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We outline a new construction of rational points on CM elliptic curves, using cycles on

higher-dimensional varieties, contingent on certain cases of the Tate conjecture. This

construction admits of complex and p-adic analogs that are defined independently of

the Tate conjecture. In the p-adic case, using p-adic Rankin L-functions and a p-adic

Gross–Zagier type formula proved in our articles [2, 3], we show unconditionally that

the points so constructed are in fact rational. In the complex case, we are unable to

prove rationality (or even algebraicity) but we can verify it numerically in several cases.

1 Introduction

The theory of Heegner points supplies one of the most fruitful approaches to the Birch

and Swinnerton-Dyer conjecture, leading to the best results for elliptic curves of ana-

lytic rank 1. In spite of attempts to broaden the scope of the Heegner point construction

([1, 7, 8, 20]), all provable, systematic constructions of algebraic points on elliptic curves

still rely on parameterizations of elliptic curves by modular or Shimura curves. The

primary goal of this article is to explore new constructions of rational points on elliptic
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746 M. Bertolini et al.

curves and abelian varieties in which, loosely speaking, Heegner divisors are replaced by

higher-dimensional algebraic cycles on certain modular varieties. In general, the alge-

braicity of the resulting points depends on the validity of ostensibly difficult cases of

the Hodge or Tate conjectures. One of the main theorems of this article (Theorem 1.4

of Section 1) illustrates how these algebraicity statements can sometimes be obtained

unconditionally by exploiting the connection between the relevant “generalized Heegner

cycles” and values of certain p-adic Rankin L-series.

We begin with a brief sketch of the classical picture that we aim to generalize. It

is known thanks to [6, 19, 21] that all elliptic curves over the rationals are modular. For

an elliptic curve A of conductor N, this means that

L(A, s)= L( f, s), (1.1)

where f(z)=∑an e2πinz is a cusp form of weight 2 on the Hecke congruence group Γ0(N).

The modularity of A is established by showing that the p-adic Galois representation

Vp(A) :=
(
lim← A[pn]

)
⊗Qp= H1

et(Ā,Qp)(1)

is a constituent of the first p-adic étale cohomology of the modular curve X0(N). On the

other hand, the Eichler–Shimura construction attaches to f an elliptic curve quotient Af

of the Jacobian J0(N) of X0(N) satisfying L(Af , s)= L( f, s). In particular, the semisimple

Galois representations Vp(Af ) and Vp(A) are isomorphic. It follows from Faltings’ proof

of the Tate conjecture for abelian varieties over number fields that A is isogenous to Af ,

and therefore, there is a nonconstant morphism

Φ : J0(N)−→A (1.2)

of algebraic varieties over Q, inducing, for each F ⊃Q, a map ΦF : J0(N)(F )−→A(F ) on

F -rational points.

A key application of Φ arises from the fact that X0(N) is equipped with a distin-

guished supply of algebraic points corresponding to the moduli of elliptic curves with

complex multiplication by an order in a quadratic imaginary field K. The images under

ΦQ̄ of the degree 0 divisors supported on these points produce elements of A(Q̄) defined

over abelian extensions of K, which include the so-called Heegner points. The Gross–

Zagier formula [12] relates the canonical heights of these points to the central critical

derivatives of L(A/K, s) and of its twists by (unramified) abelian characters of K. This
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Chow–Heegner Points on CM Elliptic Curves 747

connection between algebraic points and Hasse–Weil L-series has led to the strongest

known results on the Birch and Swinnerton-Dyer conjecture, most notably the theorem

that

rank(A(Q))= ords=1L(A, s) and #X(A/Q) <∞, when ords=1(L(A, s))≤ 1,

which follows by combining the Gross-Zagier formula and a method of Kolyvagin [11]

are combined. The theory of Heegner points is also the key ingredient in the proof of the

main results in [3].

Given a variety X (defined over Q, say), let CH j(X)(F ) denote the Chow group

of codimension j algebraic cycles on X defined over a field F modulo rational equiva-

lence and let CH j(X)0(F ) denote the subgroup of null-homologous cycles. Write CH j(X)

and CH j(X)0 for the corresponding functors on Q-algebras. Via the natural equivalence

CH1(X0(N))0 = J0(N), the map Φ of (1.2) can be recast as a natural transformation

Φ : CH1(X0(N))0−→A. (1.3)

It is tempting to generalize (1.3) by replacing X0(N) by a variety X over Q of dimension

d> 1 and CH1(X0(N))0 by CH j(X)0 for some 0≤ j ≤d. Any element Π of the Chow group

CHd+1− j(X × A)(Q) induces a natural transformation

Φ : CH j(X)0−→A (1.4)

sending Δ ∈CH j(X)0(F ) to

ΦF (Δ) := πA,∗(π∗X(Δ̃) · Π̃), (1.5)

where πX and πA denote the natural projections from X × A to X and A, respectively.

We are interested mainly in the case where X is a Shimura variety or is closely related

to a Shimura variety. (For instance, when X is the universal object or a self-fold fiber

product of the universal object over a Shimura variety of PEL type.) The variety X is

then referred to as a modular variety and the natural transformation Φ is called the

modular parameterization of A attached to the pair (X,Π).

Modular parameterizations acquire special interest when CH j(X)0(Q̄) is

equipped with a systematic supply of special elements, such as those arising from

Shimura subvarieties of X. The images in A(Q̄) of such special elements under ΦQ̄ can

be viewed as “higher dimensional” analogs of Heegner points: they will be referred to
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748 M. Bertolini et al.

as Chow–Heegner points. Given an elliptic curve A, it would be of interest to construct

modular parameterizations to A in the greatest possible generality, study their basic

properties, and explore the relations (if any) between the resulting systems of Chow–

Heegner points and leading terms of L-series attached to A.

