (Np∞)+,Λ(εcyc) ⊗̂ Ẑur

p ),(84)

c− :Sord
Λ (N)∨ −→ HomΛ(V

ord
1 (Np∞)−,Λ ⊗̂ Ẑur

p ),

which are given by the explicit formulas

c+(φ)(ξ) = [�∞(φ), ξ]Γ =
{
〈U−s

p φs, wwsU
s
pξs〉Γs

}
s≥1

(85)

= {〈φs, wwsξs〉Γs
}s≥1 =

{
−〈ξs, (wws)

−1φs〉Γs

}
s≥1

,

c−(φ∗)(ξ) = [φ∗, ξ]Γ =
{
−〈ξs, (wws)

−1Us
pηφ∗

s
〉Γs

}
s≥1

.(86)

After tensoring over Λ with Λg and taking g-isotypic parts in (84), one deduces
Λg-linear GQp

-equivariant homomorphisms

c+g :SΛg
(N)[g] −→ HomΛg

(V+
g (N),Λg(εcyc) ⊗̂ Ẑur

p ),(87)

c−g :SΛg
(N)∨[g] −→ HomΛg

(V−
g (N),Λg ⊗̂ Ẑur

p ),(88)

which are described by the rules, deduced from (85) and (86),

c+g (ğ)(ξ) =
{
−〈ξs, (wws)

−1ğs〉Γs

}
s≥1

,(89)

c−g (ğ
∗)(ξ) =

{
αs
g
s
〈ξs, (wws)

−1ηğ∗
s
〉Γs

}
s≥1

.(90)

If Λ̃ is any complete Noetherian Zp-algebra and Ψ : GQp
−→ Λ̃× is an unramified

character, it is convenient to define

Λ̃{Ψ} := (Λ̃ ⊗̂ Ẑur
p )Ψ

to be the Λ̃-submodule of Λ̃ ⊗̂ Ẑur
p on which GQp

acts via the character Ψ. As

explained in [LZ12, Proposition 3.3], Λ̃{Ψ} is non-canonically isomorphic to Λ̃(Ψ) as

a Λ̃[GQp
]-module. The advantage of working with Λ̃{Ψ} is that one has a canonical

identification

(91) D(Λ̃{Ψ}) = (((Λ̃ ⊗̂ Ẑur
p )Ψ) ⊗̂ Ẑur

p )GQp = Λ̃,

the last equality being simply induced from the multiplication on the coefficients.
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The GQp
-equivariance of the maps (87) and (88) above shows that c+g (ğ) and

c−g (ğ
∗) give rise to GQp

-equivariant Λg-linear maps

c+g (ğ) : Vg(N)+ −→ Λ{Ψ−1
g }(εcyc), c−g (ğ

∗) : Vg(N)− −→ Λ{Ψg},

with similar remarks applying, of course, to the elements c+h (h̆) and c−h (h̆
∗
). The

maps c+g (ğ) and c−g (ğ
∗) also admit simpler variants associated to the fixed forms f̆

and f̆∗,

c+f (f̆) : Vf (Np)+ −→ Qp{ψ−1
f }(εcyc), c−f (f̆

∗) : Vf (Np)− −→ Qp{ψf}.
Recall from Lemma 2.1 that there are canonical isomorphisms of Λfgh[GQp

]-

modules

Vf
fgh(N) � Vf (Np)− ⊗ Vg(N)+ ⊗Λ Vh(N)+(ε−1

cyc),

Vg
fgh(N) � Vf (Np)+ ⊗ Vg(N)− ⊗Λ Vh(N)+(ε−1

cyc),

Vh
fgh(N) � Vf (Np)+ ⊗ Vg(N)+ ⊗Λ Vh(N)−(ε−1

cyc).

Choose a triple of Λ-adic test vectors

(92) f̆ ∈ S2(Np)[f ], ğ ∈ Sord
Λg

(N,χ)[g], h̆ ∈ Sord
Λh

(N,χ−1)[h],

and a triple of dual test vectors

(93) f̆∗ ∈ S2(Np)∨[f ], ğ∗ ∈ Sord
Λg

(N,χ−1)∨[g], h̆
∗ ∈ Sord

Λh
(N,χ)∨[h]

as in the Introduction.
We can then define the local Λ-adic cohomology classes

κf
p(f̆

∗, ğh̆) := c−f (f̆
∗)⊗ c+g (ğ)⊗ c+h (h̆)(κ

f
p(f, gh))

∈ H1(Qp,Λfgh{ψfΨ
−1
g Ψ−1

h }(εcyc)),

κg
p(f̆ , ğ

∗h̆) := c+f (f̆)⊗ c−g (ğ
∗)⊗ c+h (h̆)(κ

g
p(f, gh))(94)

∈ H1(Qp,Λfgh{ψ−1
f ΨgΨ

−1
h χ−1}(εcyc)),

κh
p(f̆ , ğh̆

∗) := c+f (f̆)⊗ c+g (ğ)⊗ c−h (h̆
∗
)(κh

p(f, gh))

∈ H1(Qp,Λfgh{ψ−1
f Ψ−1

g Ψhχ}(εcyc)).
The modules in which the above classes take values are non-canonically isomorphic
to Λfgh(Υ

+
f ), Λfgh(Υ

+
g ), and Λfgh(Υ

+
h ), respectively, but elements of the former

incorporate a choice of period (in the style of [LZ12]) for the relevant unramified
Galois characters.

As a piece of notation, we let

κf
p(f̆

∗, ğy, h̆z) ∈ H1(Qp,Kx{ψfΨ
−1
gy Ψ

−1
hz

}(ε�−1
cyc εω

1−�)),(95)

κg
p(f̆ , ğ

∗
y , h̆z) ∈ H1(Qp,Kx{ψ−1

f ΨgyΨ
−1
hz

× χ−1}(εcyc)),
denote the local cohomology classes obtained by specializing the Λ-adic classes of
(94) at a classical point x := (y, z) ∈ Ωg ×ΩΩh of weight (�, ε) for some positive in-
teger � ≥ 1 and character ε of conductor ps, corresponding to a ring homomorphism
x : Λfgh −→ Kx to a finite extension Kx of Qp.

Our most immediate goal is now to relate the images of the classes κf
p(f̆

∗, ğh̆) and

κg
p(f̆ , ğ

∗h̆) under Perrin-Riou’s Λ-adic logarithm map to the restriction to Ωfgh of
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the Garrett-Hida p-adic L-functions Lp
fα(f̆

∗
, ğ, h̆) and Lp

gα(f̆ , ğ∗, h̆), respectively.

(A similar relation exists between Lp
hα(f̆ , ğ, h̆

∗
) and κh

p(f̆ , ğh̆
∗), since g and h play

symmetric roles in all the constructions; the details have been omitted because the
latter relation plays no role in the proof of the main theorems of the article.)

The family κf
p(f̆

∗, ğh̆) and the p-adic L-function Lp
fα(f̆

∗
, ğ, h̆) play a crucial

role in the proofs of Theorems A and C, while κg
p(f̆ , ğ

∗h̆) and Lp
gα(f̆ , ğ∗, h̆) are

the main ingredients in the proofs of Theorems B and D. It is worth remarking

that the family of cohomology classes κf
p(f̆

∗, ğh̆), whose underlying representation
space involves the Λ-adic cyclotomic character, is of greater arithmetic complexity

than the family κg
p(f̆ , ğ

∗h̆), whose restriction to the inertia group at p is equal to
εcyc, and whose specializations are therefore independent of (y, z) when restricted
to inertia.

2.5. The logarithm of weight two specializations. Let ε �= ω be a Dirichlet
character of conductor ps and let x := (y, z) ∈ Ωg×ΩΩh be a classical point of weight

(2, ε). Put K = Kx = Kfgyhz
as above, and let κf

p(f̆
∗, ğy, h̆z) and κg

p(f̆ , ğ
∗
y , h̆z) be

the local cohomology classes introduced in (95). Since the Hodge-Tate weights of
the target Galois representations are all −1, the Bloch-Kato p-adic logarithm maps
induce isomorphisms

logp : H1(Qp,Kx{ψfΨ
−1
gy

Ψ−1
hz

}(εcycεω−1)) −→ K,(96)

logp : H1(Qp,Kx{ψ−1
f ΨgyΨ

−1
hz

× χ−1}(εcyc)) −→ K.

We refer to (142) in Section 5.1 below for a more detailed discussion of this fact
in a more general setting and a discussion of the periods involved in the above
isomorphisms.

The goal of this section is to give an explicit formula for the Bloch-Kato p-adic

logarithms of the classes κf
p(f̆

∗, ğy, h̆z) and κg
p(f̆ , ğ

∗
y , h̆z) in terms of the image of the

twisted diagonal cycles introduced in the previous section under the p-adic syntomic
Abel-Jacobi map (82).

Recall the de Rham cohomology classes of (79) and (80), and let

ω◦
f̆
:= (wws)

−1ωf̆ , ω◦
ğy := (wws)

−1ωğy , ω◦
h̆z

= (wws)
−1ηh̆z

,

η◦
f̆∗ := (wws)

−1ηf̆∗ , η◦ğ∗
y
:= (wws)

−1ηğ∗
y
, η◦

h̆∗
z
= (wws)

−1ηh̆∗
z
,

viewed as elements of the anti-ordinary part of H1
dR(X0(Np)/Qp

) and

H1
dR(Xs/Qp(ζs)), respectively. The triple tensor classes

η◦
f̆∗ ⊗ ω◦

ğy ⊗ ω◦
h̆z
, ω◦

f̆
⊗ η◦ğ∗

y
⊗ ω◦

h̆z
, ω◦

f̆
⊗ ω◦

ğy ⊗ η◦
h̆∗
z

are thus elements in the anti-ordinary part of H3
dR(W

†
s,s/Qp(ζs)

) = H3
dR(Ws,s/Qp(ζs)).

Since the N -part (resp., the p-part) of the nebentype characters of gy and hz is
inverse one of another (resp., equal), these classes are invariant under the action of
the group Ds of diamond operators acting diagonally at N and anti-diagonally at
p on Ws,s; hence they descend to classes in H3

dR(Ws/Qp(ζs)), denoted

η◦
f̆∗ ⊗ ω◦

ğyω
◦
h̆z
, ω◦

f̆
⊗ η◦ğ∗

y
ω◦
h̆z
, ω◦

f̆
⊗ ω◦

ğyη
◦
h̆∗
z
∈ H3

dR(Ws/Qp(ζs)),

which are characterized by the relation

(97) pr∗s(η
◦
f̆∗ ⊗ ω◦

ğyω
◦
h̆z
) = η◦

f̆∗ ⊗ ω◦
ğy ⊗ ω◦

h̆z
,
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and likewise for the other two. Faltings’ comparison isomorphism (78) together with
Künneth’s formula (55) allows one to regard them as elements of Fil0(Dfgyhz

(N)),
and it thus makes sense to evaluate the functional AJp(Δs) at these classes.

Proposition 2.10. For all arithmetic points x = (y, z) of weight (2, ε) as above,
the specializations

κf
p(f̆

∗, ğy, h̆z) := κf
p(f̆

∗, ğh̆)(y, z), κg
p(f̆ , ğ

∗
y , h̆z) := κg

p(f̆ , ğ
∗h̆)(y, z)

satisfy the formulas

logp(κ
f
p(f̆

∗, ğy, h̆z)) = α−s
g AJp(Δs)(η

◦
f̆∗ ⊗ ω◦

ğyω
◦
h̆z
),

logp(κ
g
p(f̆ , ğ

∗
y , h̆z)) = AJp(Δs)(ω

◦
f̆
⊗ η◦ğ∗

y
ω◦
h̆z
).

Proof. Let 〈 , 〉Ws
denote the Poincaré pairing (in both its étale and de Rham

incarnations) on the (1, 1, 1)-Künneth component of the middle cohomology of Ws,
which is related to the Poincaré duality on the curves X0(Np) and Xs by the rules

〈η1 ⊗ η2η3, ω1 ⊗ ω2ω3〉Ws
= 〈η1, ω1〉X0(Np)〈η2, ω2〉s〈η3, ω3〉s.

Let 〈 , 〉Ws,Γs
denote the group-ring valued pairing constructed from the above by

setting

〈η1 ⊗ η2η3, ω1 ⊗ ω2ω3〉Ws,Γs
= 〈η1, ω1〉X0(Np)〈η2, ω2〉Γs

〈η3, ω3〉Γs
.

The formulas for c+g (ğ) and c+h (h̆) described in Equation (89) lead to the following

equality in the local cohomology group H1(Qp,Kx(Υ
+
f (y, z))), where κp(f, gh)s

denotes the natural projection of the ordinary Λ-adic class κp(f, gh) to the sth
component in the inverse limit,

(98) κf
p(f̆

∗, ğy, h̆z) := ν(y,z)(κ
f
p(f̆

∗, ğ, h̆)) = ν(y,z)(〈κp(f, gh)s, η
◦
f∗ ⊗ω◦

ğsω
◦
h̆s
〉Ws,Γs

).

It then follows from Lemma 1.12 that

(99) κf
p(f̆

∗, ğy, h̆z) = 〈κp(f, gy, hz)s, η
◦
f∗ ⊗ ω◦

ğyω
◦
h̆z
〉Ws

.

Proposition 2.5 thus yields κf
p(f̆

∗, ğy, h̆z) = α−s
gy 〈AJet(Δs), η

◦
f̆∗ ⊗ ω◦

ğy
ω◦
h̆z
〉Ws

and

the first assertion of the proposition follows by applying the Bloch-Kato logarithm
to both sides. The second is proved by the same calculation, but replacing (98)

by the analogous formula arising from both (89) and (90), namely, κg
p(f̆ , ğ

∗
y , h̆z) =

αs
gyν(y,z)(〈κ(f, gh), η◦f ⊗ η◦ğ∗

s
ω◦
h̆s
〉Ws,Γs

). �

For the later calculations, it will be convenient to dispose of a simpler formula

for logp(κ
f
p(f̆

∗, ğy, h̆z)) and logp(κ
g
p(f̆ , ğ

∗
y , h̆z)) involving the product variety Ws,s

rather than its quotient Ws, and the classes ηf̆∗ ⊗ ωğyωh̆z
and ωf̆ ⊗ ηğ∗

y
ωh̆z

instead

of their anti-ordinary counterparts. To do this, define the cycle

Δ◦
s,s := ((ww1)

−1, (wws)
−1, (wws)

−1)∗Δs,s ∈ CH2(Ws,s)0(Qp(ζNζs)).

