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Abstract. This article is the first in a series devoted to the Euler system arising from p-adic
families of Beilinson-Flach elements in the first K-group of the product of two modular curves.
It relates the image of these elements under the p-adic syntomic regulator (as described by
Besser [Bes3]) to the special values at the near-central point of Hida’s p-adic Rankin L-
function attached to two Hida families of cusp forms.
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1. Introduction

This article is the first in a series devoted to the Euler system of Beilinson-Flach elements

in the motivic cohomology of a product of two modular curves. Its main result (see Theorem
4.2 and Corollary 4.4 of §4.2) is a p-adic analogue of the formula of Beilinson [Bei, Ch. 2,
§6] expressing special values of Rankin L-series in terms of complex regulators. Beilinson’s
theorem (cf. §4.1 for an explicit version) relates:

(1) the Rankin L-series L(f ⊗ g, s) attached to the convolution of weight 2 newforms f
and g on Γ1(N), evaluated at the near-central point s = 2;

(2) the image under the complex regulator of certain explicit elements in the motivic
cohomology group H3

M(X1(N)2, Q(2)), or, equivalently, in the higher Chow group

CH2(X1(N)2, 1) ⊗ Q. These elements, whose definition is recalled in Section 3.1, are
constructed from modular units and are referred to in the sequel as Beilinson-Flach

elements.

In the p-adic setting, the complex L-series L(f ⊗ g, s) is replaced by Hida’s p-adic Rankin
L-series attached to two ordinary families of modular forms interpolating f and g, whose
definition is briefly recalled in Section 2.2. The role of the complex regulator is played by the
p-adic syntomic regulator on K1 of a surface. Besser’s description of it in terms of Coleman
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integration [Bes3], which is summarised in §3.3, is a key ingredient in the proof of Theorem
4.2.

Our approach also relies crucially on techniques developed in [DR] for relating p-adic Abel-
Jacobi images of diagonal cycles to values of the Garrett-Rankin triple product p-adic L-
function attached to a triple (f ,g,h) of Hida families of cusp forms. Corollary 4.4 deals with
the setting where the cuspidal family h in the triple (f ,g,h) is replaced by a Hida family
of Eisenstein series. The reader will also note the close parallel between Theorem 4.2 and
the main result of [BD], in which the p-adic regulators of certain elements in K2(X1(N)) are
related to the value at s = 2 of the Mazur-Swinnerton-Dyer p-adic L-functions attached to
weight two cusp forms. The results of the present article are in fact intermediate between
those of [DR] and [BD], the latter treating the case where both g and h are replaced by Hida
families of Eisenstein series—a setting in which the resulting p-adic Rankin L-function factors
as a product of two Mazur-Kitagawa L-functions attached to f .

We also remark that a function field analogue of Beilinson’s Theorem involving Drinfeld
modular curves is described in [Sre2], based on a description of non-archimedean regulators
given in [Sre1]. See also the related work of Ambrus Pàl in the setting of the K2 of Mumford
curves [Pa].

Let us conclude this introduction by briefly discussing some eventual arithmetical applica-
tions of the main result of this paper.

I. The Euler system of Beilinson-Flach elements. The image of Beilinson-Flach el-
ements under the p-adic étale regulator map gives rise to classes in the global cohomology
group H1(Q, Vf ⊗Vg(2)), where Vf and Vg are the p-adic Galois representations attached to f
and g, respectively. The work in preparation [BDR] explores the theme of the p-adic variation
of the Beilinson-Flach classes attached to Hida families of cusp forms f and g. In particular,
when g specialises in weight one to a classical cusp form attached to an odd irreducible Artin
representation ρ, and f specialises in weight two to the cusp form associated with an elliptic
curve E over Q, we expect the associated cohomology class to yield new cases of the Birch and
Swinnerton-Dyer conjecture for the complex L-series L(E, ρ, s), proving in particular that ρ
does not occur in the representation E(Q̄) ⊗ C when L(E, ρ, 1) 6= 0.

The idea of using Beilinson elements in Euler system arguments occurs much earlier in
the work of Flach [Fl], who used them to construct classes in H 1(Q,Sym2(E)(2)) which are
cristalline at p but ramified at a single prime ` 6= p. Applying Kolyvagin’s method to these
classes leads to the finiteness of the Shafarevich-Tate group of Sym2(E)(2) and an explicit
annihilator of this group related to the special value L(Sym2(E), 2), which is critical in the
sense of Deligne, unlike the special values L(f ⊗ g, 2) when f and g are distinct normalised
newforms.

II. Hida’s L-function for the symmetric square of a modular form. Theorem 4.2,
specialised to the case f = g, is exploited by S. Dasgupta [Das] to study the Hida L-function
L(f ⊗ f, s) and express it as the product of the Coates-Schmidt p-adic L-function attached to
Sym2(f) and a Kubota-Leopoldt p-adic L-function. This factorisation, which can be viewed
as another manifestation of the Artin formalism for p-adic L-series, is analogous to a formula
of Gross [Gross] expressing the restriction to the cyclotomic line of the Katz two-variable p-
adic L-function attached to an imaginary quadratic field as a product of two Kubota-Leopoldt
L-functions. The Beilinson-Flach elements play the same role in Dasgupta’s proof as elliptic
units in the work of Gross.

III. p-adic L-functions and Euler systems over Z2
p-extensions. The paper in prepa-

ration [LLZ] of A. Lei, D. Loeffler and S.L. Zerbes builds on the methods of this paper, in
the setting where g varies over a collection of theta series attached to Hecke characters of an
imaginary quadratic field K, to construct an Euler system for Vf over the various layers of the
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two variable Zp-extension K∞ of K, thus supplying the global input for their extension [LZ]
of Perrin-Riou’s machinery in which the cyclotomic Zp-extension of Q is replaced by K∞.

Acknowledgements: The authors are grateful to Amnon Besser, François Brunault, Samit
Dasgupta, Antonio Lei, David Loeffler, Nicola Mazzari and Sarah Zerbes for their useful
comments and stimulating conversations about their research in connection to this work. The
third author was financially supported by MTM20121-34611 during the ellaboration of this
work.

2. Rankin L-series

Let f and g be normalised newforms of weights k, `, levels Nf , Ng, and nebentypus charac-
ters χf , χg respectively. The p-adic representations Vf and Vg are part of a compatible system
of representations which we continue to denote by the same symbol. Let

L(Vf ⊗ Vg, s) =
∏

p

det((1 − σpp
−s)|(Vf ⊗ Vg)

Ip)−1

be the motivic L-function attached to the tensor product Vf ⊗Vg, where Ip denotes the inertia
subgroup of a decomposition group at p, and σp a corresponding geometric Frobenius element.

The goal of this first chapter is to briefly recall the basic analytic properties of this L-series,
describe Hida’s construction of a p-adic avatar, and— in the special case where f and g are
both of weight two—present parallel formulae for their special values at the near-central point
s = 2, which is not critical in the sense of Deligne.