We develop this loosely formulated program in the simple but nontrivial setting

where A is an elliptic curve with complex multiplication by an imaginary quadratic field

K of odd discriminant−D, and X is a suitable family of 2r-dimensional abelian varieties

fibered over a modular curve.

For Section 1, suppose for simplicity that K has class number one and that A

is the canonical elliptic curve over Q of conductor D2 attached to the Hecke character

defined by

ψA((a))= εK(a mod
√−D)a,

where εK is the quadratic character of conductor D associated with the field K. (These

assumptions will be significantly relaxed in the body of the paper.) Given a nonzero

differential ωA∈Ω1(A/Q), let [ωA] denote the corresponding class in the de Rham coho-

mology of A.

Fix an integer r ≥ 0, and consider the Hecke character ψ =ψr+1
A . The binary theta

series

θψ :=
∑

a⊂OK

ψr+1
A (a)qaā

attached to ψ is a modular form of weight r + 2 on a certain modular curve C (which is

a quotient of X1(D) or X0(D2) depending on whether r is odd or even), and has rational

Fourier coefficients. Such a modular form gives rise to a regular differential (r + 1)-form

ωθψ on the rth Kuga–Sato variety over C , denoted by Wr. Let [ωθψ ] denote the class of ωθψ

in the de Rham cohomology Hr+1
dR (Wr/Q). The classes of ωθψ and of the antiholomorphic

(r + 1)-form ω̄θψ generate the θψ-isotypic component of Hr+1
dR (Wr/C) under the action of

the Hecke correspondences.

For all 1≤ j ≤ r + 1, let pj : Ar+1−→A denote the projection onto the jth factor,

and let

[ωr+1
A ] := p∗1[ωA] ∧ · · · ∧ p∗r+1[ωA] ∈ Hr+1

dR (Ar+1).

Our construction of Chow–Heegner points is based on the following conjecture,

which is formulated (for more general K, without the class number one hypothesis) in

Section 2.
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Chow–Heegner Points on CM Elliptic Curves 749

Conjecture 1.1. There is an algebraic cycle Π ? ∈CHr+1(Wr × Ar+1)(K)⊗Q satisfying

Π ?∗
dR([ω

r+1
A ])= cψ,K · [ωθψ ],

for some element cψ,K in K×, where

Π ?∗
dR : Hr+1

dR (Ar+1/K)−→Hr+1
dR (Wr/K)

is the map on de Rham cohomology induced by Π ?. �

Remark 1.2. In fact, in the special case considered above, using that A is defined over

Q and not just K, one can arrange the cycle Π ? to be defined over Q (if it exists at

all!). Then cψ,K lies in Q×, and by appropriately scaling Π ?, we may further arrange that

cψ,K = 1. This would simplify some of the forthcoming discussion, see for example the

commutative diagram (1.13). However, we have chosen to retain the constant cψ,K in the

rest of the introduction in order to give the reader a better picture of the more general

situation considered in the main text where the class number of K is not 1 and the curve

A can be defined only over some extension of K. �

Remark 1.3. The rationale for Conjecture 1.1 is explained in Section 2.4, where it is

shown to follow from the Tate conjecture on algebraic cycles. To the authors’ knowledge,

the existence of Π ? is known only in the following cases:

(1) r = 0, where it follows from Faltings’ proof of the Tate conjecture for a prod-

uct of curves over number fields;

(2) (r, D)= (1,−4) (see [16, Remark 2.4.1]) and (1,−7), where it can be proved

using the theory of Shioda–Inose structures and the fact that Wr is a singular

K3 surface [10];

(3) r = 2 and D =−3, (see [18, Section 1]).

For general values of r and D, Conjecture 1.1 appears to lie rather deep and might be

touted as a good “proving ground” for the validity of the Hodge and Tate conjectures.

One of the main results of this paper—Theorem 1.4—uses p-adic methods to establish

unconditionally a consequence of Conjecture 1.1, leading to the construction of ratio-

nal points on A. The complex calculations of the last section likewise lend numerical

support for a (ostensibly deeper) complex analog of Theorem 1.4. Sections 3 and 4 may
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therefore be viewed as providing indirect support (of a theoretical and experimental

nature, respectively) for the validity of Conjecture 1.1. �

We next make the simple (but key) remark that the putative cycle Π ? is also

an element of the Chow group CHr+1(Xr × A)⊗Q, where Xr is the (2r + 1)-dimensional

variety

Xr :=Wr × Ar.

Viewed in this way, the cycle Π ? gives rise to a modular parameterization

Φ? : CHr+1(Xr)0,Q :=CHr+1(Xr)0 ⊗Q−→A⊗Q (1.6)

as in (1.4), that is defined over K, that is, there is a natural map

Φ?
F : CHr+1(Xr)0(F )−→A(F )⊗Q

for any field F containing K. Furthermore, it satisfies the equation

Φ?∗
dR(ωA)= cψ,K · ωθψ ∧ ηr

A. (1.7)

Here ηA is the unique element of H1
dR(A/K) satisfying

[λ]∗ηA= λ̄ηA, for all λ ∈OK , 〈ωA, ηA〉 = 1, (1.8)

where [λ] denotes the element of EndK(A) corresponding to λ. (See Proposition 2.11 for

details.)

Article [2] introduced and studied a collection of null-homologous, r-

dimensional algebraic cycles on Xr, that is, elements of the source CHr+1(Xr)0,Q of

the map (1.6), referred to as generalized Heegner cycles. These cycles, whose precise

definition is recalled in Section 2.5, extend the notion of Heegner cycles on Kuga–Sato

varieties considered in [13, 17, 22]. They are indexed by isogenies ϕ : A−→A′ and are

defined over abelian extensions of K. It can be shown that they generate a subspace

of CHr+1(Xr)0,Q(Kab) of infinite dimension. The map Φ?
Kab (if it exists) transforms these

generalized Heegner cycles into points of A(Kab)⊗Q. It is natural to expect that the
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Chow–Heegner Points on CM Elliptic Curves 751

resulting collection {Φ?
Kab(Δϕ)}ϕ:A−→A′ of Chow–Heegner points generates an infinite-

dimensional subspace of A(Kab)⊗Q and that it gives rise to an “Euler system” in the

sense of Kolyvagin.