Equations (41) and (49) show that Δ◦
s,s is given by the simple equation

Δ◦
s,s = ((ww1)

−1, (wws)
−1, (wws)

−1)∗εs,s∗(j1 ◦�s−1
2 ◦ ws, Id, ws)∗δ∗(Xs)(100)

= εs,s∗(j1 ◦�s−1
1 , w−1

s , Id)∗(w
−1, w−1, w−1)∗δ∗(Xs)

= εs,s∗(j1 ◦�s−1
1 , w−1

s , Id)∗δ∗(Xs).
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Corollary 2.11. For all arithmetic points x = (y, z) of weight (2, ε),

logp(κ
f
p(f̆

∗, ğy, h̆z)) = α−s
g d−1

s AJp(Δ
◦
s,s)(ηf̆∗ ⊗ ωğyωh̆z

),

logp(κ
g
p(f̆ , ğ

∗
y , h̆z)) = d−1

s AJp(Δ
◦
s,s)(ωf̆ ⊗ ηğ∗

y
ωh̆z

).

Proof. This follows directly from Proposition 2.10 in light of the functorial proper-
ties of Abel-Jacobi maps with respect to automorphisms. �

Corollary 2.11 motivates the study of the image of the twisted diagonal cycle
Δ◦

s,s under the p-adic syntomic Abel-Jacobi map, which is taken up in the next two
sections.

3. The syntomic Abel-Jacobi map on products of semistable curves

3.1. The cohomology of semistable curves. This section recalls the description
(following [CI99], and [CI10]) of the de Rham cohomology of a semistable curve and
the attendant structures with which it is equipped. Let F be a finite extension of
Qp, let OF denote its ring of integers, fix a uniformizer πF , and let kF = OF /πF

denote the residue field. Let F0 denote the maximal unramified subfield of F ,
which is isomorphic to the fraction field of the ring of Witt vectors of kF . Write
σ0 ∈ Gal (F0/Qp) for the Frobenius element generating the Galois group of F0/Qp.
Let X be a smooth, connected, proper curve over F , and assume it possesses a
regular semistable model X over OF , meaning that locally at every point, X is
either smooth over Spec(OF ) or étale over Spec(OF [X,Y ]/(XY − πF )).

Let X̃ denote the special fiber of X . It is assumed that the irreducible compo-
nents of X̃ are smooth, geometrically irreducible, and defined over kF , that there
are at least two of them, and that distinct components intersect only in ordinary
double points defined over kF . Let G denote the dual graph of the special fiber,
whose set V(G) of vertices is in bijection with the irreducible components of X̃
and whose set E(G) of oriented edges is in bijection with the singular points of
the special fiber, together with an ordering of the two components which intersect
at that point. Given v ∈ V(G), let X̃v denote the associated component, and let

X̃ sm
v denote the smooth locus of X̃v, that is to say, the complement in X̃v of the

singular points of X̃ . If e ∈ E(G) is an edge of G, write s(e) and t(e) for its source
and target, respectively, and xe for the associated ordinary double point, satisfying
X̃s(e) ∩ X̃t(e) = {xe}. Write also ē for the reversed edge, satisfying s(ē) = t(e) and
t(ē) = s(e); note that xē = xe.

Let

red : X(Cp) −→ X̃ (F̄p)

denote the reduction map, and for each v ∈ V(G), let

Wv := red−1(X̃v(F̄p)), Av := red−1(X̃ sm
v (F̄p)) ⊂ Wv

denote the wide open subspace and underlying affinoid associated to the component
X̃v. If e is an edge of G, the wide opens Ws(e) and Wt(e) intersect in the wide open
annulus

We := Ws(e) ∩Wt(e) = red−1({xe}).
The collection {Wv}v∈V(G) gives rise to an admissible cover of X(Cp) by wide

open subsets defined over F , whose nerve is encoded in the graph G. The de Rham
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cohomology group H1
dR(X) can be described rigid analytically as the set of hyper-

cocycles ⎧⎨
⎩({ωv}v, {fe}e) ∈

∏
v∈V(G)

Ω1(Wv)×
∏

e∈E(G)
OWe

such that dfe = ωt(e) − ωs(e), fē = −fe for all e ∈ E(G)

⎫⎬
⎭ ,

taken modulo the hypercoboundaries, which are hypercocycles of the form
(dfv, ft(e) − fs(e)) attached to a collection {fv}v of elements of OWv

indexed by
v ∈ V(G).

The non-trivial rigid cohomology groups of W = Wv or We are

H0
rig(W) = F and H1

rig(W) = Ω1(W)/dOW .

Following [CI99, (1.1)], the Mayer-Vietoris sequence attached to this admissible
covering places H1

dR(X) in the middle of a short exact sequence
(101)

0 −→
⊕eH

0
rig(We)

−

δ(⊕vH0
rig(Wv))

i−→ H1
dR(X)

r−→ ker
(
⊕vH

1
rig(Wv)

δ→ ⊕eH
1
rig(We)

−
)
−→ 0,

where

• ⊕eH
i
rig(We)

− is the (−1)-eigen-subspace of ⊕eH
i
rig(We) with respect to the

involution e �→ ē;
• the indices e and v run over E(G) and V(G), respectively;
• the map δ sends {κv}v to the class of {κt(e) − κs(e)}e;
• the map i sends a collection {λe}e to the class of the hypercocycle
({0}v, {λe}e);

• the map r is the natural restriction map sending the class of ({ωv}v, {fe}e)
to {ωv}v.

The cohomology group H1
dR(X) is an F -vector space equipped with the following

further structures:

(i) A decreasing Hodge filtration of F -vector spaces given by Fili = H1
dR(X)

for i ≤ 0, and Fil1 = Ω1(X) and Fili = {0} for i > 1.

(ii) A canonical F0-structure H1
log−cris(X̃ ) afforded by the log-crystalline coho-

mology of X̃ with coefficients in F0. This is a F0-vector space for which
there is a canonical comparison isomorphism

(102) H1
log−cris(X̃ )⊗F0

F � H1
dR(X).

(iii) A σ0-semilinear Frobenius operator ϕ on H1
log−cris(X̃ ) arising from the

Frobenius on kF .
(iv) A F0-linear monodromy map N : H1

log−cris(X̃ ) −→ H1
log−cris(X̃ ) which via

(102) extends to a F -linear map

(103) N : H1
dR(X) −→ H1

dR(X),

denoted with the same letter. It sends the class of ({ωv}v, {fe}e) to the class
of ({0}v, {λe}e) with λe = ∂We

ωs(e). Here, ∂We
: H1

rig(We) −→ H0
rig(We)

denotes the p-adic annular residue on We, taken relative to an orientation
on We which is determined by e.
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(v) A section

(104) s : H1
dR(X) −→ ⊕eH

0
rig(We)

−/δ
(
⊕vH

0
rig(Wv)

)
of the map i in the exact sequence (101), defined by the rule

s({ωv}v, {fe}e) := {λe}e, λe := fe + Fωs(e)
− Fωt(e)

,

where Fωv
denotes the Coleman primitive of the differential ωv. This prim-

itive is canonically defined up to the addition of a single constant of inte-
gration. It is analytic on each residue disk in Av, and its restriction to the
annulus We (for e any edge having v as either source or target) is generated
by a single logarithmic function over the ring of rigid analytic functions on
We.

Set d = [F0 : Qp]. Since Φ := ϕd is F0-linear, it extends via the comparison
isomorphism (102) to a F -linear operator on H1

dR(X) that is still written as Φ.
The action of Φ on H1

dR(X) admits a direct description in terms of the exact
sequence (101), in which the action of Φ on the left- and right-hand terms is realized
concretely by choosing a system Φv of characteristic 0 lifts of Frobenius to a system
Av ⊂ Wv[ε) ⊂ Wv of Frobenius neighborhoods of the underlying affinoids Av in
Wv, indexed by a real parameter 0 < ε < 1. While Φv is only defined on Wv[ε) for
suitable ε > 0 and does not preserve this domain, the map ωv �→ Φ∗ωv still induces
a well-defined transformation
(105)

Φ : Ω1(Wv)
dOWv

resWv [ε) �� Ω1(Wv [ε))
dOWv [ε)

Φ∗
�� Ω1(Wv[ε

′))
dOWv [ε′)

res−1

Wv [ε′) �� Ω1(Wv)
dOWv

,

where resWv[ε) is the isomorphism induced by restriction to the wide open Wv[ε).
This action of Frobenius on the cohomology does not depend on the choice of
characteristic zero liftings {Φv}. Following the definitions in [CI99], the action of
Φ then extends to the full H1

dR(X) via the requirement that Φ be compatible with
the section s of (104).

Definition 3.1. A class in H1
dR(X) is said to be pure if it is in the kernel of both

N and s.

The set of pure classes, denoted H1
dR(X)pure, is a subgroup of H1

dR(X) which is
preserved by the action of Frobenius and is identified via the map r of (101) with

(106) H1
dR(X)pure =

⊕
v

Ω1
sk(Wv)

dOWv

,

where Ω1
sk(Wv) ⊂ Ω1(Wv) denotes the space of rigid differentials on Wv of the

second kind, i.e., have vanishing annular residues. This identification is compatible
with the action of Φ on both groups.

Proposition 3.2. The eigenvalues of Φ on H1
dR(X)pure have complex absolute

value
√
p.

Proof. Equation (106) shows that H1
dR(X)pure is isomorphic as a Frobenius module

to the crystalline cohomology of the disjoint union of the components X̃v of the
special fiber X̃ . More precisely, there is an exact sequence

(107) 0 → H1
cris(X̃v) → H1

cris(X̃ sm
v ) → ⊕eF (−1)

Σ→ F (−1) → 0,
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where the comparison theorems allow us to identify

H1
cris(X̃v)⊗F0

F � Ω1
sk(Wv)

dOWv

and H1
cris(X̃ sm

v )⊗F0
F � Ω1(Wv)

dOWv

= H1
rig(Wv).

Since the components X̃v are smooth and projective, the theorem follows from the
Riemann hypothesis for curves. �

In light of Proposition 3.2, it would have been more appropriate to use the
expression pure of weight one to designate the classes in H1

dR(X)pure. The vaguer
but more concise terminology adopted in Definition 3.1 was preferred because the
qualifier weight one is also used in the setting of modular forms with a different
meaning. It follows from Proposition 3.2 that the exact sequence (107) has a natural
Frobenius-equivariant splitting, and hence the injective map

r : H1
dR(X)pure −→ ⊕vH

1
rig(Wv)

admits a natural Frobenius-equivariant section

(108) rι : ⊕vH
1
rig(Wv) −→ H1

dR(X)pure.

The Poincaré duality on H1
dR(X) descends to a perfect pairing on H1

dR(X)pure,
which is described by the formula

(109) 〈{ωv}, {ηv}〉X =
∑

e∈E(G)
resWe

(Feηs(e)),

where the sum is taken over all the oriented edges of G and Fe is an analytic
primitive of the restriction to the annulus We of ωs(e), which exists because ωv has
vanishing annular residues for all v ∈ V(G), and is well-defined up to a constant.
(The choice of constant in the local primitive Fe does not affect the term on the
right in (109), since ηv also has vanishing residues for all v.)

3.2. An analytic recipe for the syntomic Abel-Jacobi map. The goal of this
section is to give an analytic expression for the syntomic Abel-Jacobi map on the
Chow group of codimension two cycles on the triple product of semistable curves,
in terms of Coleman’s theory of p-adic integration of rigid differential forms. It will
be convenient to place oneself in the abstract setting given by conditions (a)–(d)
below. While ostensibly somewhat special, this setting will nonetheless suffice for
the applications in this paper.

(a) The ambient threefold is a product W = X1 ×X2 ×X3 of three semistable
curves over F .

For i = 1, 2, 3, write Gi for the dual graph of the special fiber of Xi, and let
Φi = {Φi,v}v∈V(Gi) denote a system of liftings of Frobenius to each of the basic
wide open spaces in the admissible covering of Xi(Cp) described in the previous
section. Denote by Φ23 := Φ2 ⊗Φ3 the corresponding Frobenius endomorphism on
H1

dR(X2)pure⊗H1
dR(X3)pure ⊂ H2

dR(X2×X3). Our second assumption, concerning
the cycle Δ itself, is

(b) The cycle Δ ∈ CH2(W ) is obtained from the data of a semistable curve X,
of three semistable morphisms πi : X −→ Xi, and of three correspondences
εi ∈ Corr(Xi), by setting

Δ := (ε1, ε2, ε3)∗(π1, π2, π3)∗(X).
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(c) The correspondences εi annihilate the H
0 and H2 terms in the cohomology

of Xi. By the same reasoning as in the proof of Proposition 1.4, this implies
that Δ is null-homologous, i.e., that it belongs to CH2(W )0.

Let

(110) AJp : CH2(W )0 −→ (Fil2H3
dR(W ))∨

denote the p-adic syntomic Abel-Jacobi map, as discussed, e.g., in [Be00, Introduc-
tion and Section 5], [BLZ, Section 3], and [Ne1, (3.7)]. It follows from [NeNi, The-
orem B] that (110) is canonically identified with the composition of the étale Abel-
Jacobi map with Bloch-Kato’s logarithm, as in (82).

Even under assumptions (a), (b), and (c), we fall short of giving a formula for
the full image AJp(Δ) but only for its values on cohomology classes of the form

η1 ⊗ ω2 ⊗ ω3 ∈ H1
dR(X1)⊗ Ω1(X2)⊗ Ω1(X3) ⊂ Fil2(H3

dR(W )),

assuming that

(d) η1, ω2, and ω3 belong to the pure subspaces of H1
dR(X1), H

1
dR(X2), and

H1
dR(X3), respectively.