2.1. Complex L-series. Set N := lcm(Nf , Ng) and replace χf and χg by their counterparts
of modulus N sending any prime r|N to 0. It is also convenient to replace f , as well as g, by
a normalised eigenform of level N which

(1) has the same eigenvalues for the good Hecke operators Tr with gcd(r,N) = 1;
(2) is also an eigenvector for the Hecke operators Ur attached to the primes r dividing N .

This substitution having been made, let

(1) f(z) =
∞∑

n=1

an(f)e2πinz, g(z) =
∞∑

n=1

an(g)e2πinz

be the Fourier expansions of f and g, let Kf and Kg ⊂ Q̄ denote the subfields generated by
the coefficients an(f) and an(g) respectively, and let Kfg denote the compositum of the two
fields. The Hecke polynomials attached to f can be factored as

x2 − ap(f)x + χf (p)pk−1 = (x − αp(f))(x − βp(f)),

where (αp(f), βp(f)) = (ap(f), 0) when p|N . Similar notations are adopted for g. The Rankin
L-function attached to the pair (f, g) is defined by the formula

L(f ⊗ g, s) :=
∏

p

L(p)(f ⊗ g, s), where

L(p)(f ⊗ g, s) := (1 − αp(f)αp(g)p−s)−1(1 − αp(f)βp(g)p−s)−1

×(1 − βp(f)αp(g)p−s)−1(1 − βp(f)βp(g)p−s)−1.

The Euler factors at p defining L(Vf ⊗Vg, s) and L(f ⊗ g, s) agree for all p - N , and hence the
special values of L(Vf ⊗Vg, s) and L(f ⊗ g, s) at integer points differ by elementary quantities

in K×
fg. It will be more convenient, for the sequel, to focus attention on L(f ⊗ g, s). Assume

without loss of generality that the forms f and g have been ordered in such a way that k ≥ `.
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2.1.1. Rankin’s method. We begin by recalling the general formula for L(f ⊗ g, s) coming out
of Rankin’s method, involving the non-holomorphic Eisenstein series

(2) Ẽk−`,χ(z, s) =
′∑

(m,n)∈NZ×Z

χ−1(n)

(mz + n)k−`
·

ys

|mz + n|2s

of weight k − `, level N and character

χ := χ−1
f χ−1

g ,

where the superscript ′ in (2) indicates that the sum is taken over the non-zero lattice vectors

(m,n) ∈ NZ × Z. For fixed complex s with Re(s) >> 0, the product Ẽk−`,χ(z, s) × g(z) is a
real-analytic C-valued function on the Poincaré upper half-plane H which transforms like a
modular form of weight k, level N and character χ−1

f and is of rapid decay at infinity. The

space of such functions, denoted Sra
k (N,χ−1

f ), is equipped with the Petersson scalar product

〈 , 〉k,N : Sra
k (N,χ−1

f ) × Sra
k (N,χ−1

f ) −→ C

given by the formula

(3) 〈f1, f2〉k,N :=

∫

Γ0(N)\H
ykf1(z)f2(z)

dxdy

y2
,

which is hermitian linear in the first argument and C-linear in the second. Let f ∗ ∈ Sk(N,χ−1
f )

denote the modular form obtained from f by applying complex conjugation to its Fourier
coefficients.

Proposition 2.1 (Shimura). For all s ∈ C with <(s) >> 0,

(4) L(f ⊗ g, s) =
1

2

(4π)s

Γ(s)

〈
f∗(z), Ẽk−`,χ(z, s − k + 1) · g(z)

〉

k,N
.

This well-known formula for the Rankin L-series is taken from equation (14) of [BD].

2.1.2. Critical values. Assume here and in §2.1.3 that ` < k. The functional equation for
L(f ⊗ g, s) arising from Proposition 2.1 reveals that the integer j is critical for L(f ⊗ g, s) if
any only if it lies in the closed interval [`, k−1]. We now describe a further closed formula for
the value at an integer j belonging to the “right half critical segment” [ `+k−1

2 , k−1], which will
be useful in deriving the algebraicity (up to periods) of L(f ⊗ g, j) predicted by the Deligne
conjectures, and ultimately in constructing Hida’s p-adic Rankin L-function by interpolating
these quantities p-adically.

Having fixed an integer j ∈ [ `+k−1
2 , k − 1], let t ≥ 0 and m ≥ 1 be given by

t := k − 1 − j, m := k − ` − 2t.

If m ≤ 2, let us assume also that χ is nontrivial. Then the series

(5) Em,χ(z) = 2−1L(χ, 1 − m) +
∞∑

n=1

σm−1,χ(n)qn, σm−1,χ(n) =
∑

d|n

χ(d)dm−1

is the q-expansion of a holomorphic Eisenstein series of weight m and character χ.
The Shimura-Maass derivative operator

δm :=
1

2πi

(
d

dz
+

im

2y

)

transforms modular forms of weight m into (real analytic) modular forms of weight m+2 which
are nearly holomorphic in the sense of [Sh2], and its t-fold iterate δ t

m := δm+2t−2 · · · δm+2δm
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maps the space Mm(N,χ) to the space Mnh
m+2t(N,χ) of nearly holomorphic modular forms of

weight m + 2t. Let

C(k, `, j) :=
(−1)t2k−1(2π)k+m−1ιχ(iN)−mτ(χ−1)

(m + t − 1)!(j − 1)!

be the elementary constant (in which ιχ = 1 when χ is primitive) appearing in equation (18)
of [BD]. The following formula for L(f ⊗ g, j), is obtained by setting c = j in equation (18)
of loc. cit. (See also Theorem 2 of [Sh1].)

Proposition 2.2. The special value L(f ⊗ g, j) is given by the formula

(6) L(f ⊗ g, j) = C(k, `, j)
〈
f∗(z), δt

mEm,χ(z) × g(z)
〉

k,N
.

2.1.3. Algebraicity and Deligne’s conjecture. Let Snh
k (N,χ−1

f ;Kfg) ⊂ Snh
k (N,χ−1

f ) denote the

space of nearly-holomorphic cusp forms which are defined over Kfg in the sense of Shimura
(cf. Section 2.4 of [DR]). The cusp form

(7) Ξ(f, g, j) := δt
mEm,χ × g ∈ Snh

k (N,χ−1
f )

which appears in Proposition 2.2 belongs to the Kfg-rational structure Snh
k (N,χ−1

f ;Kfg).
Hence, its image

(8) Ξ(f, g, j)hol := Πhol
N (Ξ(f, g, j))

under the holomorphic projection Πhol
N of loc. cit. belongs to the space Sk(N,χ−1

f ;Kfg) of
holomorphic cusp forms with Fourier coefficients in Kfg. In particular, the ratio

(9) Lalg(f ⊗ g, j) := C(f, g, j)−1 L(f ⊗ g, j)

〈f∗, f∗〉k,N
=

〈f∗,Ξ(f, g, j) 〉k,N

〈f∗, f∗〉k,N
=

〈
f∗,Ξ(f, g, j)hol

〉
k,N

〈f∗, f∗〉k,N
,

belongs to Kfg. This algebraicity result is consistent with Deligne’s conjecture which predicts
that the period C(f, g, j)〈f ∗, f∗〉k,N is the ‘transcendental part” of the special value L(f⊗g, j).
The associated “algebraic part” appearing in (9) will later be interpolated p-adically to obtain
Hida’s p-adic Rankin L-function attached to f and g.