In the classical situation where r = 0, the variety Xr is just a modular curve and

(as already mentioned) the existence of Φ? follows from Faltings’ proof of the Tate con-

jecture for products of curves. When r ≥ 1, Section 3 uses p-adic methods to show that an

alternative cohomological construction of Φ?
Kab(Δϕ) gives rise in many cases to algebraic

points on A with the expected field of rationality and offers, therefore, some theoretical

evidence for the existence of Φ?. We now describe this construction briefly.

Let p be a rational prime split in K and fix a prime p of K above p. As explained

in Remark 2.12 of Section 2.4, even without the Tate conjecture, one can still define a

natural GK :=Gal(K̄/K)-equivariant projection

Φ∗et,p : H2r+1
et (X̄r,Qp)(r + 1)−→H1

et(Ā,Qp)(1)= Vp(A), (1.9)

where Vp(A) is the p-adic Galois representation arising from the p-adic Tate module of

A. A priori, this last map is well defined only up to an element in Q×p . We normalize it by

embedding K in Qp via p and requiring that the map

Φ∗dR,p : H2r+1
dR (Xr/Qp)−→H1

dR(A/Qp)

obtained by applying to Φ∗et,p the comparison functor between p-adic étale cohomology

and de Rham cohomology over p-adic fields satisfies

Φ∗dR,p(ωθψ ∧ ηr
A)=ωA, (1.10)

where ωθψ and ωA are as in Conjecture 1.1, and ηA is defined in (1.8). We can then define

the following p-adic avatars of Φ? without invoking the Tate conjecture:

(a) The map Φet
F :

Let F be a field containing K. The Chow group CHr+1(Xr)0,Q(F ) of null-

homologous cycles is equipped with the p-adic étale Abel–Jacobi map over F :

AJet
F : CHr+1(Xr)(F )0,Q−→H1(F, H2r+1

et (X̄r,Qp)(r + 1)), (1.11)
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where H1(F, M) denotes the continuous Galois cohomology of a GF :=Gal(F̄ /F )-module

M. The maps (1.11) and (1.9) can be combined to give a map

Φet
F : CHr+1(Xr)(F )0,Q−→H1(F,Vp(A)), (1.12)

which is the counterpart in p-adic étale cohomology of the conjectural map Φ?
F . More

precisely, the map Φet
F is related to Φ?

F (when the latter can be shown to exist) by the

commutative diagram

A(F )⊗Q

δ

��

CHr+1(Xr)0,Q(F )

Φ?
F

��

� � � � � � � 	 
 � �

Φet
F

�� H1(F,Vp(A))
·cψ,K

�� H1(F,Vp(A))

(1.13)

where

δ : A(F )⊗Q−→H1(F,Vp(A)) (1.14)

is the projective limit of the connecting homomorphisms arising in the pn-descent exact

sequences of Kummer theory, and cψ,K is the element in K× from Conjecture 1.1 viewed

as living in Q×p via the embedding of K in Qp corresponding to p.

(b) The map Φ
(v)
F : When F is a number field, (1.13) suggests that the image of Φet

F is

contained in the Selmer group of A over F , and this can indeed be shown to be the case.

In fact, one can show that for every finite place v of F , the image of Φet
Fv

is contained in

the images of the local connecting homomorphisms

δv : A(Fv)⊗Q−→H1(Fv,Vp(A)).

In particular, fixing a place v of F and replacing F by its v-adic completion Fv,

we can define a map Φ
(v)
F by the commutativity of the following local counterpart of the

diagram (1.13):

A(Fv)⊗Q

δv

��

CHr+1(Xr)0,Q(Fv)

Φ
(v)
F ��

Φet
Fv

�� H1(Fv,Vp(A))

(1.15)
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As will be explained in greater detail in Section 3, when v is a place lying over p, the map

Φ
(v)
F can also be defined by p-adic integration, via the comparison theorems between the

p-adic étale cohomology and the de Rham cohomology of varieties over p-adic fields.

The main theorem of this paper, which is proved in Section 3, relates the Selmer

classes of the form Φet
F (Δ) when F is a number field and Δ is a generalized Heegner cycle

to global points in A(F ). We will state only a special case of the main result, postponing

the more general statements to Section 3.2. Assume for Theorem 1.4 that the field K

has odd discriminant, that the sign in the functional equation for L(ψA, s) is −1, so that

the Hasse–Weil L-series L(A/Q, s)= L(ψA, s) vanishes to odd order at s= 1, and that the

integer r is odd. In that case, the theta series θψ belongs to the space Sr+2(Γ0(D), εK) of

cusp forms on Γ0(D) of weight r + 2 and character εK := ( ·D ). In particular, the variety

Wr is essentially the rth Kuga–Sato variety over the modular curve X0(D). Furthermore,

the L-series L(ψ2r+1
A , s) has sign +1 in its functional equation, and L(ψ2r+1

A , s) therefore

vanishes to even order at the central point s= r + 1.

Theorem 1.4. Let Δr be the generalized Heegner cycle in CHr+1(Xr)0,Q(K) attached to

the identity isogeny 1 : A−→A. The cohomology class Φet
K (Δr) belongs to δ(A(K)⊗Q).