Our recipe for describing AJp(Δ)(η1 ⊗ ω2 ⊗ ω3) rests on the following lemma.

Lemma 3.3. There exists a polynomial P ∈ Q[X] satisfying

(1) P (Φ23) annihilates the class of ω2 ⊗ ω3 in H2
dR(X2 ×X3);

(2) P (ΦX) acts invertibly on kerN ⊂ H1
dR(X).

Proof. By Proposition 3.2, there is a polynomial P satisfying the first condition, all
of whose roots have complex absolute value p. But any such P automatically satis-
fies the second condition, since Frobenius acts on the kernel of N with eigenvalues
of complex absolute value either 1 or

√
p. �

Fix a polynomial P as in the above lemma. Since P (Φ23) annihilates the class
of ω2 ⊗ ω3 in H2

dR(X2 ×X3), there is a system of rigid 1-forms

(111) ρ := ρv,wP (ω2, ω3) ∈ Ω1(Wv ×Ww), v ∈ V(G2), w ∈ V(G3)

satisfying

dρv,wP (ω2, ω3) = P (Φ23)
(
(ω2 ∧ ω3)|Wv×Ww

)
.

The system ρv,wP (ω2, ω3) of rigid 1-forms is well-defined, up to a system of closed
1-forms on each product of basic wide opens in X2 × X3. One next defines a
system {ξ̃vP (ω2, ω3)}v∈V(GX) of rigid 1-forms on each basic wide open of X by pulling
back the differentials ρv,wP (ω2, ω3) via the maps (π2, π3) : X −→ X2 × X3 and
(ε2, ε3)X2 ×X3 −→ X2 ×X3,

{ξ̃vP (ω2, ω3)}v∈V(GX) = (π2, π3)
∗(ε2, ε3)

∗ ({ρv,wP (ω2, ω3)}) .

Condition (c) combined with the Künneth formula for H1
rig(X2 ×X3) implies that

for each v ∈ V(GX), the class of the differential ξ̃vP (ω2, ω3) in H1
rig(Wv) does not

depend on the choice of system ρv,wP (ω2, ω3) satisfying (111). Hence the class of

ξ̃P (ω2, ω3) ∈ ⊕v∈V(GX )H
1
rig(Wv) is independent of this choice. Let

ξP (ω2, ω3) := rι(ξ̃P (ω2, ω3)) ∈ H1
dR(X)pure,

where rι is the Frobenius-equivariant section introduced in (108).
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Applying the second condition in Lemma 3.3 shows that there is a unique class

ξ(ω2, ω3) ∈ H1
dR(X)pure satisfying P (ΦC)ξ(ω2, ω3) = ξP (ω2, ω3).

Theorem 3.4. For all Δ ∈ CH2(W )0 and classes η1, ω2, and ω3 satisfying condi-
tions (a)–(d),

AJp(Δ)(η1 ⊗ ω2 ⊗ ω3) = 〈π∗
1ε

∗
1(η1), ξ(ω2, ω3)〉X .

Proof. The proof of this formula closely follows the one given in [DR13, Section
3.3] for the Gross-Kudla-Schoen diagonal cycle on the cube of a modular curve
with good reduction at p, which exploits Besser’s finite polynomial cohomology
for smooth varieties over Zp introduced in [Be00]. This theory has been extended
recently to the setting of semistable varieties by Besser, Loeffler, and Zerbes in
[BLZ], building crucially on prior work of Nekovar and Niziol [NeNi]. Namely,
[BLZ, Proposition 3.3] asserts in this case that

AJp(Δ)(η1 ⊗ ω2 ⊗ ω3) = trX
(
(π1, π2, π3)

∗(ε1, ε2, ε3)
∗(η̃1 ⊗ ω̃2 ⊗ ω̃3)

)
, where

• η̃1 ∈ H1
fp(X1, 0), ω̃2 ∈ H1

fp(X2, 1), ω̃3 ∈ H1
fp(X3, 1) are, respectively, lifts of

η1, ω2, ω3 to P -syntomic cohomology in the sense of [BLZ, Section 2.2]. In
order to lighten the notations, the polynomials implicit in the construction
shall be omitted.

• (π1, π2, π3)
∗(ε1, ε2, ε3)

∗(η̃1 ⊗ ω̃2 ⊗ ω̃3) ∈ H3
fp(X , 2) stands for the pullback

to X of the tensor product of these classes in syntomic cohomology.
• trX : H3

fp(X , 2)
∼−→ F is the trace isomorphism of [BLZ, Definition 3.1].

Let 〈 , 〉fp : H1
fp(X , 0) × H2

fp(X , 2) −→ F denote the cup-product described in

[BLZ, Section 1.3, Section 2.4]. By the compatibility between the trace and cup-
product in syntomic cohomology afforded by [BLZ, Theorem 2.20], the above quan-
tity may be recast as

trX
(
(π1, π2, π3)

∗(ε1, ε2, ε3)
∗(η̃1⊗ω̃2⊗ω̃3)

)
= 〈π∗

1ε
∗
1(η̃1), (π2, π3)

∗(ε2, ε3)
∗(ω̃2⊗ω̃3)〉fp.

According to the explicit description of finite polynomial cohomology provided in
[BLZ, Definition 2.4], the class ω̃2⊗ω̃3 in H2

fp(X 2, 2) may be represented by the pair

(ρ, ω2⊗ω3) where ρ is as in (111), and hence the class (π2, π3)
∗(ε2, ε3)

∗(ω̃2⊗ ω̃3) in
H2

fp(X , 2) is represented by the image of ξ = ξ(ω2, ω3) under the natural morphism

i : H1
dR(X) −→ H2

fp(X , 2), i(ξ) = P (Φ)(ξ). It follows that

〈π∗
1ε

∗
1(η̃1), (π2, π3)

∗(ε2, ε3)
∗(ω̃2 ⊗ ω̃3)〉fp = 〈π∗

1ε
∗
1(η̃1), i(ξ(ω2, ω3))〉fp

= 〈π∗
1ε

∗
1(η1), ξ(ω2, ω3)〉X ,

where the second equality follows as in [Be00, (14)]. �

4. Bloch-Kato logarithms of weight two specializations

As was explained at the end of Section 2.4, the aim of this section is to show
that the one-variable p-adic L-functions

(112) Lp
fα(f̆∗, ğh̆) := Lp

fα(f̆
∗
, ğ, h̆)|Ωfgh

, Lp
gα(f̆ , ğ∗h̆) := Lp

gα(f̆ , ğ∗, h̆)|Ωfgh

arising as the restriction to Ωfgh of the Garrett-Hida p-adic L-functions discussed

in the Introduction can be recovered as the image of the Λ-adic classes κf
p(f̆

∗, ğh̆)

and κg
p(f̆ , ğ

∗h̆) and under Perrin-Riou’s Λ-adic logarithm map. We shall do so
by comparing their values at classical points (y, z) of weight two. Corollary 2.11
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asserts that the Bloch-Kato logarithm of the specialization of these classes at such
points may be computed as the value of the functional AJp(Δ

◦
s,s) at the classes

ηf̆∗ ⊗ ωğy ⊗ ωh̆z
and ωf̆ ⊗ ηğ∗

y
⊗ ωh̆z

, respectively.

Armed with Theorem 3.4, we can now proceed with this program, starting with
an analysis of the above forms in the rigid analytic cohomology of the modular
curves X0(Np) and Xs.

4.1. The rigid geometry of modular curves. Let X1(Nps) be the proper, flat,
regular model of Xs over Zp[ζs] considered in [KM85, Section 12]. Its special fiber is
the union of a finite number of reduced Igusa curves Igj over Fp, meeting (not always
transversally) at their supersingular points. Among these irreducible components
there are two which are isomorphic to the Igusa curve Ig(Nps) representing the
moduli problem (Γ1(N), Ig(ps)) over Fp specified in [KM85, Section 12]. These
are called the good components and are labeled Ig∞ and Ig0. More precisely, Ig∞
classifies ordinary elliptic curves with Γ1(N)-level structure and a chosen section of
order ps in its canonical subgroup of order ps.

Let F/Qp(ζs) be a finite extension over which Xs acquires semistable reduction,
with valuation ring OF and residue field kF . Let π : Xs → X1(Nps) × OF be a
semistable model of Xs over OF , obtained by applying sufficiently many blowups
to the base change of X1(Nps) to OF . The map π is birational and induces an
isomorphism between the generic fibers and also between two of the components
of the closed fiber of Xs with Ig∞ × kF and Ig0 × kF , respectively. By an abuse of
notation, continue to denote Ig∞ and Ig0 the two components of the closed fiber of
Xs corresponding to the two latter. Let

red : Xs(F ) −→ X̃s(kF )

denote the “mod p” reduction map. The inverse images of the irreducible com-
ponents of the special fiber of Xs give a finite collection of wide open subsets of
Xs(F ) which form an admissible cover of this rigid analytic space, as in the discus-
sion in Section 3.1. Let WO(Xs) denote the collection of wide open spaces in this
admissible cover.

Denote by W∞(ps) and W0(p
s) the wide open spaces in WO(Xs) arising as the

inverse image of Ig∞ and Ig0, respectively, under the reduction map. The inverse
image of the smooth locus of Ig∞, denoted A∞(ps), is the underlying affinoid of
W∞(ps), and an analogous definition is made for A0(p

s).
The F -valued points of the rigid analytic space A∞(ps) are in bijection with

triples (A, iN , ip) where A is an ordinary (generalized) elliptic curve over OF , iN :
μN −→ A[N ] is an injective map of group schemes over OF , and ip : μps −→ A{ps}
is an isomorphism between μps and the canonical subgroup A{ps} of A of order ps.
As explained in [Co97] and [BrEm10, Lemme 4.4.1], the F -vector spaces

H1
rig(W∞(ps)) =

Ω1
rig(W∞(ps))

dOW∞(ps)
, H1

rig(W0(p
s)) =

Ω1
rig(W0(p

s))

dOW0(ps)

are equipped with a natural action of Hecke operators T� for � � Np. As already
explained in (105), they are also equipped with natural F -linear Frobenius endo-
morphisms, which are defined by choosing characteristic zero lifts Φ∞ and Φ0 of
the Frobenius endomorphism in characteristic p to a system of wide open neighbor-
hoods of the affinoids A∞(ps) and A0(p

s) in W∞(ps) and W0(p
s), respectively. In



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

648 HENRI DARMON AND VICTOR ROTGER

the setting at hand, a natural choice of Φ∞ is given by the Deligne-Tate mapping
defined on triples (A, iN , ip) as above by the rule

Φ∞(A, iN , ip) = (A/A{p}, π{p} ◦ iN , ĩp),

where

(1) A{p} is the canonical subgroup of A of order p;
(2) π{p} is the natural isogeny A −→ A/A{p};
(3) ĩp : μps −→ A sends ζs to π{p}(Ps+1) where Ps+1 ∈ A{ps+1} satisfies

pPs+1 = ip(ζs).

Let (Gm/qZ, iN , ip) denote the Tate curve, where iN and ip are induced by the
natural embeddings μN , μps ↪→ Gm. Then Φ∞ acts on it by the rule
Φ∞(Gm/qZ, iN , ip) = (Gm/qpZ, ipN , ip), and therefore

(113) Φ∞ = p〈p; 1〉V,

where V is the operator on p-adic modular forms whose action is given by
V (

∑∞
n=1 anq

n) =
∑

n anq
np on q-expansions. To define Φ0, recall the Atkin-Lehner

automorphism ws attached to the choice of primitive psth root of unity ζs. It in-
terchanges the wide opens W∞(ps) and W0(p

s), and one defines

(114) Φ0 := w−1
s Φ∞ws = 〈p−1; 1〉wsΦ∞ws.

For each W ∈ WO(Xs), recall that

resW : H1
dR(X1(Nps)) −→ H1

rig(W)

is the map induced by restriction to W , and write res0 and res∞ for resW0(ps) and
resW∞(ps).

Let H1
dR(Xs/F )prim denote the subspace of the de Rham cohomology of Xs

associated to the primitive subspace S2(Nps)primF in the sense of [MW84, Section 3].

Theorem 4.1 ([Co97], [BrEm10]). The restriction maps res∞ and res0 induce an
isomorphism

H1
dR(Xs/F )

prim � H1
rig(W∞(ps))pure ⊕H1

rig(W0(p
s))pure,

where H1
rig(W∞(ps))pure denotes the subspace of the de Rham cohomology which is

pure of weight one, i.e., the space generated by classes of rigid differentials with
vanishing annular residues. The restriction morphism is equivariant with respect to

• the Hecke operators T� for � � Np acting on both sides;
• the Frobenius endomorphism Φ acting on H1

dR(Xs/F );

• the Frobenius endomorphism (Φ∞,Φ0) acting on H1
rig(W∞(ps)) ⊕

H1
rig(W0(p

s)).

A similar but simpler analysis also holds for the modular curve X0(Np), since
it admits a proper regular model over Zp, whose special fiber is the union of two
irreducible components, each isomorphic to the special fiber of the smooth integral
model of X0(N). Write {W∞,W0} for the standard admissible covering of X0(Np)
by wide open neighborhoods of the Hasse domain of X0(N). As above, the group
H1

dR(X0(Np)) is again endowed with the action of a Frobenius map Φ and the
Hecke operator Up, which mutually commute (by functoriality of log-crystalline
cohomology with respect to correspondences).
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The ordinary unit root subspace

H1
dR(X0(Np)/Qp

)ord,ur ⊂ eordH
1
dR(X0(Np)/Qp

)

is defined to be the subspace spanned by the eigenvectors of Φ whose eigenvalue is
a p-adic unit.

Lemma 4.2. The map H1
dR(X0(Np)/F )

ord,ur −→ H1
rig(W∞) induced by restriction

is the zero map, and for any eigenform φ of weight two and level dividing N the
map

(115) H1
dR(X0(Np)/F )

ord,ur[φ] −→ H1
rig(W0)

ur[f ] � H1
dR(X0(N)/F )

ur[φ]

is an isomorphism.