In order to do this, it will be convenient to give a more geometric description of the quantity
Lalg(f ⊗ g, j) appearing in (9), in terms of the Poincaré duality on the de Rham cohomology
of the modular curve X1(N) with values in appropriate sheaves with connection, as described
in [DR, § 2.3]. To lighten the notations, denote by Y and by X the open modular curve Y1(N)
and the complete modular curve X1(N) respectively, classifying (generalised) elliptic curves
equipped with an embedding of the finite flat group scheme µN of N -th roots of unity.

Let K be any field containing Kfg. Denote by E −→ Y the universal elliptic curve over
Y , and by ω the sheaf of relative differentials on E over Y , extended to X as in [BDP, § 1.1].
Recall the Kodaira-Spencer isomorphism ω2 ' Ω1

X(log cusps), where Ω1
X(log cusps) is the

sheaf of regular differentials on Y with log poles at the cusps.
A modular form φ on Γ1(N) of weight k = r +2 with Fourier coefficients in K corresponds

to a global section of the sheaf ωr+2 = ωr ⊗ Ω1
X(log cusps) over the base-change XK of X to

K. The sheaf ωr can be viewed as a subsheaf of Lr := Symr L, where

L := R1π∗(E −→ Y )

is the relative de Rham cohomology sheaf on Y , extended to X as in loc. cit., equipped with
the filtration

(10) 0 −→ ω −→ L −→ ω−1 −→ 0

arising from the Hodge filtration on the fibers. The sheaf Lr is a coherent sheaf over X of
rank r+1, endowed with the Gauss-Manin connection

∇ : Lr −→ Lr ⊗ Ω1
X(log cusps).
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Let H1
dR(XK ,Lr,∇) be the de Rham cohomology of Lr. It is equipped with the perfect

Poincaré pairing

(11) 〈 , 〉k,X : H1
dR(XK ,Lr,∇) × H1

dR(XK ,Lr,∇) −→ K,

which is compatible with the exact sequence

(12) 0 −→ H0(XK , ωr ⊗ Ω1
X) −→ H1

dR(XK ,Lr,∇) −→ H1(XK , ω−r) −→ 0,

in the sense that H0(XK , ωr ⊗ Ω1
X) is an isotropic subspace. (Cf. Sections 2 and 3 of [Col],

for a more detailed account.) In particular, Poincaré duality induces a perfect pairing

(13) 〈 , 〉k,X : H1(XK , ω−r) × H0(XK , ωr ⊗ Ω1
X) −→ K,

which is denoted by the same symbol by a slight abuse of notation.
Set ωf = f(z)dz and ωf = f̄∗(z)dz̄. The antiholomorphic differential ηah

f defined by

(14) ηah
f :=

ωf

〈ωf , ωf 〉k,X
.

gives rise to a class in H1
dR(XC,Lr,∇), whose image ηf in H1(XC, ω−r) belongs to H1(XK , ω−r)

(cf. Corollary 2.13 of [DR]). The following expression for the algebraic part Lalg(f ⊗ g, j) in
terms of the class ηf follows directly from (9) in light of the discussion above:

Proposition 2.3. The algebraic part Lalg(f ⊗ g, j) is equal to

(15) Lalg(f ⊗ g, j) =
〈
ηf ,Ξ(f, g, j)hol

〉
k,X

.

2.1.4. The value at the near central point. Consider now the case where k = ` = 2 and
χf 6= χ−1

g , so that the character χ = χ−1
f χ−1

g is not the trivial one. The functional equation

for L(f ⊗ g, s) relates L(f ⊗ g, s) to L(f ∗⊗ g∗, 3− s) and this L-series has no critical points in
the sense of Deligne. Proposition 2.5 below describes its value at the near-central point s = 2
in terms of logarithms of modular units.

Enlarge K so that it contains the field which is cut out by all the Dirichlet characters of
modulus N , and let F be the field generated over K by the values of these characters. Let
Eis`(Γ1(N);F ) denote the subspace of M`(Γ1(N);F ) spanned by the weight ` Eisenstein series
with coefficients in F . The logarithmic derivative gives a surjective homomorphism

(16) O(YK)× ⊗ F
dlog

// Eis2(Γ1(N);F ),

whose kernel is the subspace K× ⊗ F spanned by the nonzero constant functions.

Definition 2.4. Let uχ be the modular unit satisfying

(17) dlog(uχ) = E2,χ

whose value at ∞ is 1 in the sense of [Br, §5].

Proposition 2.5. Given weight two eigenforms f and g as above,

(18) L(f ⊗ g, 2) = 16π3N−2τ(χ−1) 〈f∗(z), log |uχ(z)| · g(z)〉2,N .

Proof. By Proposition 2.1,

(19) L(f ⊗ g, 2) =
1

2
(4π)2

〈
f∗(z), Ẽ0,χ(z, 1) · g(z)

〉
2,N

.

A direct calculation (cf. equation (26) of [BD]) shows that

(20)
1

2πi

d

dz
Ẽ0,χ(z, 1) = −

1

4π
Ẽ2,χ(z) = 2πN−2τ(χ−1)E2,χ(z).
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Having normalized uχ as in Definition 2.4, one obtains the equality

(21) Ẽ0,χ(z, 1) = 2πN−2τ(χ−1) log |uχ(z)|,

which is compatible with (17). Combining (19) with (21) completes the proof of the proposi-
tion. �

2.2. p-adic L-series. Let p ≥ 3 be a prime, and fix an embedding of K into Cp. This
section recalls the definition of the Rankin p-adic L-function associated by Hida [Hi] to the
convolution of two Hida families of cusp forms. For the sake of brevity, we proceed here—just
as in [BD]— by specialising the approach and notations of [DR], which constructs the p-adic
L-function associated to a triple product of three Hida families (f ,g,h) of cusp forms. The
setting considered here consists, essentially, in letting h be a Hida family of Eisenstein series.

2.2.1. Ordinary projections. Let f , g be eigenforms of level N , weights k > ` and nebentypus
χf , χg as in (1). Let also j ∈ [ `+k−1

2 , k − 1] be an integer and set t = k − 1 − j ≥ 0 and
m = k − ` − 2t ≥ 1 as in §2.1.2. The following ordinariness assumption is important for the
constructions described in this section.

Assumption 2.6. The cuspidal eigenforms f and g are ordinary at p, and p - N .

Under this assumption, the f -isotypic part of the exact sequence (12) with K = Cp admits
a canonical unit root splitting, arising from the action of Frobenius on de Rham cohomology.
Let ηur

f be the lift of ηf to the unit root subspace H1
dR(XCp ,Lr,∇)f,ur. The right-hand side

of (15) is then equal to

(22)
〈
ηf ,Ξ(f, g, j)hol

〉
k,X

=
〈
ηur

f ,Ξ(f, g, j)hol
〉

k,X
.