More precisely, there is a point PD ∈ A(K)⊗Q (depending on D but not on r) such that

Φet
K (Δr)=

√−D ·mD,r · δ(PD),

where mD,r ∈Z satisfies

m2
D,r =

2r!(2π
√

D)r

Ω(A)2r+1
L(ψ2r+1

A , r + 1),

and Ω(A) is a complex period attached to A. The point PD is of infinite order if and only if

L ′(ψA,1) �= 0. �

This result is proved, in a more general form, in Theorems 3.3 and 3.5 of

Section 3.2. For an even more general (but less precise) statement in which the simplify-

ing assumptions imposed in Theorem 1.4 are considerably relaxed, see Theorem 3.4.

Remark 1.5. When L(A, s) has a simple zero at s= 1, it is known a priori that the

Selmer group Selp(A/K) is of rank 1 over K ⊗Qp and agrees with δ(A(K)⊗Qp). It follows
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directly that

Φet
K (Δr) belongs to δ(A(K)⊗Qp).

The first part of Theorem 1.4 is significantly stronger in that it involves the rational vec-

tor space A(K)⊗Q rather than its p-adification. This stronger statement is not a formal

consequence of the one-dimensionality of the Selmer group. Indeed, its proof relies on

invoking [3, Theorem 2] after relating the local point Φ(p)
Kp

(Δ) ∈ A(Kp)⊗Q= A(Qp)⊗Q to

the special value Lp(ψ
∗
A) of the Katz two-variable p-adic L-function that arises in that

theorem. �

Finally, we discuss the picture over the complex numbers. Section 4.1 describes

a complex homomorphism

ΦC : CHr+1(Xr)0(C)−→A(C),

which is defined analytically by integration of differential forms on Xr(C), without

invoking Conjecture 1.1, but agrees with Φ?
C (up to multiplication by some nonzero ele-

ment in OK ) when the latter exists. This map is defined using the complex Abel–Jacobi

map on cycles introduced and studied by Griffiths and Weil and is the complex analog

of the homomorphism Φ
(p)
Kp

. The existence of the global map Φ?
K predicted by the Hodge

or Tate conjecture would imply the following algebraicity statement:

Conjecture 1.6. Let H be a subfield of Kab and let Δϕ ∈CHr+1(Xr)0,Q(H) be a generalized

Heegner cycle defined over H . Then (after fixing an embedding of H into C),

ΦC(Δϕ) belongs to A(H)⊗Q,

and

ΦC(Δ
σ
ϕ )=ΦC(Δϕ)

σ for all σ ∈Gal(H/K). �

While ostensibly weaker than Conjecture 1.1, Conjecture 1.6 has the virtue of

being more readily amenable to experimental verification. Section 4 explains how the

images of generalized Heegner cycles under ΦC can be computed numerically to high

accuracy, and illustrates, for a few such Δϕ , how the points ΦC(Δϕ) can be recognized as

algebraic points defined over the predicted class fields. In particular, extensive numeri-

cal verifications of Conjecture 1.6 are carried out, for fairly large values of r.
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On the theoretical side, this conjecture appears to lie deeper than its p-adic

counterpart, and we were unable to provide any theoretical evidence for it beyond the

fact that it follows from the Hodge or Tate conjectures. It might be argued that calcu-

lations of the sort that are performed in Section 4 provide independent numerical con-

firmation of these conjectures for certain specific Hodge and Tate cycles on the (2r + 2)-

dimensional varieties Wr × Ar+1, for which the corresponding algebraic cycles seem hard

to produce unconditionally.

Conventions regarding number fields and embeddings: Throughout this article,

all number fields that arise are viewed as embedded in a fixed algebraic closure Q̄ of Q.

A complex embedding Q̄−→C and p-adic embeddings Q̄−→Cp for each rational prime p

are also fixed from the outset, so that any finite extension of Q is simultaneously realized

as a subfield of C and of Cp.

2 Motives and Chow–Heegner Points

The goal of the first three sections of this chapter is to recall the construction of the

motives attached to Hecke characters and to modular forms. The remaining three sec-

tions are devoted to the definition of Chow–Heegner points on CM elliptic curves, as

the image of generalized Heegner cycles by modular parameterizations attached to CM

forms.

2.1 Motives for rational and homological equivalence

We begin by laying down our conventions regarding motives, following [9]. We will work

with either Chow motives or Grothendieck motives. For X, a nonsingular variety over a

number field F , let C m(X) denote the group of algebraic cycles of codimension m on X

defined over F . Let ∼ denote rational equivalence in C m(X), and set

Cm(X) :=CHm(X)= C m(X)/∼ .

Given two nonsingular varieties X and Y over F and a number field E , we define the

groups of correspondences

Corrm(X,Y) :=CHdim X+m(X × Y) Corrm(X,Y)E :=Corrm(X,Y)⊗Z E .
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Definition 2.1. A motive over F with coefficients in E is a triple (X, e,m) where X/F

is a nonsingular projective variety, e∈Corr0(X, X)E is an idempotent, and m is an

integer. �

Definition 2.2. The category MF,E of Chow motives is the category whose objects are

motives over F with coefficients in E , with morphisms defined by

HomMF,E ((X, e,m), (Y, f,n))= f ◦ Corrn−m(X,Y)Q ◦ e. �

The category Mhom
F,E of Grothendieck motives is defined in exactly the same way,

but with homological equivalence replacing rational equivalence. We will denote the

corresponding groups of cycle classes by Cr(X)0, Corrm
0 (X,Y), Corrm

0 (X,Y)E , etc.

Since rational equivalence is finer than homological equivalence, there is a nat-

ural functor

MF,E→Mhom
F,E ,

so that every Chow motive gives rise to a Grothendieck motive. Furthermore, the cate-

gory of Grothendieck motives is equipped with natural realization functors arising from

any cohomology theory satisfying the Weil axioms. We now recall the description of the

image of a motive M= (X, e,m) over F with coefficients in E under the most important

realizations:

The Betti realization: Recall that our conventions about number fields supply us with

an embedding F−→C. The Betti realization is defined in terms of this embedding by

MB := e · (H∗(X(C),Q)(m)⊗ E).