Proof. This follows from noting that the actions of Φ = Φ∞ and U on H1
rig(W∞)

are related by the rule Φ∞ = 〈p〉pV = 〈p〉pU−1. �

4.2. Test vectors and their associated de Rham cohomology classes. As
was explained in the Introduction and recalled above, the Λ-adic cohomology classes
and the Garrett-Hida p-adic L-functions considered in this work depend on a choice

of test vectors f̆ , ğ, h̆ and dual test vectors f̆∗, ğ∗, h̆
∗
that were fixed in (92)

and (93). We focus first on the former and analyze the regular differential forms

associated to f̆ and the weight two specializations of ğ and h̆.

Assume that f̆ ∈ S2(Np)[f ] arises as the ordinary p-stabilization of some test
vector in S2(N)[f ] and recall that ωf̆ ∈ Ω1(X0(Np)) denotes the regular differential

form associated to f̆ . Recall also the maps Xs

�s−1
1 �� X1

j1 �� X0(Np) that arise

in Equation (100) describing the cycle Δ◦
s,s, and define

(116) ωf̆ ,s := (�s−1
1 )∗ ◦ j∗1 (ωf̆ )

to be the pullback of ωf̆ to Xs via these projections.

Let (y, z) ∈ Ωg ×Ω Ωh be a classical point of weight two and character ε �= ω of
primitive conductor ps. In order to lighten notations, set g = gy, h = hz and

ğ = ğy ∈ S2(Nps, χεω−1), h̆ = h̆z ∈ S2(Nps, χ−1εω−1).

These notations are in force only in Section 4, and g and h will revert to denoting
modular forms of weight one in subsequent sections, as was done in the Introduction.
Let hι ∈ S2(Nhp

s, χ−1ωε−1) be the newform whose q-expansion coefficients are
determined by

am(hι) =

{
ωε−1(m) · am(h) if p � m;
χ−1(p)ap(h)

r if m = pr.

If h̆ =
∑

d|N/Nh
λd · h(qd), set also

h̆ι :=
∑

d|N/Nh

λdh
ι(qd) ∈ S2(Nps, χ−1ωε−1),

so that for all n with p � n, the fourier coefficient an(h̆
ι) is given by

an(h̆
ι) := (ωε−1)(n) · an(h̆).

For any Dirichlet character α, let g(α) ∈ Q̄p denote the Gauss sum attached to
α, on which GQp

acts through this character.
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Proposition 4.3. The identity ws(h̆) = g(ω−1ε)α−s
h h̆ι holds in S2(Nhp

s, χ−1ωε−1).

Proof. This follows from [AL78, Theorem 2.1] (with k = 2 and Q = ps), taking
into account that ws commutes with the level-raising operators at the divisors of
N/Nh, which are prime to p. �

For any regular differential form ω ∈ Ω1(Xs/F ), let ω∞ and ω0 denote its restric-
tions to W∞(ps) and W0(p

s), respectively, and write [ω∞], [ω0] for their classes in
cohomology.

Proposition 4.4. For ω = ωf̆ ,s, ωğ, and ωh̆,

(117) Φ∞[ω∞] = β · [ω∞], Φ0[ω0] = α · [ω0],

where (α, β) = (αf , βf ), (ap(g), χ(p)ap(g)), and (ap(h), χ
−1(p)ap(h)), respectively.

Proof. Let us prove the claim for ω = ωğ, as the other cases follow similarly.
Together with V , let U = Up be the usual operator on p-adic modular forms defined
on q-expansions as in (29). A direct calculation shows that

U(ğ) = ap(g)ğ, UV = V U = 1 on H1
rig(W∞(ps)),

and hence V ([ωğ,∞]) = ap(g)
−1 · [ωğ,∞]. The first equality in (117) now follows from

the fact that the canonical lift Φ∞ of Frobenius agrees with p〈p; 1〉V , as stated in
(113), and that ap(g) is a Weil number of weight one, i.e., a complex number of
absolute value

√
p. To study the action of Φ0 on ωğ,0, note that

Φ0(ωğ,0) = w−1
s Φ∞ws(ωğ,0) = w−1

s βgιwsωğ,0,

where the first equality follows from (114) and the second from Proposition 4.3.
The second equality in (117) now follows from the fact that βgι = ap(g) = αg. �

If φ(q) is any overconvergent p-adic modular form, its p-depletion is defined to
be the overconvergent modular form whose q-expansion is given by

φ[p](q) := (1− V U)φ(q) =
∑
p�n

an(φ)q
n,

and ω
[p]
φ denotes the associated rigid differential on a wide open neighborhood of

A∞(ps) in W∞(ps).

Corollary 4.5.

(1) The class of the rigid differential ω
[p]

f̆ ,∞ = (1 − β−1
f Φ∞)(ωf̆ ,∞) is trivial in

H1
rig(W∞), i.e., ω

[p]

f̆ ,∞ = dF̆ for some F̆ ∈ OW∞ . The q-expansion of F̆ is

F̆ (q) =
∑
p�n

an(f̆)

n
qn.

(2) The class of the rigid differential ω
[p]
ğ,∞ = (1 − β−1

g Φ∞)(ωğ,∞) is trivial in

H1
rig(W∞(ps)), i.e., ω

[p]
ğ,∞ = dĞ for some Ğ∞ ∈ OW∞(ps). The q-expansion

of G is given by

Ğ(q) =
∑
p�n

an(ğ)

n
qn.
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(3) The class of the rigid differential ω
[p]

h̆,0
= (1 − α−1

h Φ0)(ωh̆,0) is trivial in

H1
rig(W0(p

s)), i.e., ω
[p]

h̆,0
= dH̆◦ for some H̆◦ ∈ OW0(ps). The q-expansion

of wsH̆
◦ is given by

(wsH̆
◦)(q) = g(ω−1ε)α−s

h Hι(q), Hι(q) =
∑
p�n

an(h̆
ι)

n
qn, an(h̆

ι) = (ωε−1)(n)an(h̆).

Proof. The triviality statements follow from Proposition 4.4, and the q-expansion
of the primitives in (1) and (2) are obtained by a direct calculation. A similar
reasoning, using Proposition 4.3, implies (3). �

We turn now to analyze the dual test vectors and their associated de Rham

cohomology classes. Given a dual test vector f̆∗ ∈ Sord
2 (Γ0(Np))∨[f ], recall that

ηf̆∗ ∈ H1
dR(X0(Np))ord,ur[f ] denotes the unique class satisfying

(118) Φ(ηf̆∗) = αf ·ηf̆∗ , and 〈ηf̆∗ , w1ω〉X0(Np) = f̆∗(ω) ∀ω ∈ Sord
2 (Γ0(Np)).

As in Equation (116), define

(119) ηf̆∗,s := (�s−1
1 )∗ ◦ j∗1 (ηf̆∗).

Likewise, set

ğ∗ = ğ∗y ∈ S2(Nps, χ−1εω−1)∨, h̆∗ = h̆∗
z ∈ S2(Nps, χεω−1)∨,

and let ηğ∗ and ηh̆∗ ∈ H1
dR(Xs/F ) be the de Rham cohomology classes associated

to them as in (80). Note that

(120) Φ(η) = α · η and Up(η) = α · η
for η = ηf̆∗,s, ηğ∗ , and ηh̆∗ , where α = αf , αg, and αh, respectively.

Lemma 4.6. The classes ηğ∗ and ηh̆∗ are supported on W0(p
s).

Proof. Arguing as in Lemma 4.2 and taking (120) into account, it follows that the
restriction of ηğ∗ and ηh̆∗ to W∞(ps) vanish, and hence they are supported on
W0(p

s) by Theorem 4.1. �

Remark 4.7. Lemma 4.6 is consistent with the fact that the value of 〈ηğ∗ , wsω〉s
depends only on the restriction of the ordinary class ω to W∞(ps), i.e., on the
overconvergent modular form attached to ω.

4.3. Twisted diagonal cycles under the syntomic Abel-Jacobi map. We
are now in a position to evaluate the image of the twisted diagonal cycles under
the syntomic Abel-Jacobi map.

4.3.1. Evaluation of AJp(Δ
◦
s,s) at ηf̆∗ ⊗ ωğ ⊗ ωh̆.

Lemma 4.8. The data (Δ, η1, ω2, ω3) = (Δ◦
s,s, ηf̆∗ , ωğ, ωh̆) satisfies conditions

(a)–(d) of Section 3.2.

Proof. Condition (a) is clear, sinceWs,s is a triple product of curves with semistable
reduction over F . The cycle Δ◦

s,s is described as in condition (b) of Section 3.2 by
setting

X = Xs, (π1, π2, π3) = (j1 ◦�s−1
1 , ws, Id), (ε1, ε2, ε3) = (ε, εs, εs).
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Condition (c) is built into the assumptions, while Condition (d) follows from the
fact that the form ηf̆∗ belongs to the f -isotypic subspace attached to an eigenform

of prime-to-p level, and ğ and h̆ are primitive at p. �

Let ξ(ωğ, ωh̆) ∈ H1
dR(Xs/F ) be the cohomology class attached to the data

(Δ◦
s,s, ωğ, ωh̆) following the recipe of Section 3.2. Then Theorem 3.4 applies and

asserts that

(121) AJp(Δ
◦
s,s)(ηf̆∗ ⊗ ωğ ⊗ ωh̆) = 〈ηf̆∗,s, ξ(ωğ, ωh̆)〉s.

Lemma 4.9. The class ξ(ωğ, ωh̆) arises as the pullback of a class in
H1

dR(X0(Nps)/F ) via js.

Proof. Let

ρv,wP (ωğ, ωh̆) ∈ Ω1(Wv ×Ww), v, w ∈ V(G(X̃s)),

be a system of rigid 1-forms satisfying (111). The operators (〈a; b〉, 〈a; b−1〉) in Ds

leave the system {ρv,wP } invariant up to systems of closed 1-forms in Ω1(Wv×Ww);
this follows because Ds fixes the class ωğ ⊗ωh̆ ∈ H2

dR(Xs×Xs). It follows that the
class

(122) ξP (ωğ, ωh̆) ∈ H1
dR(Xs/F )

introduced in Section 3.2 is well-defined and fixed by the diamond operators. Since
these operators commute with Frobenius, the same holds for ξ(ωğ, ωh̆), and the
lemma follows. �

The degeneracy maps π1, π2 : X

s −→ Xs that were introduced in (32) induce

similar maps fromX0(Nps+1) −→ X0(Nps) by passing to the quotient by the action
of the group (Z/Nps)× of diamond operators of level Nps on both sides. Let us
continue to denote these maps as π1 and π2, by a slight abuse of notation. The class
ηf̆∗,s likewise arises as the pullback via js of a class on H1

dR(X0(Nps)/F ), which

shall be denoted by the same symbol. (Any ambiguity arising from this double use
of notation shall be avoided by consistently specifying the modular curve on which
the Poincaré pairing is being computed. Furthermore, the object ηf̆∗,s will play

only a provisional role, disappearing after the proof of Lemma 4.12.) With these
new notations,

(123) ηf̆∗,s = (πs−1
1 )∗(ηf̆∗),

as follows directly from (119). Since ds = deg(js), the functoriality of Poincaré
duality relative to pullbacks now allows us to rewrite (121) in terms of the Poincaré
pairing on X0(Nps), namely, as

(124) AJp(Δ
◦
s,s)(ηf̆∗ ⊗ ωğ ⊗ ωh̆) = ds · 〈ηf̆∗,s, ξ(ωğ, ωh̆)〉X0(Nps).

Recall the ordinary projector eord of (30) that was already exploited in the
discussion of Hida theory in Section 1.5 as well as its anti-ordinary counterpart
e∗ord. Both will now be considered as endomorphisms of H1

dR(X0(Nps)/F ). Just
like Up and U∗

p , these endomorphisms are adjoint to each other relative to Poincaré
duality.

Lemma 4.10. For all s ≥ 1,

AJp(Δ
◦
s,s)(ηf̆∗ ⊗ ωğ ⊗ ωh̆) = ds〈ηf̆∗,s, e

∗
ordξ(ωğ, ωh̆)〉X0(Nps).
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Proof. This follows from (124) in light of the fact that the class ηf̆∗,s is ordinary

and hence equal to its image under the ordinary projector, so that

〈ηf̆∗,s, ξ(ωğ, ωh̆)〉X0(Nps)=〈eordηf̆∗,s, ξ(ωğ, ωh̆)〉X0(Nps)=〈ηf̆∗,s, e
∗
ordξ(ωğ, ωh̆)〉X0(Nps).

�

Lemma 4.11. The pullback (πs−1
1 )∗ induces an isomorphism

(πs−1
1 )∗ : eordH

1
dR(X0(Np)) −→ eordH

1
dR(X0(Nps)).

Proof. The second displayed equation in the proof of Theorem 4.1 of [Em99] (after
replacing s by 1 and r by s) asserts that the homomorphism

eord((Γ1(Np) ∩ Γ0(p
s))ab ⊗ Zp) −→ eord(Γ1(Np)ab ⊗ Zp)

induced from the natural inclusion Γ1(Np) ∩ Γ0(p
s) ⊂ Γ1(Np) is an isomorphism.

The abelianization of a congruence subgroup (tensored with Zp) is naturally iden-
tified with the homology with Zp-coefficients of the associated open modular curve.
Taking a further quotient by the subgroup generated by the parabolic elements and
passing to Zp-duals, one concludes that the natural map

eordH
1(X1(Np),Zp) −→ eordH

1(X1(Np)×X0(Np) X0(Nps),Zp)

is an isomorphism. This map agrees with (πs−1
1 )∗ (viewed as a map on singular

cohomology). Hence Lemma 4.11 follows after taking invariants under the action
of the group (Z/NpZ)× of diamond operators acting on both sides, and invoking
the comparison isomorphism between singular and de Rham cohomology. �

Applying the ordinary projector to ξι(ωğ, ωh̆) := wsξ(ωğ, ωh̆), it follows from
Lemma 4.11 that

(125) eordξ
ι(ωğ, ωh̆) = (πs−1

1 )∗(ξι(ωğ, ωh̆)1),

for a suitable class ξι(ωğ, ωh̆)1 ∈ eordH
1
dR(X0(Np)/F ). Let ξι(ωğ, ωh̆)W∞ denote

the restriction of the class ξι(ωğ, ωh̆)1 to the Hasse domain W∞ viewed as a p-adic
modular form of weight two.