Now let eord be Hida’s ordinary projector to H1
dR(YK ,Lr,∇)ord. By Proposition 2.11 of [DR],

the right-hand side of (22) can be re-written, after viewing Ξ(f, g, j)hol as an overconvergent
p-adic modular form and setting Ξ(f, g, j)ord := eordΞ(f, g, j)hol, as

(23)
〈
ηur

f ,Ξ(f, g, j)hol
〉

k,X
=

〈
ηur

f ,Ξ(f, g, j)ord
〉

k,X
.

By Proposition 2.8 of [DR],

(24) Ξ(f, g, j)ord = eord(d
tEm,χ · g),

where d = q d
dq is Serre’s derivative operator on p-adic modular forms.

Given a p-adic modular form φ =
∑

cnqn, let φ[p] :=
∑

p-n cnqn denote its “p-depletion”,

and set

(25) Ξ(f, g, j)ord,p := eord(dtE[p]
m,χ · g).

Proposition 2.7. Let ef∗ be the projector to the f ∗-isotypic subspace of H1
dR(YK ,Lk−2,∇).

Then

ef∗Ξ(f, g, j)ord,p =
E(f, g, j)

E(f)
· ef∗Ξ(f, g, j)ord,

where

E(f, g, j) = (1 − βp(f)αp(g)pt−k+1)(1 − βp(f)βp(g)pt−k+1)

×(1 − βp(f)αp(g)χ(p)pt−k+m)(1 − βp(f)βp(g)χ(p)pt−k+m),

E(f) = 1 − βp(f)2χ−1
f (p)p−k.

Proof. This follows from Corollary 4.17 of [DR], in light of Proposition 2.8 of loc. cit. �
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2.2.2. Hida’s p-adic L-series. Let f and g be Hida families of ordinary p-adic modular forms
of tame level N , indexed by weight variables k and ` in suitable neighborhoods Uf and
Ug of Z/(p − 1)Z × Zp, contained in a single residue class modulo p − 1. (These families
may be obtained, as shall be the case considered in §4.2, by deforming two given ordinary
classical eigenforms f and g of possibly equal weights.) Assume likewise that the parameter
j = k − 1 − t belongs to a single residue class modulo p − 1, so that the same holds true for
the weight m = k − ` − 2t of the Eisenstein series Em,χ.

For k ∈ Uf ∩ Z≥2 and ` ∈ Ug ∩ Z≥2, let

fk ∈ Sk(N,χf ), g` ∈ S`(N,χg)

be the classical cusp forms whose p-stabilisations are the weight k and ` specialisations of f

and g respectively. (We denote by χf , resp. χg the common character of the modular forms
fk, resp. gk.)

The collection of p-adic modular forms Ξ(fk, g`, j)
ord,p (defined as in equation (25)) indexed

by

(26) {(k, `, j), k ∈ Uf ∩ Z≥2, ` ∈ Ug ∩ Z≥2,
` + k − 1

2
≤ j ≤ k − 1}

has Fourier coefficients which extend analytically to Uf ×Ug ×Zp, as functions in k, ` and j.
Hence, they can be viewed as a (three-variable) Λ-adic family of modular forms of level N in
the sense of [DR, §2.7].

Set

E∗(fk) := 1 − βp(fk)
2χ−1

f (p)p1−k.

Proposition 4.10 of loc. cit. shows that the expression

(27) Lp(f ,g)(k, `, j) :=
1

E∗(fk)

〈
ηur

fk
,Ξ(fk, g`, j)

ord,p
〉

k,X
,

defined on the triples (k, `, j) in the set in (26) extends to an analytic function Lp(f ,g) on
Uf × Ug × Zp, which we refer to as the Hida p-adic Rankin L-function attached to f and g.
This appelation is justified by noting that, for all triples (k, `, j) in the range of “classical
interpolation”, i.e, belonging to (26), the function Lp(f ,g)(k, `, j) satisfies the interpolation
property

Lp(f ,g)(k, `, j) =
E(fk, g`, j)

E∗(fk)E(fk)
Lalg(fk ⊗ g`, j).

This follows from a direct calculation combining (27), Proposition 2.7, (23), (22) and (15).
Note that the point (2, 2, 2) lies outside the region of classical interpolation for this function.

(In fact, there are no critical values for the pair of weights (2, 2).) Corollary 4.4 of Section 4.2
relates the value of Lp(f ,g) at (2, 2, 2) to the p-adic regulator attached in Section 3.3 to the
triple of modular forms (f = f2, g = g2, E2,χ).

Generalising our setting somewhat, we do not assume now that g ∈ S2(N,χg) is ordinary,
so that g may not necessarily be viewed as the weight 2 specialisation of a Hida family. In
this case, the above construction still allows us to define a two-variable p-adic L-function
Lp(f , g)(k, j) on Uf × Zp, by the equation

(28) Lp(f , g)(k, j) :=
1

E∗(fk)

〈
ηur

fk
,Ξ(fk, g, j)ord,p

〉
k,X

,

for k ∈ Uf ∩ Z≥2 and (k + 1)/2 ≤ j ≤ k − 1. Theorem 4.2 relates Lp(f , g)(2, 2) to the p-adic
regulator attached to (f, g, E2,χ).
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3. Beilinson-Flach elements

3.1. Definition and basic properties. Let S be a quasi-projective variety over a field
K, and Kj(S) denote Quillen’s algebraic K-groups of S. The motivic cohomology groups

Hi
M(S, Q(n)) = K

(n)
2n−i(S) of S were defined by Beilinson [Bei, §2] as the n-th graded piece

of the Adams filtration on K2n−i(S) ⊗ Q. In parallel with Beilinson’s motivic cohomology
groups, Bloch [Bl] introduced the higher Chow groups CHi(S, n) of S.

In this note we shall focus on the smooth projective surface S := X × X, where X is the

modular curve over the field K of §2.1.4. For i = 3 and n = 2, H 3
M(S, Q(2)) = K

(2)
1 (S) is

identified with CH2(S, 1)⊗Q. The higher Chow group CH2(S, 1) may be explicitly described
(cf. also [Sc]) as the first homology of the Gersten complex

(29) K2(K(S))
∂

//
⊕

Z⊂S K(Z)×
div

//
⊕

P∈S Z,

where

(1) K2(K(S)) denotes the second Milnor K-group of the rational function field K(S), and
∂ is the map whose “component at Z” is the tame symbol attached to the valuation
ordZ ;

(2) the group

Θ :=
⊕

Z⊂S

K(Z)×

is the set of finite formal linear combinations
∑

i(Zi, ui), where the Zi are irreducible
curves in S and ui is a rational function on Zi;

(3) the map div is the divisor map and the direct sum defining its target is taken over all
closed points P ∈ SK .