It is a finite-dimensional E-vector space with a natural E-Hodge structure arising from

the comparison isomorphism between the singular cohomology and the de Rham coho-

mology over C.

The �-adic realization: Let X̄ denote the base change of X to Q̄. The �-adic cohomology

of X̄ gives rise to the �-adic étale realization of M:

M� := e · (H∗et(X̄,Q�(m))⊗ E).

It is a free E ⊗Q�-module of finite rank equipped with a continuous linear GF -action.
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The de Rham realization: The de Rham realization of M is defined by

MdR := e · (H∗dR(X/F )(m)⊗Q E),

where H∗dR(X/F ) denotes the algebraic de Rham cohomology of X. The module MdR is a

free E ⊗ F -module of finite rank equipped with a decreasing, separated and exhaustive

Hodge filtration.

Moreover, there are natural comparison isomorphisms

MB ⊗Q C�MdR ⊗F C, (2.1)

MB ⊗Q Q� �M�, (2.2)

which are E ⊗ C-linear and E ⊗Q�-linear, respectively. Thus,

rankE MB = rankE⊗F MdR = rankE⊗Q�
(M�),

and this common integer is called the E-rank of the motive M.

Remark 2.3. If F is a p-adic field, one also has a comparison isomorphism

Mp⊗Qp BdR,p�MdR ⊗F BdR,p, (2.3)

where BdR,p is Fontaine’s ring of p-adic periods, which is endowed with a decreasing,

exhaustive filtration and a continuous GF -action. This comparison isomorphism is com-

patible with natural filtrations and GF -actions on both sides. �

Remark 2.4. Our definition of motives with coefficients coincides with Language B

of Deligne [9]. There is an equivalent way of defining motives with coefficients (the

Language A) where the objects are motives M in MF,Q equipped with the structure of

an E-module: E→End(M), and morphisms are those that commute with the E-action.

We refer the reader to Section 2.1 of loc. cit. for the translation between these points

of view. �
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2.2 The motive of a Hecke character

In this section, we recall how to attach a motive to an algebraic Hecke character ψ

of an quadratic imaginary field K of infinity type (r,0). (The reader is referred to [3,

Section 2.1] for out notations and conventions regarding algebraic Hecke characters.)

This generalizes the exposition of [3, Section 2.2], where we recall how an abelian variety

with complex multiplication is attached to a Hecke character of K of infinity type (1,0).

For more general algebraic Hecke characters that are not of type (1,0), one no longer has

an associated abelian variety. Nevertheless, such a character still gives rise to a motive

over K with coefficients in the field generated by its values.

Suppose that ψ : A×K→C× is such a Hecke character and let Eψ be the field gener-

ated over K by the values of ψ on the finite idèles. Pick a finite Galois extension F of K

such that ψF :=ψ ◦NF/K satisfies the equation

ψF =ψr
A,

where ψA is the Hecke character of F with values in K associated with an elliptic curve

A/F with complex multiplication by OK .

We construct motives M(ψF ) ∈MF,Q, M(ψF )K ∈MF,K associated to ψF by consid-

ering an appropriate piece of the middle cohomology of the variety Ar over F . Similar to

Section 1, write [α] for the element of EndF (A)⊗Z Q corresponding to an element α ∈ K.

Define an idempotent er = e(1)r ◦ e(2)r ∈Corr0(Ar, Ar)Q by setting

e(1)r :=
(√−D + [

√−D]

2
√−D

)⊗r

+
(√−D − [

√−D]

2
√−D

)⊗r

, e(2)r :=
(

1− [−1]

2

)⊗r

.

Let M(ψF ) be the motive in MF,Q defined by

M(ψF ) := (Ar, er,0),

and let M(ψF )K denote the motive in MF,K obtained (in Language A) by making K act on

M(ψF ) via its diagonal action on Ar. The �-adic étale realization M(ψF )K,� is free of rank

1 over K ⊗Q�, and GF acts on it via ψF , viewed as a (K ⊗Q�)
×-valued Galois character:

M(ψF )� = er Hr
et(Ā

r,Q�)= (K ⊗Q�)(ψF ).
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The de Rham realization M(ψF )K,dR is a free one-dimensional F ⊗Q K-vector space, gen-

erated as an F -vector space by the classes of

ωr
A := er(ωA∧ · · · ∧ ωA) and ηr

A := er(ηA∧ · · · ∧ ηA),

where ηA is the unique class in H1
dR(A/F ) satisfying

[α]∗ηA= ᾱηA for all α ∈ K, and 〈ωA, ηA〉 = 1.

The Hodge filtration on M(ψF )dR is given by

Fil0M(ψF )dR =M(ψF )dR = F · ωr
A+ F · ηr

A,

Fil1M(ψF )dR = · · · = Filr M(ψF )dR = F · ωr
A,

Filr+1M(ψF )dR = 0.

It can be shown that after extending coefficients to Eψ , the motive M(ψF )K

descends to a motive M(ψ) ∈MK,Eψ
, whose �-adic realization is a free rank 1 module

over Eψ ⊗Q� on which GK acts via the character ψ . In this article, however, we shall

only make use of the motives M(ψF ) and M(ψF )K .