Lemma 4.12. For all s ≥ 1,

AJp(Δ
◦
s,s)(ηf̆∗ ⊗ ωğ ⊗ ωh̆) = dsα

s−1
f f̆∗(ξι(ωğ, ωh̆)W∞).

Proof. Since ws = w−1
s on X0(Nps), one has e∗ord = wseordws. Lemma 4.10 implies

that

AJp(Δ
◦
s,s)(ηf̆∗ ⊗ ωğ ⊗ ωh̆) = ds〈ηf̆∗,s, wseordξ

ι(ωğ, ωh̆)〉X0(Nps).

It follows from (125) that

AJp(Δ
◦
s,s)(ηf̆∗ ⊗ ωğ ⊗ ωh̆) = ds〈ηf̆∗,s, ws(π

s−1
1 )∗ξι(ωğ, ωh̆)1〉X0(Nps)

= ds〈πs−1
2∗ ηf̆∗,s, w

∗
1ξ

ι(ωğ, ωh̆)1〉X0(Np),

where the facts that w∗
s(π

s−1
1 )∗ = (πs−1

2 )∗w∗
1 and that the adjoint of π∗

2 relative to
Poincaré duality is π2∗ have been used to derive the last equation. By (123) and
(33),

πs−1
2∗ ηf̆∗,s = πs−1

2∗ (πs−1
1 )∗ηf̆∗ = Us−1

p ηf̆∗ = αs−1
f ηf̆∗ ,
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and therefore

AJp(Δ
◦
s,s)(ηf̆∗ ⊗ ωğ ⊗ ωh̆) = dsα

s−1
f 〈ηf̆∗ , w

∗
1ξ

ι(ωğ, ωh̆)1〉X0(Np)

= dsα
s−1
f f̆∗(ξι(ωğ, ωh̆)W∞),

where the last equality follows from Equation (118) defining ηf̆∗ . �

Since the pullback π∗
1 induces the identity on q-expansions, Lemma 4.12 implies

that

(126) AJp(Δ
◦
s,s)(ηf̆∗ ⊗ ωğ ⊗ ωh̆) = dsα

s−1
f f̆∗(eordξ

ι(ωğ, ωh̆)),

in light of (125). We now turn to the calculation of the ordinary p-adic modular
form eordξ

ι(ωğ, ωh̆). Let P ∈ Cp[t] be a polynomial satisfying the conditions of
Lemma 3.3, i.e., such that

(i) P (Φ× Φ) annihilates the class of ωğ,∞ ⊗ ωh̆,0 in H2
rig(W∞(ps)×W0(p

s)).

(ii) None of the roots of P (t) are of complex absolute value
√
p.

In light of Proposition 4.4, one may take

P (x) := 2(1− β−1
g α−1

h x) = 2(1− p−1χ−1(p)αgα
−1
h x).

The polynomial identity

P (xy) = (1− β−1
g x)(1 + α−1

h y) + (1 + β−1
g x)(1− α−1

h y)

combined with Corollary 4.5 implies that

P (Φ2 × Φ3)(ωğ,∞ ⊗ ωh̆,0) = (dĞ)⊗ (1 + α−1
h Φ0)ωh̆,0 + (1 + β−1

g Φ∞)ωğ,∞ ⊗ (dH̆◦).

It follows that the rigid analytic differential 1-form

�P (ωğ, ωh̆) ∈ Ω1(W∞(ps)×W0(p
s))

satisfying
d�P (ωğ, ωh̆) = P (Φ2 × Φ3)(ωğ,∞ ⊗ ωh̆,0)

can be chosen to be

(127) �P (ωğ, ωh̆) = Ğ⊗ (1 + α−1
h Φ0)ωh̆,0 − (1 + β−1

g Φ∞)ωğ,∞ ⊗ H̆◦,

where Ğ ∈ OW∞(ps) and H̆◦ ∈ OW0(ps) are the primitives described in Corollary
4.5.

After setting ξιP (ωğ, ωh̆) := wsξP (ωğ, ωh̆) and observing that the correspondences

εs fix the differentials ωğ, ωh̆ as well as their primitives Ğ and H̆◦, it follows that

ξP (ωğ, ωh̆) =
(
(w−1

s Ğ)× (1 + χ−1(p)α−1
h Φ∞)ωh̆,∞

(128)

−(1 + β−1
g Φ∞)(w−1

s ωğ,∞)× H̆◦
)
,

ξιP (ωğ, ωh̆) =
(
Ğ× (1 + χ−1(p)α−1

h Φ∞)(wsωh̆,∞)− (1 + β−1
g Φ∞)ωğ,∞ × (wsH̆

◦)
)
.

(129)

By Corollary 4.5, the q-expansion of this p-adic modular form is given by

ξιP (ωğ, ωh̆)(q) = g(ω−1ε)α−s
h(130)

×
(
Ğ× (1 + χ−1(p)α−1

h Φ∞)h̆ι − (1 + β−1
g Φ∞)ğ∞ × H̆ι

)
(q)

dq

q
.
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This is a rigid differential on a wide open neighborhood of A∞(ps) in W∞(ps), and
hence corresponds to an overconvergent modular form of weight two on W∞(ps).

Since the nebentypus character of ğ and Ğ is χω−1ε, and that of h̆ι and H̆ι is
χ−1ωε−1, it follows that ξιP (ωğ, ωh̆) arises as a pullback under the projection js of
a rigid differential on W∞.

Proposition 4.13. The class of eord(ξ
ι
P (ωğ, ωh̆)) in H1

rig(W∞) is equal to the class
of the weight two p-adic modular form

−2g(ω−1ε)× α−s
h × ğH̆ι ∈ Ω1(W∞).

Proof. If f1 and f2 are overconvergent modular forms, then f
[p]
1 × (V f2) lies in the

kernel of U and hence a fortiori in the kernel of eord. Since Φ∞ = 〈p〉pV , after
applying eord to (130) one obtains

eord(ξ
ι
P (ωğ, ωh̆)) = g(ω−1ε)× α−s

h × eord(Ğ× h̆ι
∞ − ğ∞ × H̆ι)

= g(ω−1ε)× α−s
h × eord(Ğ× h̆ι[p]

∞ − ğ[p]∞ × H̆ι).(131)

Applying eord to the identity d(ĞH̆ι) = Ğ × h̆
ι[p]
∞ + ğ

[p]
∞ × H̆ι, and using the fact

that the image of d on overconvergent forms is in the kernel of eord, it follows that

(132) eord(Ğ× h̆ι[p]
∞ ) = −eord(ğ

[p]
∞ × H̆ι),

and the result follows from (132) combined with (131). �

We can now state the main formula concerning the value of AJp(Δ
◦
s,s) at the

vector ηf̆∗ ⊗ ωğ ⊗ ωh̆.

Theorem 4.14. Setting Ef (f, g, h) := −2(1− χ−1(p)α−1
f αgα

−1
h )−1, one has

AJp(Δ
◦
s,s)(ηf̆∗ ⊗ ωğ ⊗ ωh̆) = Ef (f, g, h)× g(ω−1ε)× αs−1

f α−s
h × ds × f̆∗(ğH̆ι).

Proof. By combining (126) with Proposition 4.13,

AJp(Δ
◦
s,s)(ηf̆∗ ⊗ ωğ ⊗ ωh̆) = −2× g(ω−1ε)× αs−1

f α−s
h × ds × f̆∗(P (Φ∞)−1(ğH̆ι)).

But for all classes ξ ∈ H1
rig(W∞), f̆∗(Φξ) = pα−1

f f̆∗(ξ) = βf f̆
∗(ξ). More generally,

f̆∗(Q(Φ)ξ) = Q(βf )f̆
∗(ξ), for all rational functions Q with no pole at βf . The

result follows. �

4.3.2. Evaluation of AJp(Δ
◦
s,s) at ωf̆ ⊗ ηğ∗ ⊗ ωh̆. Thanks to Lemma 4.8, the data

(Δs,s, ωf̆ , ηğ∗ , ωh̆) satisfies conditions (a)–(d) of Section 3.2. The class w−1
s ηğ∗ is

anti-ordinary and supported on W∞(ps) by Lemma 4.6. Theorem 3.4 therefore
applies and asserts that
(133)

AJp(Δs,s)(ωf̆ ⊗ ηğ∗ ⊗ ωh̆) = 〈w−1
s ηğ∗ , ξ(ωf̆ , ωh̆)〉s = 〈ηğ∗ , wseord(ξ(ωf̆ , ωh̆))〉s,

where ξ(ωf̆ , ωh̆) ∈ H1
dR(Xs/F ) is the class associated to the triple (Δs,s, ωf̆ , ωh̆) as

in Section 3.2 and the second equality follows as in Lemma 4.10.
In order to compute the class ξ(ωf̆ , ωh̆) explicitly, consider the polynomial

P (x) := 2(1− β−1
f β−1

h x).
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It satisfies the conditions of Lemma 3.3, since the endomorphism P (Φ1 × Φ3) an-
nihilates the class of ωf̆ ,∞ ⊗ ωh̆,∞ in H2

rig(W∞ ×W∞(ps)) by Proposition 4.4 and

(120). The polynomial identity

P (xy) = (1− β−1
f x)(1 + β−1

h y) + (1 + β−1
f x)(1− β−1

h y)

combined with Corollary 4.5 implies that

P (Φ1×Φ3)(ωf̆ ,∞⊗ωh̆,∞) = ω
[p]

f̆ ,∞⊗ (1+β−1
h Φ∞)ωh̆,∞+(1+β−1

f Φ∞)ωf̆ ,∞⊗ω
[p]

h̆,∞.

It follows that the form �P (ωf̆ , ωh̆) ∈ Ω1(W∞ × W∞(ps)) satisfying (111) can be

chosen to be

(134) �P (ωf̆ , ωh̆) = F̆ ⊗ (1 + β−1
h Φ∞)ωh̆,∞ − (1 + β−1

f Φ∞)ωf̆ ,∞ ⊗ H̆,

where H̆ ∈ OW∞(ps) is the rigid analytic primitive of ω
[p]

h̆,∞ following the definitions

of Corollary 4.5 (with g and G replaced by h and H). By the analogous calculation
that led to (128), the pullback ξP (ωf̆ , ωh̆) of �P (ωf̆ , ωh̆) under the correspondence

(ε, εs)(j1 ◦�s−1
1 , Id) : X0(Np)×Xs −→ X0(Np)×Xs

arising in the definition of the cycle Δ◦
s,s is given by

(135) ξP (ωf̆ , ωh̆) = F̆ × (1 + χ(p)αhΦ∞)ωh̆,∞ − (1 + β−1
f Φ∞)ωf̆ ,s,∞ × H̆,

where the fact that �∗
1 and j∗1 induce the identity on q-expansions has been used

to show that F̆ pulls back to the same overconvergent modular form (viewed this
time as a rigid differential on OW∞(ps)). In this calculation, copious use has been

made of the fact that the correspondence ε was chosen so as to leave ωf̆ and F̆

invariant, and likewise that the correspondence εs fixes ωh̆ and H̆ .
Arguing exactly as in the proof of Proposition 4.13, it follows that

(136)

eordξP (ωf̆ , ωh̆)W∞ = 2F̆ ·ωh̆,∞ and hence eordξ(ωf̆ , ωh̆)W∞ = 2P (Φ∞)−1
(
F̆ ·ωh̆,∞

)
.

Theorem 4.15. Let

Eg(f, g, h) := 2(1− χ−1(p)β−1
f βgβ

−1
h )−1 = 2(1− χ(p)p−1αfα

−1
g αh)

−1.

Then

AJp(Δ
◦
s,s)(ωf̆ ⊗ ηğ∗ωh̆) = Eg(f, g, h)× ğ∗(F̆ × h̆).

Proof. Combining (133) and (136), and taking into account that the adjoint of w−1
s

with respect to 〈 , 〉s is ws, it follows that

AJp(Δ
◦
s,s)(ωf̆ ⊗ ηğ∗ωh̆) = 2〈ηğ∗ , wsP (Φ∞)−1

(
F̆ · ωh̆,∞

)
〉s

= Eg(f, g, h)〈ηğ∗ , ws

(
F̆ · ωh̆,∞

)
〉s.

The theorem is then a consequence of the definition of ηğ∗ . �
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4.4. Garrett-Hida p-adic L-functions. We now come to the main results of this
section, expressing the Bloch-Kato logarithms of the specialization of the classes

κf
p(f̆

∗, ğh̆) and κg
p(f̆ , ğ

∗h̆) at weight two points in terms of the values of the one-
variable Garrett-Hida p-adic L-functions introduced in (112).

Theorem 4.16. For all arithmetic points x = (y, z) ∈ Ωg ×Ω Ωh of weight (2, ε),

logp(κ
f
p(f̆

∗, ğy, h̆z)) = Ef (f, gy, hz)× g(ω−1ε)× αs−1
f α−s

gy α
−s
hz

× Lp
fα(f̆∗, ğh̆)(y, z).

Proof. Combining Corollary 2.11 with Theorem 4.14 leads to the equality
(137)

logp(κ
fα
p (f̆∗, ğy, h̆z)) = Ef (f, gy, hz)× g(ω−1ε)× αs−1

f α−s
gy α

−s
hz

× f̆∗(ğy × d−1h̆ι
z).

The formal q-expansion with coefficients in Λh which is given by

H̆
ι
(q) :=

∑
p�n

〈n−1〉an(h̆)qn,

where 〈n〉 ∈ Λ denotes the group-like element associated to n ∈ Z×
p , satisfies the

following properties:

(i) For any point z ∈ Ωh of weight-character (2, ε) as above, H̆
ι

z = d−1h̆ι
z.