Given a closed point P ∈ X and a rational function u on X, an element of Θ of the form
({P}×X,u) (resp. of the form (X ×{P}, u)) is said to be vertical (resp. horizontal). A linear
combination of vertical and horizontal terms is said to be negligible. Similar definitions apply
to the tensor product Θ ⊗ F over any field F .

Let ∆ ⊂ S be a copy of the curve X diagonally embedded in S. Let F denote the field
introduced in §2.1.4, u ∈ O(YK)× ⊗ F be a modular unit with coefficients in F , and consider
the element (∆, u) ∈ Θ ⊗ F .

Lemma 3.1. There exists a negligible element θu ∈ Θ ⊗ F satisfying

div(θu) = div(∆, u).

Proof. Let Du = div(∆, u) ∈
∐

P∈S F be the image of the element (∆, u) ∈ Θ under the
divisor map. Since Du is an F -linear combination of elements of the form (c1, c1) − (c2, c2)
where c1 and c2 are cusps of the modular curve XK , it is enough to construct a negligible
element θ ∈ Θ ⊗ Q satisfying

(30) div(θ) = (c1, c1) − (c2, c2).

By the Manin-Drinfeld theorem, there is an element α ∈ O(YK)×⊗Q whose divisor is c1 − c2,
and the negligible element given by

θ = ({c1} × X,α) + (X × {c2}, α)

satisfies (30). The lemma follows. �

Thanks to Lemma 3.1, we can associate to any element of the form (∆, u) ∈ Θ ⊗ F the
element

(31) ∆u := class of (∆, u) − θu in H3
M(S, F (2)).
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These elements were introduced by Beilinson in [Bei, Ch. 2, §6]. A variant ([Fl, Prop 2.1])
of the above construction was later exploited by Flach in loc. cit. to prove the finiteness of
the Tate-Shafarevic group of the symmetric square of an elliptic curve, using the method
of Kolyvagin. We call ∆u the Beilinson-Flach element attached to the modular unit u ∈
O(YK)× ⊗ F . Strictly speaking, ∆u is not a well-defined element in H3

M(S, F (2)), as it is
only well-defined modulo the F -vector space generated by the classes of negligible elements.
However, this inherent ambiguity will not lead to problems because the image of ∆u under
the relevant piece of the regulator maps will turn out to depend only on u and not on the
choice of θu made in defining ∆u. See Proposition 3.3 below for more details.

3.2. Complex regulators. Fix an embedding of K into the field of complex numbers. Fol-
lowing the definitions in [Bei, §2], [DS, §2], the complex regulator on H 3

M(SC, Q(2)) may be
regarded as a map

(32) regC : H3
M(SC, Q(2)) −→ (Fil1H2

dR(S/C))∨,

where here the superscript ∨ denotes the complex linear dual. It sends the class of θ =∑
i(Zi, ui) to the element regC(θ) defined by

regC(θ)(ω) =
1

2πi

∑

i

∫

Zi−Zsing
i

ω log |ui|.

Recall the modular unit uχ associated to the Dirichlet character χ, and the class ηah
f ∈

H1
dR(X/C) attached to the cusp form f . Moreover, write as customary ωg ∈ Fil1H1

dR(X/C)
for the class associated to the regular differential 2πig(z)dz.

The tensor product ωg ⊗ ηah
f of these classes gives rise, via the Künneth decomposition of

H2
dR(S/C), to an element of Fil1H2

dR(S/C).

Proposition 3.2. With notations as above, we have

regC(∆uχ)(ωg ⊗ ηah
f ) = (−2i)[Γ0(N) : Γ1(N)(±1)]〈f ∗, f∗〉−1

2,N 〈f∗(z), log |uχ(z)| · g(z)〉2,N .

Proof. Since the differential ωg ⊗ηah
f vanishes identically on the horizontal and vertical curves

on S, the negligible element θuχ arising in the definition of ∆uχ does not contribute to the
value of the regulator at that class. Hence

regC(∆uχ)(ωg ⊗ ηah
f ) =

∫

X(C)

f̄∗(z)

〈f∗, f∗〉2,N
g(z) log |uχ(z)|dzdz̄

= (−2i)[Γ0(N) : Γ1(N)(±1)]〈f ∗, f∗〉−1
2,N 〈f∗(z), log |uχ(z)| · g(z)〉2,N ,

where the last equality follows from the explicit formula for the Petersson scalar product on
Sra

k (N,χ−1
f ). �

3.3. p-adic regulators. Let Kp be a finite extension of Qp containing K and fix an embedding
of Kp in Cp. Write Op, resp. kp for the ring of integers, resp. the residue field of Kp. Let

X denote the (Deligne-Rapoport) smooth model of X over Op, and X̃/kp its special fiber.
Define S = X × X , which is a smooth projective model of SKp over Op.

In analogy with the complex regulator (32), there is a p-adic syntomic regulator map

(33) regp : H3
M(SKp , Q(2)) −→ (Fil1H2

dR(S/Kp))
∨ := Hom(Fil1H2

dR(S/Kp),Kp)

arising from the syntomic Chern character in K-theory (cf. [Gros], [Ni], [Bes3]).
After possibly enlarging the field Kp, let {P1, ..., Pt} ⊂ X (Op) be a set of points consisting

of the cusps and of a choice of a lift of every supersingular point in X̃ (F̄p). Set

X ′ = X \ {P1, ..., Pt}, X ′ = X ′ ×specOp specKp.
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Let red : X (Op) −→ X̃ (kp) denote the reduction map and let A ⊂ X(Kp) be the affinoid
subspace of the rigid analytic variety underlying X defined by

A := X(Kp) − red−1({P̃1, . . . , P̃t}), P̃j := red(Pj).

Fix a system {Wε}ε>0 of wide open neighborhoods of A as in [DR, §2.1] and denote Φ the
canonical lift of Frobenius on X as in [DR, §2.2]. As explained in loc. cit., restriction from X ′

to Wε gives rise to an isomorphism

(34) H1
dR(X ′)

compε
// H1

rig(Wε)

between the de Rham cohomology of the open curve X ′ and the rigid cohomology H1
rig(Wε)

of Wε. The inclusion X ′ ⊂ X yields by restriction a monomorphism

H1
dR(X) ↪→ H1

dR(X ′),

and the image of H1
dR(X) under compε consists of those classes in H1

rig(Wε) whose annular

residues about all the points {Pi} vanish. The lift Φ of Frobenius induces a linear endomor-
phism of H1

rig(Wε) which preserves the subspace H1
dR(X).

Label now two copies of X as X1 and X2, denote by Φ1 and Φ2 the corresponding canonical
lifts of Frobenius on the system of wide open neighborhoods Wε, and write Φ12 := (Φ1,Φ2)
for the associated lift of Frobenius on the product X1 × X2.

Choose a polynomial P (x) ∈ Cp[x] such that

(i) P (Φ12) annihilates the class of ωg ⊗
duχ

uχ
in H2

rig(W
2
ε );

(ii) P (Φ) is an invertible endomorphism on H1
dR(X ′).