2.3 Deligne–Scholl motives

Let Sr+2(Γ0(N), ε) be the space of cusp forms on Γ0(N) of weight r + 2 and nebentype

character ε. In this section, we will let ψ be a Hecke character of K of infinity type

(r + 1,0). This Hecke character gives rise to a theta series

θψ =
∞∑

n=1

an(θψ)q
n∈ Sr+2(Γ0(N), ε)

as in [3, Proposition 3.13], with N := D ·NK/Q(f) and ε := εψ · εK , where εψ is the central

character of ψ (see [3, Definition 2.2]) and εK is the quadratic Dirichlet character associ-

ated to the extension K/Q. Observe that the subfield Eθψ of Q̄ generated by the Fourier

coefficients an(θψ) is always contained in Eψ and if ψ is a self-dual character (see [3,

Definition 3.4]) then Eθψ is a totally real field, and Eψ = Eθψ K.
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Deligne has attached to θψ a compatible system {V�(θψ)} of two-dimensional �-

adic representations of GQ with coefficients in Eθψ ⊗Q�, such that for any prime p � N�,

the characteristic polynomial of the Frobenius element at p is given by

X2 − ap(θψ)X + ε(p)pr+1.

This representation is realized in the middle �-adic cohomology of a variety that is

fibered over a modular curve. More precisely, let Γ := Γε(N)⊂ Γ0(N) be the congruence

subgroup of SL2(Z) attached to f , defined by

Γ =
{(

a b

c d

)
∈ Γ0(N) such that ε(a)= 1

}
. (2.4)

Writing H for the Poincaré upper half place of complex numbers with a strictly positive

imaginary part and H∗ for H ∪ P1(Q), let C denote the modular curve whose complex

points are identified with Γ \H∗. Let Wr be the rth Kuga–Sato variety over C . It is a

canonical compactification and desingularization of the r-fold self-product of the uni-

versal elliptic curve over C . (See, for example, [2], Chapter 2 and the Appendix for more

details on this definition.)

Remark 2.5. Article [2] is written using Γ1(N) level structures. The careful reader may

therefore wish to replace Γ = Γε(N) by Γ1(N) throughout the rest of the paper and make

the obvious modifications. For example, in the definition of P ?
ψ(χ) in (2.26), one would

need to take a trace before summing over Pic(Oc). This is explained in more detail in [5,

Section 4.2]. �

Theorem 2.6 (Scholl). There is a projector eθψ ∈Corr0
0(Wr,Wr)⊗ Eθψ whose associated

Grothendieck motive M(θψ) := (Wr, eθψ ,0) satisfies (for all �)

M(θψ)� � V�(θψ)

as Eθψ [GQ]-modules. �

We remark that M(θψ) is a motive over Q with coefficients in Eθψ and that

its �-adic realization M(θψ)� is identified with eθψ (H
r+1
et (W̄r,Q�)⊗Q Eθψ ). The de Rham
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realization

M(θψ)dR = eθψ Hr+1
dR (Wr/Eθψ )

is a two-dimensional Eθψ -vector space equipped with a canonical decreasing, exhaustive

and separated Hodge filtration. This vector space and its associated filtration can be

described concretely in terms of the cusp form θψ as follows.

Let C 0 denote the complement in C of the subscheme formed by the cusps. Set-

ting W0
r :=Wr ×C C 0, there is a natural analytic uniformization

W0
r (C)= (Z2r � Γ )\(Cr ×H),

where the action of Z2r on Cr ×H is given by

(m1,n1, . . . ,mr,nr)(w1, . . . , wr, τ ) := (w1 +m1 + n1τ, . . . , wr +mr + nrτ, τ ), (2.5)

and Γ acts by the rule

(
a b

c d

)
(w1, . . . , wr, τ )=

(
w1

cτ + d
, . . . ,

wr

cτ + d
,

aτ + b

cτ + d

)
. (2.6)

The holomorphic (r + 1)-form

ωθψ := (2πi)r+1θψ(τ )dw1 · · ·dwrdτ (2.7)

on W0
r (C) extends to a regular differential on Wr. This differential is defined over the field

Eθψ , by the q-expansion principle, and hence lies in Hr+1
dR (Wr/Eθψ ). Its class generates the

(r + 1)-st step in the Hodge filtration of M(θψ)dR, which is given by

Fil0M(θψ)dR =M(θψ)dR,

Fil1M(θψ)dR = · · · = Filr+1M(θψ)dR = Eθψ · ωθψ ,

Filr+2M(θψ)dR = 0.

The following proposition compares the Deligne–Scholl motive associated to θψ

with the CM motives constructed in the previous section in the main case of interest to

us. We will suppose that ψ is a self-dual Hecke character of K of infinity type (r + 1,0),
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and as in the previous section that F is a finite Galois extension of K such that ψF =ψr+1
A

for some elliptic curve A over F with CM by OK .

Proposition 2.7. For every finite prime �, the �-adic representations associated to the

motives M(θψ)|F and M(ψF )⊗Q Eθψ are isomorphic as (Eθψ ⊗Q�)[GF ]-modules. �

Proof. It suffices to check this after further tensoring with Eψ (over Eθψ ). Note that

the �-adic realization of M(θψ)|F ⊗Eθψ
Eψ is a rank-2 (Eψ ⊗Q�)[GF ]-module on which GF

acts as ψF,� ⊕ ψ∗F,�, where ψ∗ is the Hecke character of K obtained from ψ by composing

with complex conjugation on A×K . On the other hand, since Eχ = K Eθχ � K ⊗Q Eθχ , the �-

adic realization of M(ψF )⊗Q Eψ is a rank-2 (Eψ ⊗Q�)[GF ]-module on which GF acts as

ψ� ⊕ ψ̄�. However, the characters ψ∗ and ψ̄ are equal since ψ is self-dual, so the result

follows. �

2.4 Modular parameterizations attached to CM forms

In this section, we will explain how the Tate conjectures imply the existence of algebraic

cycle classes generalizing those in Conjecture 1.1 of Section 1. Recall the Chow groups

CHd(V)(F ) defined in Section 1.