(ii) For any point z ∈ Ωh of weight k ≥ 2 with k ≡ 1 (mod p − 1) and

trivial nebentypus character at p, H̆
ι

z = d1−kh̆z. In particular, it is an
overconvergent modular form of weight 2− k.

If ğ is any Λ-adic modular form of level N and character χ, then the product

ğ × H̆
ι
therefore specializes, at all points (y, z) with common weights (k, ε), to

a p-adic overconvergent modular form of weight two on Γ0(Np). Since ordinary

overconvergent modular forms of weight two are classical, it follows that eord(ğ×H̆
ι
)

belongs to the space S2(Γ0(Np))⊗Λgh of classical modular forms tensored with the
ring Λgh = Λg ⊗Λ Λh. Property (ii) together with the interpolation property (6)

implies that f̆∗(ğH̆
ι
) = Lp

fα(f̆∗, ğh̆), since these two elements of Λfgh coincide on a

dense set of points in Ωg×ΩΩh. In particular, f̆∗(ğy×d−1h̆ι
z) = Lp

fα(f̆∗, ğh̆)(y, z),
and the theorem follows from (137). �
Theorem 4.17. For all arithmetic points x = (y, z) ∈ Ωg ×Ω Ωh of weight (2, ε),

logp(κ
g
p(f̆

∗, ğy, h̆z)) = Egy (f, gy, hz)× Lp
gα(f̆ , ğ∗h̆)(y, z).

Proof. Combining the second statement in Corollary 2.11 with Theorem 4.15,

(138) logp(κ
g
p(f̆ , ğ

∗
y , h̆z)) = d−1

s × Egy(f, gy, hz)× ğ∗y(F̆ × h̆z).

By definition,

ğ∗y(F̆ × h̆z) = 〈ηğ∗
y
, ws(F̆ × h̆z)〉s = ds × (y, z)(〈ηğ∗

s
, ws(F̆ × h̆s)〉Γs

)(139)

= ds × (y, z)(ğ∗(F̆ × h̆)s),

where the penultimate equality follows from Lemma 1.12, and the expression

ğ∗(F̆ × h̆)s ∈ Λfgh ⊗Λ Λs

occurring in the last term denotes the natural projection “to level s” of an element

of Λfgh. The interpolation property (6) of the p-adic L-function Lp
gα(f̆ , ğ∗, h̆) at

points of weight (2, �, �) and trivial nebentypus character shows that

ğ∗(F̆ × h̆) = Lp
gα(f̆ , ğ∗, h̆),
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and hence, since Lp
gα(f̆ , ğ∗h̆) is just the restriction of Lp

gα(f̆ , ğ∗, h̆) to the one-
dimensional rigid analytic space Ωfgh, that

(140) (y, z)(ğ∗(F̆ × h̆)s) = Lp
gα(f̆ , ğ∗h̆)(y, z).

The theorem follows by combining (138), (139), and (140). �

5. The explicit reciprocity law

5.1. Perrin-Riou’s Λ-adic regulator. Let Λ̃ be a finite flat extension of Λ, and
let Ψ : GQp

−→ Λ̃× be an unramified Λ̃-valued character. Let

(141) κg ∈ H1(Qp, Λ̃{Ψ}(1)), κf ∈ H1(Qp, Λ̃{Ψ}(εcyc))

be Λ̃-adic classes with values in the Λ̃[GQp
]-modules Λ̃{Ψ}(1) = Λ̃{Ψ}(εcyc) and

Λ̃{Ψ}(εcyc)), respectively. The notations used to designate these classes are mo-

tivated by (94), which asserts that κg = κg
p(f̆ , ğ

∗h̆) and κf = κf
p(f̆

∗, ğh̆) yield
particular instances of (141), after taking

Ψ = ψ−1
f ΨgΨ

−1
h × χ−1 and Ψ = ψfΨ

−1
g Ψ−1

h

for κg and κf , respectively.
In general, the Λ-adic classes κg and κf give rise to a collection of classical

specializations

κg
x ∈ H1(Qp,Kx{Ψx}(1)), κf

x ∈ H1(Qp,Kx{Ψx}(εx)) where εx = ε�−1
cyc ω

1−�ε,

as x ∈ Ω̃cl ranges over the set of classical points of Ω̃ = Spf(Λ̃) satisfying w(x) = ν�,ε
for some � ≥ 1 and a Dirichlet character ε of conductor ps, s ≥ 1.

One has canonical isomorphisms of Dieudonné modules for any x ∈ Ω̃cl,

DdR(Kx{Ψx}(1)) := DdR(Kx{Ψx})⊗DdR(Kx(1)) = DdR(Kx(1))
·t� Kx,

(142)

DdR(Kx{Ψx}(εx)) := DdR(Kx{Ψx})⊗DdR(Kx(εx)) = DdR(Kx(εx))
·t�−1

� Kx,

where (91) has been invoked in deriving the penultimate equalities, and the last
isomorphism is given by multiplication by the corresponding power of Fontaine’s
period t ∈ BdR, the p-adic analogue of 2πi on which GQp

acts as multiplication by
εcyc. (Note that the field Kx is assumed to contain ζs and, hence, that it contains
the periods of the finite order character ω1−�ε.)

Assume that for any x ∈ Ω̃cl the character Ψx is not trivial. Arguing as in [BDR2,
Lemma 3.8], it then follows that the Bloch-Kato logarithm and dual exponential
map induce isomorphisms

(143)

logp : H1(Qp,Kx{Ψx}(1)) −→ Kx for any x ∈ Ω̃cl,

logp : H1(Qp,Kx{Ψx}(εx)) −→ Kx for any x ∈ Ω̃cl such that � ≥ 2,

exp∗p : H1(Qp,Kx{Ψx}(εx)) −→ Kx for any x ∈ Ω̃cl such that � = 1.

Note that the logarithm maps quoted in (96) are particular cases of the above.
The two propositions below describe how the images of the classes κg

x and κf
x under

the maps in (143) can be interpolated p-adically. The p-adic interpolation of the
logarithms of the classes κg

x is treated first in Proposition 5.1 below, inspired by
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the elegant treatment of the p-adic interpolation of unramified periods given in
[LZ12]. The corresponding interpolation problem for the classes κf

x, which is taken
up in Proposition 5.2, lies considerably deeper and relies crucially on the “explicit
reciprocity law” of Perrin-Riou (as refined in [LZ12]).

Proposition 5.1. There exists an element L(κg) ∈ Λ̃ such that

L(κg)(x) = logp(κ
g
x)

for all x ∈ Ω̃cl.

Proof. Let

Gur = Gal (Qur
p /Qp) = Ẑ

be the Galois group of the maximal unramified extension of Qp, which is canonically

isomorphic to Ẑ as a profinite group via the canonical topological generator given
by the Frobenius automorphism σp ∈ Gur. Let Zp[[G

ur]] be the completed group
ring for Gur, and write Z◦

p[[G
ur]] for the same completed group ring viewed as a

rank one module over itself and equipped with the “tautological” unramified action
of GQp

in which the Frobenius automorphism acts as multiplication by the group-
like element σp. If R is a p-adic ring, and α ∈ R× is any invertible element of R,
the assignment σp �→ α extends uniquely to a continuous group homomorphism
Ψ : Gur −→ R× since R× is a profinite group, and this homomorphism extends by
Zp-linearity to a continuous ring homomorphism

Ψ : Zp[[G
ur]] −→ R.

Let R{Ψ} denote the free R-module of rank one equipped with an action of GQp

in which GQp
acts on R via the unramified character Ψ. With these notations, the

representation R(Ψ)(1) of GQp
can be written as

R(Ψ)(1) = Z◦
p[[G

ur]](1)⊗̂ΨR.

It follows, after invoking Shapiro’s Lemma for the second equality, that

H1(Qp, R(Ψ)(1)) = H1(Qp,Z
◦
p[[G

ur]](1))⊗̂ΨR = (lim←−
n

H1(Qpn ,Zp(1)))⊗̂ΨR,

where the inverse limit is taken with respect to the corestriction maps and Qpn

denotes the unramified extension of Qp of degree n for each n ≥ 1. Hilbert’s
theorem 90 implies that

H1(Qp, R(Ψ)(1)) = (lim←−
n

(Q×
pn ⊗ Zp))⊗̂ΨR = (lim←−

n

(O×
n ⊗ Zp))⊗̂ΨR,

where the inverse limit is taken with respect to the norm maps, and On denotes the
ring of integers of Qpn . The standard p-adic logarithm logp : O×

n → On therefore
gives rise to a natural homomorphism

(144) logp : H1(Qp, R(Ψ)(1)) −→ (lim←−
n

On)⊗̂ΨR,

where the inverse limit is taken relative to the trace maps. The elements of lim←−
n

On

can be interpreted as Ẑur
p -valued measures on Gur by associating to an element

a = {an} of this inverse limit the measure μa defined by

μa(σ ·Gal (Qur
p /Qpn)) := σan, ∀n ≥ 1, σ ∈ Gal (Qpn/Qp).
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The assignment

a⊗ 1 �→
∫
Gur

Ψ(t)dμa(t)

gives rise to a natural homomorphism

(145) (lim←−
n

On)⊗̂ΨR −→ (R⊗̂Ẑur
p )σp=α−1

= (R(Ψ)⊗̂Ẑur
p )GQp .

Combining (144) and (145) allows one to parlay the logarithm map into a canonical
homomorphism

(146) H1(Qp, R(Ψ)(1)) −→ (R(Ψ)⊗̂Ẑur
p )GQp .

Equivalently, after invoking (91), one obtains a canonical logarithm map

(147) L : H1(Qp, R{Ψ}(1)) −→ R.

The homomorphism L is functorial in the sense that for all Gur-equivariant homo-
morphisms ϕ : R{Ψ} −→ R′{Ψ′}, the diagram

H1(Qp, R{Ψ}(1)) L ��

ϕ

��

R

ϕ

��
H1(Qp, R

′{Ψ′}(1)) L �� R′

commutes. In particular, after setting R := Λ̃{Ψ} and letting ϕ : Λ̃{Ψ} −→
Kx{Ψx} be the homomorphism induced by the evaluation map at x, the element

L(κg) ∈ Λ̃ satisfies the interpolation property claimed in Proposition 5.1, in light
of the fact that the map L : H1(Qp,Kx{Ψx}(1)) −→ Kx agrees with the p-adic
logarithm map logp. �

In order to treat the analogous question for the Λ-adic cohomology class κf ,
define

(148) �x := (−1)1−� · Γ∗(2− �) · g(ε−1ω�−1) ·Ψx(Frobp)
−s · Ex · ps(2−�) ∈ Kx,

where

Γ∗(2− �) =
1

(�− 2)!
if � ≥ 2; Γ∗(2− �) = (1− �)! if � ≤ 1,

and

Ex = (1−p1−�Ψx(Frobp)
−1)(1−p�−2Ψx(Frobp))

−1 if ε = ω�−1; Ex = 1 otherwise.

Proposition 5.2. There exists an element L(κf ) ∈ Λ̃ such that for all x ∈ Ω̃cl

with w(x) = ν�,ε,

L(κf )(x) =

{
�x · logp(κf

x), if � ≥ 2,
�x · exp∗p(κf

x), if � = 1.

Proof. Let K∞ denote the abelian extension of Qp through which the Λ̃-adic char-
acter Ψεcyc factors, let G = Gal (K∞/Qp), and let ΛG := Zp[[G]] be the completed
group ring attached to G, equipped with its tautological action of GQp

. The de-
composition K∞ = Kur

∞Qp(μp∞), where Kur
∞ is the maximal unramified subfield of
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K∞, determines a canonical decomposition G = U ×Z×
p . The unramified character

Ψ : U −→ Λ̃× extends by linearity to a natural GQp
-equivariant projection

(149) θΨ : ΛG −→ Λ̃{Ψ}(εcyc).

The p-adic regulator of [LZ12], specialized to the case where V is the trivial one-
dimensional representation of GQp

, yields a “two-variable regulator map”

LG : H1(Qp,ΛG) −→ ΛG ⊗̂ Ẑur
p .

Let θ̃Ψ : H1(Qp,ΛG) −→ H1(Qp, Λ̃{Ψ}(εcyc)) denote the map induced by (149)

in cohomology. Note that θ̃Ψ is surjective because the cohomological dimension of
Qp is 1. Let κ̃f ∈ H1(Qp,ΛG) be any lift of the class κf under θ̃Ψ, and set

(150) L(κf ) := θΨ(LG(κ̃f )) ∈ Λ̃{Ψ} ⊗̂ Ẑur
p .

It is not hard to see (and follows, for instance, from Proposition 4.9 of [LZ12]) that

L(κf ) is fixed under the action of Frobp and hence L(κf ) belongs to D(Λ̃{Ψ}), which
is canonically isomorphic to Λ̃ by (91). Now [LZ12, Theorem 4.15], with j = 1− �
and Φn = Ψx(Frobp)

−s applied to the character ω = ε�−1
cyc in the notation of loc.

cit. implies that the element L(κf ) has the required interpolation property. �

5.2. The triple product p-adic L-functions via Λ-adic cohomology classes.
We are now in position to prove the following result, which lends support to Perrin-
Riou’s vision according to which p-adic L-functions ought to arise as the images of
p-adic families of distinguished global elements (referred to loosely as the Iwasawa
theoretic incarnations of “Euler systems”) under suitable p-adic regulator maps.
Realizing a p-adic L-function in this way has strong arithmetic consequences, some
of which shall be explored in the remainder of this article.

Theorem 5.3. The following equalities hold:

Lp
fα(f̆∗, ğh̆) = αf/2 · (1− χ−1(p)α−1

f ap(g)ap(h)
−1)× L(κf

p(f̆
∗, ğh̆)),

Lp
gα(f̆ , ğ∗h̆) = 1/2 · (1− χ(p)p−1αfa

−1
p (g)ap(h))× L(κg

p(f̆ , ğ
∗h̆)).