Such a polynomial exists, since the eigenvalues of Φ12 acting on the space spanned by the

Frobenius translates of ωg ⊗
duχ

uχ
have complex absolute value p3/2, while Φ acts on H1

dR(X ′)

with eigenvalues of complex absolute value p1/2 and p.
Thanks to (i), there exists a rigid analytic one-form

(35) %
P
∈ Ω1(W2

ε ) such that d(%
P
) = P (Φ12)

(
ωg ⊗

duχ

uχ

)
.

This form, which depends on the choice of P , is only determined up to closed forms in Ω1(W2
ε )

by (35).
In order to adapt our calculations to Besser’s in [Bes2] and [Bes3], it will be convenient to

fix a particular choice of polynomial P and form %
P
. (In the next section we shall exploit the

fact that the computations performed there hold independently of the choice of P , and will
work with a different polynomial so that we can take advantadge of the results obtained in
[DR].)

Let Pg(t) ∈ Cp[t] be a polynomial such that Pg(Φ) annihilates the class of ωg in H1
rig(Wε).

Specifically, we may set Pg(t) := t2 − ap(g)t + χg(p)p, and let Fg ∈ Orig(Wε) be a Coleman
integral of ωg, that is to say, a rigid analytic function such that

(36) pdFg = pωg[p] = Pg(Φ)ωg

(cf. for example equation (127) of [DR]). Likewise, let PEχ(t) ∈ Cp[t] be a polynomial such

that PEχ(Φ) annihilates the class of the Eisenstein series Eχ =
duχ

uχ
in H1

rig(Wε). Here we

make the specific choice PEχ(t) := th − ph, where h is the order of the root of unity χ(p) (in

other words, Φh/ph fixes the class of Eχ). Although a more optimal choice for PEχ(t) would
have been the linear polynomial t − χ(p)p, we made here a choice corresponding to the one
made in the definition of the modified syntomic regulator reg(uχ) of the function uχ (cf. [Bes2,
Prop. 10.3]). The rigid analytic function

(37) FEχ := p−hPEχ(Φ) log(uχ) ∈ Orig(Wε)
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is a Coleman integral of Eχ, satisfying

phdFEχ = PEχ(Φ)Eχ.

Given two choices as above of polynomials Pg(t) =
∏

i(t − αi) and PEχ(t) =
∏

j(t − βj), it
is clear that the polynomial

(38) P (t) := Pg(t) ? PEχ(t) :=
∏

i,j

(t − αiβj)

satisfies (i) above. Moreover, as explained in [Bes1, Lemma 4.2, (4)], there exist polynomials
a(t1, t2), b(t1, t2) such that P (t1 · t2) = p−1a(t1, t2)Pg(t1)+ p−hb(t1, t2)PEχ(t2) ∈ Cp[t1, t2] and
one checks that

(39) %
P

= a(Φ1,Φ2)

(
Fg ⊗

duχ

uχ

)
+ b(Φ1,Φ2)(ωg ⊗ FEχ) ∈ Ω1(W2

ε )

then satisfies (35).
There is a certain degree of ambiguity in (39): neither the Coleman primitives Fg, FEχ nor

the polynomials a(t1, t2), b(t1, t2) are unique. But all solutions of the differential equation
(35) are of the form (39); moreover, given one such %

P
, all them can be written as %

P
+ %0

with %0 a closed 1-form on W2
ε .

We can single out a canonical choice of %
P

(up to exact 1-forms on W2
ε ) by setting

Fg(∞) = FEχ(∞) = 0 in (39); more precisely, in doing this, two different choices of pairs
(a(t1, t2), b(t1, t2)), (a′(t1, t2), b

′(t1, t2)) allowed by [Bes1, Lemma 4.2, (4)] give rise to forms
%P,a,b, %P,a′,b′ such that %0 = %P,a,b − %P,a′,b′ is exact on W2

ε and therefore the class of %0 in
H1

rig(W
2
ε ) vanishes.

Imposing Fg(∞) = 0 amounts to normalizing the q-expansion of Fg to be

(40) Fg(q) =
∑

p-n

an(g)

n
qn,

and the condition FEχ(∞) = 0 is equivalent to normalizing the modular unit uχ as was done
in Definition 2.4. This way FEχ also equals the modified syntomic regulator reg(uχ) of uχ

defined in [Bes2, Prop. 10.3].
Let ∆ ⊂ W2

ε denote the diagonal and define

(41) ξ′P := [%
P |∆] ∈ H1

rig(Wε) ' H1
dR(X ′).

The above discussion shows that the class ξ ′P in H1
rig(Wε) = Ω1(Wε)

dO(Wε)
is well-defined. More-

over, in view of condition (ii), we can now set

(42) ξ′ := P (Φ)−1 · ξ′P ∈ H1
dR(X ′),

which is directly seen to be independent of the choice of P .
Finally, let splX : H1

dR(X ′) −→ H1
dR(X) denote the Frobenius equivariant splitting of the

short exact sequence

(43) 0 → H1
dR(X) −→ H1

dR(X ′) −→ Kp(−1)t−1 → 0

and set ξ := splX(ξ′) ∈ H1
dR(X).

Proposition 3.3. With notations as above, we have

regp(∆uχ)(ωg ⊗ ηur
f ) = 〈ηur

f , ξ〉,

where 〈 , 〉 is the pairing on H1
dR(X) induced by Poincaré duality.
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Proof. Thanks to the work of Besser [Bes3], the p-adic syntomic regulator (33) admits the
following description in terms of Coleman integration. Let θ =

∑
i(Zi, ui) be an element in

K
(2)
1 (S) and write ιi : Zi ↪→ S for the embedding of Zi in S given by inclusion. Assume for

simplicity that the curves Zi are all non-singular, and that θ is integral, by what we mean
that for each i:

• the curve Zi admits a smooth integral model Zi over Op, and
• the divisor of ui, when regarded as a function on Zi, does not contain the special fiber.

Note that these conditions are satisfied in our setting.
Under this assumption, θ lies in the image of the natural restriction map K1(S) −→ K1(S).
Let ΩII(XKp) denote the space of differential forms of the second kind on XKp , that is to

say, the space of meromorphic 1-forms whose residue at any point of the curve is zero. There
is an exact sequence

0 → Kp(X)×
d

−→ ΩII(XKp) −→ H1
dR(X/Kp) → 0

and for any η ∈ ΩII(XKp) we write [η] for its class in H1
dR(X/Kp).

Instead of invoking the description of the p-adic syntomic regulator in terms of Besser-de
Jeu’s global triple index as stated in the main theorem of [Bes3], it will be more convenient for
us to exploit [Bes3, Prop. 6.3], which provides a formula for (33) in the language of Besser’s
finite polynomial cohomology [Bes1]. In order to state this formula, let H ∗

ms and H∗
fp de-

note, respectively, Besser’s modified version of syntomic cohomology and finite polynomial
cohomology: cf. e.g. [Bes3, §2] for a quick review of both and their interactions.