Conjecture 2.8 (Tate). Let V be a smooth projective variety over a number field F . Then

the �-adic étale cycle class map

cl� : CH j(V)(F )⊗Q�−→H2 j
et (V̄,Q�)( j)GF (2.8)

is surjective. �

A class in the target of (2.8) is called an �-adic Tate cycle. The Tate conjecture

will be used in our constructions through the following simple consequence.

Lemma 2.9. Let V1 and V2 be smooth projective varieties of dimension d over a number

field F , and let ej ∈Corr0(Vj,Vj)⊗ E (for j = 1,2) be idempotents satisfying

ej H
∗
et(V̄j,Q�)⊗ E = ej H

d
et(V̄j,Q�)⊗ E, j = 1,2.

Let Mj := (Vj, ej,0) be the associated motives over F with coefficients in E , and sup-

pose that the �-adic realizations of M1 and M2 are isomorphic as (E ⊗Q�)[GF ]-modules.
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If Conjecture 2.8 is true for V1 × V2, then there exists a correspondence Π ∈CHd(V1 ×
V2)(F )⊗ E for which

(1) the induced morphism

Π∗� : (M1)�−→(M2)� (2.9)

of �-adic realizations is an isomorphism of E ⊗Q�[GF ]-modules;

(2) the induced morphism

Π∗dR : (M1)dR−→(M2)dR (2.10)

is an isomorphism of E ⊗ F -vector spaces.
�

Proof. Let

h : e1 Hd
et(V̄1, E ⊗Q�)� e2 Hd

et(V̄2, E ⊗Q�)

be any isomorphism of (E ⊗Q�)[GF ]-modules. It corresponds to a Tate cycle

Zh ∈ (Hd
et(V̄1, E ⊗Q�)

∨ ⊗ Hd
et(V̄2, E ⊗Q�))

GF

= (Hd
et(V̄1, E ⊗Q�(d))⊗ Hd

et(V̄2, E ⊗Q�))
GF

⊂ (H2d
et (V1 × V2, E ⊗Q�(d)))

GF ,

where the superscript ∨ in the first line denotes the E ⊗Q�-linear dual, the second line

follows from the Poincaré duality, and the third from the Künneth formula. By Conjec-

ture 2.8, there are elements α1, . . . , αt ∈ E ⊗Q� and cycles Π1, . . . ,Πt ∈CHd(V1 × V2)(F )

satisfying

Zh=
t∑

j=1

α jcl�(Π j).

After multiplying Zh by a suitable power of �, we may assume, without loss of gener-

ality, that the coefficients α j belong to OE ⊗ Z�. If (β1, . . . , βt) ∈Ot
E is any vector that is

sufficiently close to (α1, . . . , αt) in the �-adic topology, then the corresponding algebraic

cycle

Π :=
t∑

j=1

β j ·Π j ∈CHd(V1 × V2)(F )⊗ E

satisfies condition 1 in the statement of Lemma 2.9. Condition 2 is verified by embed-

ding F into one of its �-adic completions Fλ and applying Fontaine’s comparison functor
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to (2.9) in which source and targets are de Rham representations of GFλ
. This shows

that Π∗dR induces an isomorphism on the de Rham cohomology over Fλ ⊗ E , and part 2

follows. �

The following proposition (in which, to ease notations, we identify differential

forms with their image in de Rham cohomology) justifies Conjecture 1.1 of Section 1.

Notations are as in Sections 2.2 and 2.3, with ψ a self-dual Hecke character of infinity

type (r + 1,0).

Proposition 2.10. If the Tate conjecture is true for Wr × Ar+1, then there is an algebraic

cycle Π ? ∈CHr+1(Wr × Ar+1)(F )⊗ Eθψ such that

Π ?∗
dR(ω

r+1
A )= cψ,F · ωθψ , (2.11)

for some cψ,F ∈ (F ⊗Q Eθψ )
×. �

Proof. Let M1 and M2 be the motives M(ψF )⊗Q Eθψ and M(θψ)|F in MF,Eθψ
. By Propo-

sition 2.7, the �-adic realizations of M1 and M2 are isomorphic. Part (1) of Lemma 2.9

implies, assuming the validity of Conjecture 2.8, the existence of a correspondence Π ?

in CHr+1(Wr × Ar+1)(F )⊗ Eθψ which induces an isomorphism on the �-adic and de Rham

realizations of M1 and M2. The isomorphism on de Rham realizations respects the Hodge

filtrations and therefore sends the class ωr+1
A to a unit F ⊗Q Eθψ -rational multiple of ωθψ ,

hence the proposition follows. �

Note that the ambient F -variety Z :=Wr × Ar+1 =Wr × Ar × A in which the cor-

respondence Π ? is contained is equipped with three obvious projection maps

Z
π0

����
��

��
��

π1

��

π2

���
��

��
��

�

Wr Ar A

Let Xr be the F -variety

Xr =Wr × Ar.
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After setting

π01 = π0 × π1 : Z−→Xr, π12 = π1 × π2 : Z−→Ar × A,

we recall the simple (but key!) observation already made in Section 1 that Π ? can be

viewed as a correspondence in two different ways, via the diagrams:

Z
π0

����
��

��
� π12

���
��

��
��

��

Wr Ar × A

and Z
π01

����
��

��
� π2

		�
��

��
��

�

Xr A

In order to maintain a notational distinction between these two ways of viewing

Π ?, the correspondence from Xr to A attached to the cycle Π ? is denoted by Φ? instead

of Π ?. It induces a natural transformation of functors on F -algebras:

Φ? : CHr+1(Xr)0 ⊗ Eθψ−→CH1(A)0 ⊗ Eθψ = A⊗ Eθψ , (2.12)

where A⊗ Eθψ is the functor from the category of F -algebras to the category of Eθψ -

vector spaces which to L associates A(L)⊗ Eψ . The natural transformation Φ? is referred

to as the modular parameterization attached to the correspondence Φ?. For any F -

algebra L, we will also write

Φ?
L : CHr+1(Xr)0(L)⊗ Eθψ−→A(L)⊗ Eθψ (2.13)

for the associated homomorphism on L-rational points (modulo torsion).