Proof. By specializing Propositions 5.1 and 5.2 to κg := κg
p(f̆ , ğ

∗h̆) and κf :=

κf
p(f̆

∗, ğh̆), respectively, one obtains from (95) that

logp(κ
f
p(f̆

∗, ğy, h̆z)) = αs
fap(gy)

−sap(hz)
−s × L(κf

p(f̆
∗, ğh̆))(y, z),

logp(κ
g
p(f̆ , ğ

∗
y , h̆z)) = L(κf

p(f̆
∗, ğh̆))(y, z),

at all classical points x = (y, z) ∈ Ωg ×Ω Ωh of weight-character (2, ε) with εω−1 of
conductor ps with s ≥ 1. Comparing this identity with Theorems 4.16 and 4.17,
respectively, shows that

Lp
fα(f̆∗, ğ, h̆)(y, z) = αf/2 · (1− χ−1(p)α−1

f αgyα
−1
hz

)× L(κf
p(f̆

∗, ğh̆))(y, z),

Lp
gα(f̆ , ğ∗, h̆)(y, z) = 1/2 · (1− χ(p)p−1αfα

−1
gy αhz

)× L(κg
p(f̆ , ğ

∗h̆))(y, z),

for infinitely many points (y, z) of weight-character of the form (2, ε). But a non-
zero element of Λfgh can only vanish at finitely many points of Ωg ×Ω Ωh. The

theorem follows, since ap(gy) = αgy and ap(hz) = αhz
. �
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6. Application to the Birch and Swinnerton-Dyer conjecture

As in the Introduction, let

f ∈ S2(Nf ), g ∈ S1(Ng, χ), h ∈ S1(Nh, χ
−1)

be three newforms and assume that the level Nf of f is relatively prime to NgNh.
Assume also that the weight two modular form f has rational fourier coefficients,
and hence is associated to an elliptic curve E. (This last assumption is only made for
notational simplicity, and the arguments of this section would extend to the setting
where E is replaced by any simple abelian variety quotient of J0(N), at the cost of
slight technical complications.) The goal of this section is to prove Theorems A, B,
C, and D and their corollaries stated in the Introduction, concerning the arithmetic
of the twist of E by the four-dimensional self-dual Artin representation attached to

�gh := �g ⊗ �h : GQ −→ GL4(L),

where �g and �h are the odd, irreducible, two-dimensional Artin representations
attached to g and h.

6.1. Bounding Mordell-Weil groups. For this section, let W be a general d-
dimensional self-dual Artin representation, with coefficients in a finite extension L
of Q, and factoring through the Galois group of a finite extension H of Q. Our
goal is to present general results, based on local Tate duality and the global Poitou-
Tate exact sequence, for bounding the W -isotypic part of E(H), defined to be the
L-vector space

E(H)WL := HomGal (H/Q)(W,E(H)⊗ L).

As in the Introduction, fix a rational prime p and an embedding L ⊂ Lp of L
into a finite extension of Qp. Associated to E and W are the continuous p-adic
representations

Vp(E) := H1
et(EQ̄,Qp)(1)⊗Qp

Lp, Wp := W ⊗L Lp, Vp(E)⊗Lp
Wp

of GQ, which are Lp-vector spaces of dimensions 2, d, and 2d, respectively. Restric-
tion to the absolute Galois group GH induces an isomorphism

H1(Q, Vp(E)⊗Wp) � (H1(H,Vp(E))⊗Wp)
Gal (H/Q)(151)

= HomGal (H/Q)(Wp, H
1(H,Vp(E))),

where the self-duality of Wp is used to obtain the second equality. Thanks to this
identification, the connecting homomorphism

δ : E(H)⊗ L −→ H1(H,Vp(E))

of Kummer theory gives rise to a homomorphism

(152) δ : E(H)
Wp

L −→ H1(Q, Vp(E)⊗Wp).

For each rational prime �, the maps (151) and (152) admit local counterparts

H1(Q�, Vp(E)⊗Wp) � HomGal (H/Q)(Wp,⊕λ|�H
1(Hλ, Vp(E))),

δ� :
(
⊕λ|�E(Hλ)

)Wp

Lp
−→ H1(Q�, Vp(E)⊗Wp),
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for which the following diagram commutes:

(153) E(H)WL
δ ��

res�
��

H1(Q, Vp(E)⊗Wp)

res�

��(
⊕λ|�E(Hλ)

)Wp

Lp

δ� �� H1(Q�, Vp(E)⊗Wp).

The Bloch-Kato submodule H1
fin(Q�, Vp(E) ⊗ Wp) of the local cohomology group

H1(Q�, Vp(E)⊗Wp) coincides with the image of the local connecting homomorphism
δ�, and the singular quotient is defined to be

H1
sing(Q�, Vp(E)⊗Wp) :=

H1(Q�, Vp(E)⊗Wp)

H1
fin(Q�, Vp(E)⊗Wp)

.

When � = p is a prime of good reduction for E at which W is unramified, the
subspace H1

fin(Qp, Vp(E)⊗Wp) consists of classes of crystalline extensions of Galois
representations. For each rational prime �, let

res� : H
1(Q, Vp(E)⊗Wp) −→ H1(Q�, Vp(E)⊗Wp)

denote the restriction map from the global to the local cohomology at �. The
composition

∂� : H
1(Q, Vp(E)⊗Wp) −→ H1

sing(Q�, Vp(E)⊗Wp)

of res� with the natural projection to the singular quotient is called the residue map
at �.

The Selmer group Selp(E,W ) is defined in terms of these maps as

Selp(E,W ) = H1
fin(Q, Vp(E)⊗Wp)(154)

:=
⋂
�

ker
(
H1(Q, Vp(E)⊗Wp)

∂�−→ H1
sing(Q�, Vp(E)⊗Wp)

)
.

Lemma 6.1. The local cohomology group H1(Qp, Vp(E)⊗Wp) is a 2d-dimensional
Lp-vector space. The finite subspace H1

fin(Qp, Vp(E)⊗Wp) and the singular quotient
H1

sing(Qp, Vp(E)⊗Wp) are each d-dimensional and in perfect duality under the local
Tate pairing.

Proof. This follows by choosing a GQp
-stable lattice in Vp(E)⊗Wp, applying (for

instance) Theorem 2.17 of [DDT] to its finite GQp
-stable quotients, and passing to

the limit. �
Proposition 6.2. If the map ∂p is surjective, then the map

(155) resp : Selp(E,W ) −→ H1
fin(Qp, Vp(E)⊗Wp)

is the zero map.

Proof. The standard calculations arising from the global Poitou-Tate exact se-
quence imply that the image of the restriction map

resp : Selp(E,W ) −→ H1(Qp, Vp(E)⊗Wp)

is d-dimensional. (This can be shown, for example, by choosing a GQ-stable lattice
in Vp(E)⊗Wp, applying Theorem 2.18 of [DDT] to its finite quotients, and taking
the inverse limit.) It follows that the restriction of resp to H1

fin(Qp, Vp(E)⊗Wp) is
the zero map. �
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Proposition 6.3. Assume that the residue map ∂p attached to the representation
Vp(E)⊗W σ

p is a surjective map of Lp-vector spaces, for all σ ∈ Gal (L/Q). Then

E(H)WL = 0.

Proof. By Proposition 6.2, the map resp of (155) is the zero map, and therefore the
commutativity of the diagram (153) implies that the natural map

resp : E(H)W
σ

L −→ ((⊕p|pE(Hp))⊗ Lp)
Wσ

is the zero map, for each σ ∈ Gal (L/Q). Since the local connecting homomorphism
δ� is injective, this implies that the vector space

⊕σ∈Gal (L/Q)E(H)W
σ

L = E(H)W̃L , where W̃ = ⊕σ∈Gal (L/Q)W
σ,

has trivial image in the group ⊕p|pE(Hp)⊗ L of local points. But W̃ is a rational
representation and hence admits an L-basis consisting of elements of E(H). Since
the natural map E(H) → ⊕p|pE(Hp) is injective modulo torsion, it follows that

dimQ E(H)W̃Q = 0, and therefore the same is true of dimL E(H)WL . The proposition
follows. �
6.2. Proof of Theorem C. The most interesting application of Theorem 5.3 arises
without a doubt when � = 1. A simplified version of the following statement was
stated in Theorem C of the Introduction. As in loc. cit. let g ∈ S1(Ng, χ) and
h ∈ S1(Nh, χ

−1) be classical newforms of weight one, and let gα ∈ S1(Ngp, χ) and
hα ∈ S1(Nhp, χ

−1) be ordinary p-stabilizations.
Let g and h be Hida families specializing to gy = gα and hz = hα at suitable

weight one points y and z of the parameter spaces Ωg and Ωh, respectively, and fix

test vectors f̆∗, ğ, and h̆ as in (92) and (93). Let

κ(f, gα, hα) ∈ H1(Q, Vfgh(N))

be the global cohomology class introduced in (76).

Theorem 6.4. The central critical value L(f, g, h, 1) is non-zero if and only if the
global cohomology class κ(f, gα, hα) is not crystalline at p.

Proof. Since the triplet (2, 1, 1) is unbalanced, with 2 as its dominant weight,
the point (y, z) lies in the region of interpolation defining the p-adic L-function

Lp
fα(f̆∗, ğh̆). By [DR13, Theorems 4.2 and 4.7], L(f, g, h, 1) �= 0 if and only if

there exists a choice (f̆∗, ğα, h̆α) of test vectors such that Lp
fα(f̆∗, ğh̆)(y, z) �= 0.

By Theorem 5.3, this in turn is equivalent to the non-vanishing of the value of

L(κf
p(f̆

∗, ğh̆)) at the point (y, z), which Proposition 5.2 recasts as a non-zero mul-

tiple of exp∗p(κ
f
p(f̆

∗, ğα, h̆α)). Because the dual exponential map appearing in (143)
is an isomorphism, one concludes that L(f, g, h, 1) �= 0 if and only if there is a triple

(f̆∗, ğα, h̆α) of test vectors for which the local class κf
p(f̆

∗, ğα, h̆α) is non-trivial.

As GQp
-modules, Vf (Np)− ⊗ V ββ

gh (N) is isomorphic to the direct sum of a fi-

nite number of copies of Kx{ψfΨ
−1
gα Ψ

−1
hα

}, and the local class κf
p(f, gα, hα) is de-

termined by the collection of its projections to the cohomology groups H1(Qp,

Kx{ψfΨ
−1
gα Ψ

−1
hα

}) indexed by the set of all possible triples (f̆∗, ğα, h̆α) of test vec-

tors. The non-vanishing of κf
p(f, gα, hα) is therefore equivalent to the non-vanishing

of the local class κf
p(f̆

∗, ğy, h̆z) ∈ H1(Qp,Kx{ψfΨ
−1
gα Ψ

−1
hα

}) introduced in (95) for
some such triple. Theorem 6.4 now follows from Proposition 2.8. �
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6.3. Proof of Theorem A and its corollaries. We now specialize the results of
the previous section to the setting where W = Vgh in order to prove Theorem A
of the Introduction and its corollaries. Henceforth, the Artin representation Vgh is
viewed as having coefficients in a finite extension L of Q, just as the representation
W of the previous section. In the notation of Section 1.6 we thus have Lp = Kfgh.

Proposition 6.5. Assume L(f, g, h, 1) �= 0. For all pairs of eigenvalues

λ ∈ {(αg, αh), (αg, βh), (βg, αh), (βg, βh)},
there exists a global class κλ ∈ H1(Q, Vfgh) whose natural image in H1

sing(Qp, Vfgh)

is non-zero and belongs to H1
sing(Qp, Vf ⊗ V λ

gh).

Proof. Up to re-ordering the eigenvalues of Frobp acting on Vg and Vh, it may be
assumed without loss of generality that λ = (αg, αh). By Theorem 6.4, the asso-
ciated cohomology class κ(f, gα, hα) is non-crystalline, and therefore there exists a
Galois-equivariant surjection j : Vfgh(N) −→ Vfgh for which κλ := j(κ(f, gα, hα))
is also non-crystalline. Since the natural image of κλ in H1

sing(Qp, Vfgh) belongs to

H1
sing(Qp, Vf ⊗ V λ

gh) by Proposition 2.8, the proposition follows. �

Theorem 6.6. If L(E, Vgh, 1) �= 0, there exists a rational prime p for which the
natural map

∂p : H1(Q, Vf ⊗ Vgh) −→ H1
sing(Qp, Vf ⊗ Vgh)

is surjective.

Proof. The Chebotarev density theorem shows the existence of a prime p ≥ 5 whose
associated Frobenius element acts on both Vg and Vh with distinct eigenvalues, and
such that ap(f) �= 0 (so that f is ordinary at p). By Proposition 6.5, the non-
vanishing of L(E, Vgh, 1) implies the existence of global classes

(156) καg ,αh
, καg,βh

, κβg,αh
, κβg ,βh

∈ H1(Q, Vfgh)

whose image under ∂p is non-zero in H1
sing(Qp, Vfgh). Since ∂p(κλ) belongs to

H1
sing(Qp, Vf ⊗ V λ

gh) for each pair λ ∈ {(αg, αh), (αg, βh), (βg, αh), (βg, βh)}, the
four classes are linearly independent and generate this singular quotient. �

We can now prove Theorem A of the Introduction.

Theorem 6.7. Assume that �gh is regular. If L(E, �gh, 1) �= 0, then E(H)
�gh

L = 0.