Let ω ∈ Ω1(XKp) be a regular form on X and η ∈ ΩII(XKp) be a differential of the second

kind, regular on some affine curve X0 ⊂ X. Write

ω1 = π∗
1(ω) ∈ Ω1(S), η2 = π∗

2(η) ∈ ΩII(S)

for the pull-back of ω and η under the projection of S into the first and second component,
respectively.

Then the class ω1 ∧ [η2] is an element of Fil1H2
dR(S) and, according to [Bes3, Theorem 1.1,

Proposition 6.3]:

(44) regp(θ)(ω1 ⊗ [η2]) =
∑

i

〈ι∗i η̃2, ι
∗
i ω̃1 ∪ reg(ui)〉Z0

i ,fp,

where

• Z0
i = Zi ∩ (X × X0), Z0

i is the model for Z0
i deduced from Zi,

• reg(ui) ∈ H1
ms(Z

0
i , 1) ⊆ H1

fp(Z
0
i , 1, 2) is the regulator of the function ui as defined in

[Bes2, Prop. 10.3],
• ι∗i ω̃1 ∈ H1

fp(Zi, 1, 1) is a Coleman primitive of ι∗i ω ∈ Ω1(Zi),

• ι∗i η̃2 ∈ H1
fp,c(Z

0
i , 0, 1) is the single lift of ι∗i ([η2]) under the isomorphism

(45) p : H1
fp,c(Z

0
i , 0, 1)

∼
→ H1

dR(Zi)

of [Bes3, Lemma 6.2], and

(46) 〈 , 〉Z0
i ,fp : H1

fp,c(Z
0
i , 0, 1) × H2

fp(Z
0
i , 2, 3) −→ H3

fp,c(Z
0
i , 2, 4) ' H2

dR,c(Z
0
i )

tr
' Kp

is the pairing induced by Poincaré duality in finite polynomial cohomology. Here H ∗
fp,c stands

for finite polynomial cohomology with compact support, as introduced in [Bes3, §4]. The cup-
product (46) is constructed in loc. cit., where it is also shown that it satisfies the projection
formula.

At the time [Bes3] was written, the results were subject to the compatibility of pushfor-
ward maps in syntomic and motivic cohomology, as specified in [Bes3, Conjecture 4.2]. At
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present this compatibility has been checked by Déglise and Mazzari [DM], and thus (44) holds
unconditionally.

Let us now apply (44) to the Beilinson-Flach element ∆uχ that was introduced in (31).
Recall that the curves in X × X on which ∆uχ is supported are the images of X under
the diagonal embedding ι12(x) = (x, x) and the various horizontal and vertical embeddings
ι1,c(x) = (x, c) and ι2,c(x) = (c, x), where c is a cusp on the modular curve X.

We firstly claim that the terms on the right-hand side of (44) corresponding to ι1,c and
ι2,c vanish and the one corresponding to ι12 is independent of the choices of lifts to finite
polynomial cohomology.

To see that, put ω = ωg and η = ηur
f and recall X ′ = X ′×Kp is the curve obtained from X by

removing a finite set of points including all the cusps. Note first that ι∗1,c([η2]) = 0 ∈ H1
dR(X),

because the composition π2 ◦ ι1,c is the constant function c on X. Hence, since the map p in
(45) is an isomorphism, the class of the lift ι∗1,c(η̃2) is also trivial and

〈ι∗1,cη̃2, ι
∗
1,cω̃1 ∪ reg(u)〉X ′,fp = 0,

for any rational function u.
We similarly have ι∗2,c(ω1) = 0 ∈ Ω1(X) because π1 ◦ ι2,c = c. Notice however that a lift of

0 to H1
fp(X , 1, 1) is not necessarily trivial, but represented by a pair in Orig(Wε) ⊕ Ω1(X) of

the form [(λ, 0)], where λ is a constant. Then, if u is a modular unit on X, the cup-product

ι∗2,cω̃1 ∪ reg(u) ∈ H2
fp(X

′, 2, 3) ' H1
dR(X ′) ' H1

rig(Wε)

may be represented by the pair (λ du
u |Wε

, 0). But then

(47) 〈ι∗2,cη̃2, ι
∗
2,cω̃1 ∪ reg(u)〉X ′,fp = λ〈ηur

f ,
du

u
〉dR = 0

because the cusp form f is orthogonal to the Eisenstein series du
u . This accounts for the

vanishing of the horizontal and vertical terms, and explains why we call them negligible.
As for the diagonal term, let us show that 〈ι∗12η̃2, ι

∗
12ω̃1 ∪ reg(uχ)〉X ′,fp is independent of the

choices of lifts to finite polynomial cohomology. Since π1 ◦ ι12 and π2 ◦ ι12 are both the identity
map on X, this is just 〈η̃ur

f , ω̃g ∪ reg(uχ)〉X ′,fp. Again there is a single choice for η̃ur
f , but the

Coleman integral Fg of ωg is only well-defined up to a constant. The difference between any
two choices is then equal to

〈η̃ur
f , [(λ, 0)] ∪ reg(uχ)〉X ′,fp = λ

〈
ηur

f ,
duχ

uχ

〉

dR

for some λ ∈ Kp, and the same orthogonality argument between cusp and Eisenstein forms
again shows that this is 0. The claim follows.

Summing up, we obtain from (44) that

(48) regp(∆uχ)(ωg ⊗ ηur
f ) = 〈η̃ur

f , ω̃g ∪ reg(uχ)〉X ′,fp.

Recall that ω̃g may be represented by the pair (Fg, ωg) where Fg ∈ Orig(Wε) is a Coleman
integral of ωg, which in light of the above claim we are entitled to normalize as it was done in

(40). Besides, by [Bes2, Prop. 10.3] the class reg(uχ) is represented by the pair (FEχ ,
duχ

uχ
) ∈

Orig(Wε)⊕Ω1(X ′) where FEχ is the Coleman integral of
duχ

uχ
introduced in (37) and normalized

as we explained right after (40).
By definition, ω̃g ∪ reg(uχ) is the restriction to the diagonal of π∗

1ω̃g ∧π∗
2reg(uχ). Note that

the polynomial P defined in equation (38) satisfies the properties (i) and (ii) above. The class
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π∗
1ω̃g ∧ π∗

2reg(uχ) in H2
fp(X

′2, 2, 3) may then be represented by the pair

(49) (%
P
, π∗

1ωg ∧ π∗
2

duχ

uχ
) ∈ Ω1

rig(W
2
ε ) ⊕ Ω2(X ′2)

where %
P

is the form introduced in (39), which satisfies

(50) d%
P

= P (Φ12)(π
∗
1ωg ∧ π∗

2

duχ

uχ
).

Let us again remark that this differential equation does not determine %
P

uniquely, but
that the above normalizations of Fg and FEχ completely determine it up to exact 1-forms on

W2
ε . Obviously, when we restrict (49) to the diagonal, this ambiguity does not affect the class

we obtain in H2
fp(X

′, 2, 3), because exact 1-forms on Wε vanish in H1
rig(Wε).