Proof. For all σ ∈ Gal (L/Q), the non-vanishing of L(E, �gh, 1) at the central point
implies that the same is true for L(E, V σ

gh, 1), for all σ ∈ Gal (L/Q). Furthermore,
there exists a prime p for which V σ

gh is regular, for all such σ. Theorem 6.6 implies
that the map

∂p : H1(Q, Vp(E)⊗ V σ
gh) −→ H1

sing(Qp, Vp(E)⊗ V σ
gh)

is surjective for each σ ∈ Gal (L/Q). The theorem now follows from Proposition
6.3. �

Turning to Corollary A1 of the Introduction, let K be a quadratic field of dis-
criminant prime to the conductor NE of E. If ψ is a finite order ray class character
of K, let ψ′ denote the character obtained from it by composing with the auto-
morphism of K/Q. A ring class character is a character of K with trivial central
character, which therefore satisfies ψ′ = ψ−1. Let ΠK denote the set of all ring
class characters of conductor prime to NE . When K is a real quadratic field, the
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set ΠK can be partitioned into two subsets Π+
K and Π−

K , consisting of totally even

and totally odd ring class characters, respectively. Let ΠE/K , Π+
E/K , and Π−

E/K

denote the subsets of ΠK , Π+
K , and Π−

K , respectively, consisting of the characters
for which L(E/K,ψ, 1) �= 0.

To the pair (E,K) one can associate the sign sgn(E,K) ∈ {±1} of the functional
equation for the L-function L(E/K, s). It turns out that this is the very same
sign that occurs in the functional equation of L(E/K,ψ, s) for any ψ ∈ ΠK . In
particular, ΠE/K is empty when sgn(E,K) = −1.

When sgn(E,K) = 1 and K is imaginary quadratic, a non-vanishing theorem
of Cornut and Vatsal shows that ΠE/K is infinite. If K is real quadratic, a simple

argument involving congruences for L-values shows that Π+
E/K is either empty or

infinite, and likewise for Π−
E/K . The scenario where Π±

E/K = ∅ is highly unlikely,

since it would provide us with a systematic supply of ring class characters for which
the (primitive) L-function L(E/K,ψ, s) admits at least a double zero at the center.

Definition 6.8. The pair (E,K) is said to satisfy the non-vanishing hypothesis if
Π+

E/K and Π−
E/K are both non-empty (and hence, infinite).

When K is real, a proof of this non-vanishing hypothesis does not seem out of
reach of current techniques in analytic number theory, although the unavailability
of an “anti-cyclotomic Zp-extension” of K prevents a straightforward application
of the methods of Cornut and Vatsal.

Lemma 6.9. For all ψ ∈ ΠK , there exists a ray class character ψ0 of K of con-
ductor prime to NE such that ψ = ψ0/ψ

′
0.

Proof. Let M/K be the cyclic extension of K (of degree n, say) which is cut out
by the character ψ. This field is Galois over Q, and Gal (M/Q) is isomorphic to
the dihedral group Dn of order 2n, furnished with a natural embedding into the
semi-direct product (C× � Z/2Z) via the character ψ. Embed Dn into PGL2(C)

by sending λ ∈ C× to the class of any diagonal matrix of the form
(
λ1 0
0 λ2

)
, where

λ1/λ2 = λ modulo the center, and sending some reflection in Dn to the matrix(
0 1
1 0

)
. This yields a projective representation r̄ : GQ → PGL2(C). By a classical

result of Tate on the vanishing of H2(Q,Q/Z(1)), the projective representation r̄
may be lifted to a linear representation r : GQ → GL2(C). By construction, the
representation r has a dihedral projective image, and hence is induced from some
character ψ0 ofK. The restriction of r toGK is then equal to the direct sum ψ0⊕ψ′

0.
It follows that the restriction of r̄ to GK is identified with ψ0/ψ

′
0, and therefore that

ψ0/ψ
′
0 = ψ. To show that ψ0 can be chosen to be unramified at the primes of K

dividing NE , observe that for each prime �|NE , the linear representation r maps the
inertia group at � to the subgroup C× of scalar matrices, since r̄ is unramified at �.
Now choose a Dirichlet character χ : GQ −→ C× whose restriction to I� agrees with
the restriction of r, for all �|NE , and replace r by r ⊗ χ−1. This substitution does
not affect the projective representation attached to r, but leads to a representation
r which is unramified at the primes dividing NE ; hence the same is true for the
resulting character ψ0. �

Note that, if K is a real quadratic field, the character ψ0 is of mixed signature
(resp., totally even or odd) when ψ is totally odd (resp., totally even).

By considering the case where α is further restricted to be a quadratic character
of K, it is clear that the non-vanishing hypothesis is satisfied if there are two
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quadratic Dirichlet characters χ (of the two possible signatures) for which

(157) L(E,χ, 1) �= 0, and L(E,χχK , 1) �= 0,

where χK is the (fixed) Dirichlet character attached to K. Such simultaneous non-
vanishing results for pairs of quadratic Dirichlet characters with fixed product seem
to lie just beyond the reach of currently available techniques. However, a character
χ satisfying (157) is widely expected to exist, and a quick inspection is usually
enough to produce such a χ, for any given E and K. For example, if E is the
elliptic curve of smallest conductor 11 and K = Q(

√
5) is the real quadratic field of

smallest discriminant 5, a cursory inspection of the tables of Cremona reveals that
L(E,χ, 1) �= 0 and L(E,χχK , 1) �= 0 when

(1) χ is the trivial character;
(2) χ is the odd quadratic character of conductor 4.

Hence the pair (E,K) satisfies the non-vanishing hypothesis.

Theorem 6.10. Let E be an elliptic curve over Q and let K be a quadratic field
for which sign(E,K) = 1. When K is real, assume that (E,K) satisfies the non-
vanishing hypothesis. Then for all ring class characters ψ ∈ ΠK ,

L(E/K,ψ, 1) �= 0 ⇒ E(H)ψ = 0.

Proof. If ψ is a quadratic (genus) character, the statement already follows from the
approach of Gross-Zagier and Kolyvagin (or Kato), since the induced representation
Vψ decomposes as a sum of two quadratic Dirichlet characters.

Assume henceforth that ψ2 �= 1, which amounts to saying that Vψ is irreducible.
Choose a character α ∈ ΠE/K which differs from ψ and ψ−1, and for which Vψ ⊕
Vα is regular. If K is real, assume α to be of opposite signature to ψ. This
choice is possible thanks to the non-vanishing hypothesis and implies that complex
conjugation acts on Vψ ⊕ Vα with eigenvalues (1, 1,−1,−1).

Invoking Lemma 6.9, let ψ0 and α0 be ray class characters of K of conductors
prime to NE and satisfying ψ0/ψ

′
0 = ψ and α0/α

′
0 = α, and set

ψg := ψ0α0, ψh := (ψ′
0α0)

−1.

The two-dimensional representations

�g := IndQKψg, �h := IndQKψh

satisfy the following properties:

• det(�g) = det(�h)
−1, because the central characters of ψg and ψh are in-

verses of each other;
• �g and �h are odd: this is automatic when K is imaginary; when K is real
this follows because ψ and α have opposite signatures; hence exactly one
of ψ0 and α0 is of mixed signature, implying that both ψg and ψh are of
mixed signature.

• �g and �h are irreducible: this amounts to saying that ψg �= ψ′
g and ψh �=

ψ′
h; tracing the definitions, this holds because α has been chosen to be

different from ψ and ψ−1;
• the conductors of �g and �h are prime to NE , and hence the same is true
for the levels of the associated weight one modular forms.

The tensor product �gh decomposes as

(158) Vgh = Vψg
⊗ Vψh

= Vψgψh
⊕ Vψgψ′

h
= Vψ ⊕ Vα.
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Thorem 6.10 now follows from the regularity of Vg and Vh and from Theorem 6.7,
since

L(E, Vgh, 1) = L(E, Vψ, 1)L(E, Vα, 1) = L(E/K,ψ, 1)L(E/K,α, 1) �= 0. �

We now turn to the proof of Corollary A2 of the Introduction.

Theorem 6.11. Let E be an elliptic curve over Q, and let K be a non-real quintic
extension of Q with Galois group A5, of discriminant prime to the conductor of E.
Then

ords=1L(E/K, s) = ords=1L(E/Q, s) ⇒ rank(E(K)) = rank(E(Q)).

Proof. Let K̃ denote the Galois closure of K and fix an embedding of the group A5

into PGL2(C). There are exactly two conjugacy classes of such embeddings, and

the further choice of an isomorphism Gal (K̃/Q) = A5 gives rise to a projective
representation

�̄g : GQ � Gal (K̃/Q) � A5 ⊂ PGL2(C).

Tate’s lifting theorem produces a linear lift �g : GQ −→ GL2(C) of �̄g, which is odd
since K is not totally real. An argument similar to the one concluding the proof
of Lemma 6.9 also shows that �g can be chosen to be unramified at the primes
dividing NE .

Assume that the field H cut out by �g is a cyclic extension of K̃ of degree a

power of 2. The image of Gal (H/K̃) under �g consists of scalar matrices whose
diagonal entries are 2-power roots of unity. Let σ be an automorphism of C which
agrees with complex conjugation on the 2-power roots of unity and sends

√
5 to

−
√
5, and let �h be the Artin representation obtained by applying σ to the matrix

entries of �g. The tensor product �gh is a four-dimensional representation which

factors through Gal (K̃/Q) = A5 since it is trivial on Gal (H/K̃). To identify
this representation, observe that there are precisely two distinct irreducible two-
dimensional representations, denoted �1 and �2, of the non-trivial central extension
Ã5 of A5, whose traces lie in Q(

√
5) and which are conjugate to each other over

this field. Viewing �1 ⊗ �2 as a representation of Gal (K̃/Q), one has

�gh = �1 ⊗ �2 = (IndQK1)− 1,

where the last equality of virtual representations can be seen, for instance, by
consulting the Atlas of finite simple groups. The Artin formalism implies that

ran(E, �gh) = ran(E/K)− ran(E/Q), r(E, �gh) = r(E/K)− r(E/Q).

By hypothesis, ran(E, �gh) = 0. Theorem 6.7 can now be invoked to conclude that
r(E, �gh) = 0, i.e., r(E,K) = r(E,Q). Theorem 6.11 follows. �

6.4. Proof of Theorems B and D. We conclude with the proof of Theorem D
of the Introduction, which in turn implies Theorem B. Assume for this section that

(i) L(E, �gh, 1) = 0;
(ii) the Artin representations �g and �h are both regular at p.

Let Vfgh and Vfgh(N) = Vf (Np)⊗Vg(Np)⊗Vh(Np) denote the Kfgh-vector spaces
obtained by specializing of Vfgh and Vfgh(N) at the weight one point (y, z) attached

to (f, g, h). As discussed right after (76), the global cohomology classes

(159) κ(f, gα, hα), κ(f, gα, hβ) ∈ H1(Q, Vfgh(N))
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are both locally trivial at primes � �= p. Hence the vanishing of L(E, �gh, 1) implies,
by Theorem 6.4, that κ(f, gα, hα) and κ(f, gα, hβ) belong to the Selmer group
Selp(E, Vgh(N)), which can be identified with a finite sum of copies of the Selmer
group Selp(E, �gh).

Lemma 6.12. The images of κ(f, gα, hα) and κ(f, gα, hβ) in H1
fin(Qp, Vf (Np) ⊗

V
αg
g (Np) ⊗ Vh(Np)) belong to H1

fin(Qp, Vf (Np) ⊗ V
αg
g (Np) ⊗ V βh

h (Np)) and to
H1

fin(Qp, Vf (Np)⊗ V
αg
g (Np)⊗ V αh

h (Np)), respectively.

Proof. This follows directly from Proposition 2.7. �

Theorem 6.13. Assume that Lp
gα(f̆ , ğ∗, h̆) �= 0 for some choice

f̆ ∈ S2(Np)[f ], ğ∗ ∈ S1(N,χ−1)∨[g], h̆ ∈ S1(N,χ−1)[h]

of test vectors. Then there exist GQ-equivariant projections j1, j2 : Vfgh(N) → Vfgh

for which the global classes

(160) καα := j1(κ(f, gα, hα)), καβ := j2(κ(f, gα, hβ))

are linearly independent in Selp(E, �gh).

Proof. Let g and h be Hida families specializing to gα and to hα, respectively,
in weight one, i.e., for which gy = gα and hz = hα for suitable weight one points
(y, z) ∈ Ωg×Ωh. By Proposition 5.1 combined with Theorem 5.3, the non-vanishing
of

Lp
gα(f̆ , ğ∗, h̆) := Lp

gα(f̆ , ğ∗, h̆)(y, z)

implies that the local class κg
p(f̆ , ğ

∗
α, h̆α) has a non-zero p-adic logarithm. It follows

a fortiori from (94) and (95) that the local class κg
p(f, gh)(y, z) is non-zero, and

therefore, that the natural image of the global class κ(f, gα, hα) in H1(Qp, Vf (Np)⊗
V

αg
g (Np)⊗Vh(Np)) is non-zero as well. The same argument in which hα is replaced

by hβ implies (in light of Equation (9) of the Introduction) the same conclusion for
the global class κ(f, gα, hβ).

After choosing a basis of HomGQ
(Vfgh(N), Vfgh) (of cardinality t, say), the re-

sulting isomorphism Vfgh(N) −→ ⊕t
i=1Vfgh induces an isomorphism

H1(Qp, Vf (Np)⊗ V αg
g (Np)⊗ Vh(Np)) −→ ⊕t

i=1H
1(Qp, Vf ⊗ V αg

g ⊗ Vh)

on the quotients of the local cohomology groups at p. Hence there areGQ-equivariant
homomorphisms j1, j2 : Vfgh(N) → Vfgh for which the global classes καα and καβ

defined in (160) have non-trivial images in the quotient H1(Qp, Vf ⊗ V
αg
g ⊗ Vh).

As argued above right after (159), the global classes κ(f, gα, hα) and κ(f, gα, hβ)
lie in the Selmer group Selp(E, Vgh(N)), and hence καα and καβ likewise belong to
Selp(E, �gh). Lemma 6.12 further implies that their natural images in H1(Qp, Vf ⊗
V

αg
g ⊗ Vh) belong to the complementary subspaces H1

fin(Qp, Vf ⊗ V
αg
g ⊗ V βh

h ) and
H1

fin(Qp, Vf ⊗ V
αg
g ⊗ V αh

h ), respectively. These images are therefore linearly inde-
pendent, and the theorem follows. �
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GL2(Qp) et compatibilité local-global (French, with English and French summaries),
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