In conclusion, the class ω̃g ∪ reg(uχ) in H2
fp(X

′, 2, 3) may be represented by the pair

(ι∗12(%P
), 0) ∈ Ω1

rig(Wε) ⊕ Ω2(X ′),

where %
P

is as above and ι∗12(%P
) is the form denoted ξ′P in (41).

As in [Bes1, (14)] there is a commutative diagram

(51) H1
fp,c(X

′, 0, 1) × H1
dR(X ′)

Id×i
//

p×Id
��

H1
fp,c(X

′, 0, 1) × H2
fp(X

′, 2, 3)

〈 , 〉fp
��

H1
dR,c(X

′)w=1 × H1
dR(X ′)

〈 , 〉dR
// H2

dR,c(X
′) ' H3

fp,c(X
′, 2, 4),

where H1
dR,c(X

′)w=1 stands for the pure submodule of weight 1 of H1
dR,c(X

′). In fact both
maps

H1
dR(X ′)

i
−→ H1

fp(X
′, 2, 3) and H1

fp,c(X
′, 0, 1)

p
−→ H1

dR,c(X
′)w=1

are isomorphisms, as it follows from [Bes3, (2.7) and the first assertion of Lemma 2.8].
By definition of i, the preimage of ω̃g ∪ reg(uχ) = [(ξ′P , 0)] under i is the class in H1

rig(Wε)

of the 1-form P (Φ)−1(ξ′Q) = ξ′. To conclude, we now deduce from the commutativity of (51)
that

〈ηur
f , ξ′〉dR = 〈η̃ur

f , i(ξ′)〉fp = 〈η̃ur
f , ω̃g ∪ reg(uχ)〉fp.

Since the class ηur
f is orthogonal to the complement of H1

dR(X) in H1
dR(X ′) under the Frobenius

equivariant splitting of (43), we have 〈ηur
f , ξ′〉dR = 〈ηur

f , ξ〉dR and the proposition follows. �

4. The Beilinson formula

Let f ∈ S2(N,χf ), g ∈ S2(N,χg) be eigenforms of weight 2 as in Section 2.1.4. Recall that
f and g are not assumed to be newforms. Moreover, we insist on the condition χf 6= χ−1

g ,

which implies that χ = χ−1
f χ−1

g is non-trivial.

4.1. The complex setting. In [Bei, Ch. 2, § 6], Beilinson relates the image of ∆uχ under
the complex regulator map to the value at s = 2 of the Rankin L-series attached to f ⊗ g.
The following explicit version of Beilinson’s theorem is a slight generalisation of the results of
[BaSr].

Proposition 4.1. For cusp forms f and g of weight two as in Section 2.1.4, we have

L(f ⊗ g, 2)

〈f∗, f∗〉2,N
= (8i)π3[Γ0(N) : Γ1(N)(±1)]−1N−2τ(χ−1)regC(∆uχ)(ωg ⊗ ηah

f ).

Proof. This follows by combining the explicit formula for L(f ⊗ g, 2) obtained in Proposition
2.5 with the explicit expression for regC(∆uχ) given in Proposition 3.2. �
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4.2. The p-adic setting. Let p ≥ 3 be a prime which does not divide N . Assume that f is
ordinary at p (with respect to a fixed embedding of the field Kf in Cp). Let f be the Hida
family whose specialisation in weight 2 is the p-stabilisations of f , and let Lp(f , g)(k, j) be
the p-adic L-function defined in Section 2.2.2.

Let E(f), E∗(f) and E(f, g, 2) be the p-adic multipliers defined in Sections 2.2.1 and 2.2.2.
Recall that

E(f, g, 2) = (1 − βp(f)αp(g)p−2)(1 − βp(f)βp(g)p−2)

×(1 − βp(f)αp(g)χ(p)p−1)(1 − βp(f)βp(g)χ(p)p−1).

The following p-adic Beilinson formula is the main result of this paper.

Theorem 4.2. For cusp forms f and g of weight two as in Section 2.1.4, we have

Lp(f , g)(2, 2) =
E(f, g, 2)

E(f) · E∗(f)
× regp(∆uχ)(ωg ⊗ ηur

f ).

Proof. By the description of the p-adic L-function given in equation (28),

Lp(f , g)(k, j) =
1

E∗(fk)

〈
ηur

fk
,Ξ(fk, g, j)ord,p

〉
k,X

for all triples (k, `, j) belonging to the set (26). Since the terms in the above expression vary
analytically, taking the limit to k = ` = j = 2 yields, in light of equation (25),

(52) Lp(f , g)(2, 2) =
1

E∗(f)

〈
ηur

f , eord(d−1E
[p]
2,χ · g)

〉
2,X

.

On the other hand, by Proposition 3.3

regp(∆uχ)(ωg ⊗ ηur
f ) = 〈ηur

f , ξ〉.

Since

Φ(ηur
f ) = αp(f)ηur

f , 〈Φ(ηur
f ),Φ(ξ)〉 = p〈ηur

f , ξ〉, αp(f)βp(f) = χf (p)p,

we deduce by multi-linearity that

〈ηur
f , ξ〉 = P

(
χ−1

f (p)βp(f)
)−1

〈ηur
f , ξ′P 〉.

Since f is an ordinary eigenform, the quantity 〈ηur
f , ξ′P 〉 only depends on the f ∗-isotypical

ordinary projection of ξ ′P , that is to say, 〈ηur
f , ξ′P 〉 = 〈ηur

f , ef∗eordξ′P 〉.

Choose the polynomial P (x) satisfying conditions (i) and (ii) to be

P (x) := (x − αp(g)) · (x − αp(g)χ(p)p) · (x − βp(g)) · (x − βp(g)χ(p)p).

This choice of P has the advantage of allowing us to directly invoke the calculations already
performed in [DR, Prop. 5.4]. They give

ef∗eordξ
′
P = χf (p)−2p4E(f) · ef∗eord(d−1E

[p]
2,χ · g).

A direct calculation shows that

E(f, g, 2) = p−4χf (p)−2P
(
χ−1

f (p)βp(f)
)
.

By combining the above remarks, we find the following expression for the p-adic regulator:

(53) regp(∆uχ)(ωg ⊗ ηur
f ) =

E(f)

E(f, g, 2)
×

〈
ηur

f , ef∗eord(d
−1E

[p]
2,χ · g)

〉
2,X

.

The theorem follows by comparing equations (52) and (53). �

Remark 4.3. Note that the modular form g that arises in Theorem 4.2 is fixed throughout
the argument, and is thus not required to be ordinary at p.
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Assume now that both f and g are ordinary at p (with respect to a fixed embedding of
the field Kfg in Cp). Let f and g be the Hida families whose specialisations in weight 2 are
the p-stabilisations of f and g, respectively, and let Lp(f ,g)(k, `, j) be the p-adic L-function
defined in Section 2.2.2. The following corollary is an immediate consequence of Theorem 4.2.

Corollary 4.4. For cusp forms f and g of weight two as in Section 2.1.4, we have

Lp(f ,g)(2, 2, 2) =
E(f, g, 2)

E(f) · E∗(f)
× regp(∆uχ)(ωg ⊗ ηur

f ).
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