Like the class Π ?, the correspondence Φ? also induces a functorial F ⊗Q Eθψ -

linear map on de Rham cohomology, given by

Φ?∗
dR : H1

dR(A/F )⊗ Eθψ−→H2r+1
dR (Xr/F )⊗ Eθψ . (2.14)

Recall that ηA∈ H1
dR(A/F ) is defined as in (1.8) of Section 1.

Proposition 2.11. The image of the class ωA∈Ω1(A/F )⊂ H1
dR(A/F ) under Φ?

dR is

given by

Φ?∗
dR(ωA)= cψ,F · ωθψ ∧ ηr

A,

where cψ,F is as in Proposition 2.10. �
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Proof. Suppose that

Π ? =
∑

j

mj Z j

is an Eθψ -linear combination of codimension (r + 1) subvarieties of Z . The cycle class

map is given by

clΠ ? : H2r+2
dR (Z/F )⊗ Eθψ−→F ⊗ Eθψ ,

where

clΠ ?(ω)=
∑

j

clZ j (ω)⊗mj.

By Proposition 2.10 and the construction of Π ?
dR, we have

Π ?∗
dR(ω

r+1
A )= cψ,F · ωθψ , (2.15)

and

Π ?∗
dR(η

j
Aω

r+1− j
A )= 0, for 1≤ j ≤ r. (2.16)

By definition of Π ?
dR, Equation (2.15) can be rewritten as

clΠ ?(π∗0 (α) ∧ π∗12(ω
r+1
A ))= 〈α, cψ,F · ωθψ 〉Wr , for all α ∈ Hr+1

dR (Wr/F )⊗ Eθψ , (2.17)

while (2.16) shows that

clΠ ?(π∗0 (α) ∧ π∗12(η
j
Aω

r+1− j
A ))= 0, when 1≤ j ≤ r. (2.18)

Equation (2.17) can also be rewritten as

clΦ?(π∗01(α ∧ ωr
A) ∧ π∗2 (ωA))= 〈α ∧ ωr

A, cψ,F · ωθψ ∧ ηr
A〉Xr , (2.19)

while Equation (2.18) implies that, for all α ∈ Hr+1
dR (Wr/F )⊗ Eθψ and all 1≤ j ≤ r,

clΦ?(π∗01(α ∧ η
j
Aω

r− j
A ) ∧ π∗2 (ωA))= 0= 〈α ∧ η

j
Aω

r− j
A , ωθψ ∧ ηr

A〉Xr . (2.20)
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In light of the definition of the map Φ?∗
dR, Equations (2.19) and (2.20) imply that

Φ?∗
dR(ωA)= cψ,F · ωθψ ∧ ηr

A.

The proposition follows. �

Remark 2.12. We note that given a rational prime � and a prime λ of F above � such

that Fλ =Q�, the maps induced by the putative correspondences Π ? and Φ? in �-adic and

de Rham cohomology (the latter over Fλ) can be defined regardless of the existence of

these correspondences, at least up to a global constant independent of λ. Indeed, let Π∗�
be any isomorphism

Π∗� : (M1)� � (M2)�

of (Eθψ ⊗Q�)[GF ]-modules. By the comparison theorem, this gives rise to an Eθψ ⊗Q Fλ-

linear isomorphism of de Rham realizations:

Π∗dR,λ : M1,dR ⊗F Fλ−→M2,dR ⊗F Fλ,

mapping ωr+1
A to a (unit) Eψ ⊗Q Fλ-rational multiple of ωθψ . Since Fλ =Q�, we can rescale

Π∗� uniquely such that Π∗dR,λ
satisfies:

Π∗dR,λ(ω
r+1
A )=ωθψ .

Now as in the proof of Lemma 2.9, the Tate cycle corresponding to the normalized iso-

morphism Π∗� can be viewed as a nonzero element of

(H1
et(Ā, Eθψ ⊗Q�)

∨ ⊗ H2r+1(X̄r, Eθψ ⊗Q�)(r))
GF ,

and hence gives rise to a map

Φ∗et,λ : H2r+1
et (X̄r,Q�)(r + 1)⊗Q Eθψ−→H1

et(Ā,Q�)(1)⊗Q Eθψ = V�(A)⊗Q Eθψ . (2.21)

By the comparison isomorphism, one gets a map

Φ∗dR,λ : H1
dR(A/Fλ)⊗ Eθψ−→H2r+1

dR (Xr/Fλ)⊗ Eθψ . (2.22)
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The same proof as in Proposition 2.11 shows that

Φ∗dR,λ(ωA)=ωθψ ∧ ηr
A.

Note that if Φ? exists, then the map Φ∗dR,λ
differs from Φ?

dR exactly by the global constant

cψ,F . �

Remark 2.13. Consider the following special case (see also [3, Section 3.7]) in which the

following assumptions are made:

(1) The quadratic imaginary field K has class number one, odd discriminant,

and unit group of order two. This implies that K =Q(
√−D), where D :=

−Disc(K) belongs to the finite set

S := {7,11,19,43,67,163}.

(2) Let ψ0 be the so-called canonical Hecke character of K of infinity type (1,0)

given by the formula

ψ0((a))= εK(a mod dK)a, (2.23)

where dK = (
√−D). The character ψ0 determines (uniquely, up to an isogeny)

an elliptic curve A/Q satisfying

EndK(A)=OK , L(A/Q, s)= L(ψ0, s).

After fixing A, we will also write ψA instead of ψ0. It can be checked that the

conductor of ψA is equal to dK , and that

ψ∗A= ψ̄A, ψAψ
∗
A=NK , εψA = εK ,

so that ψA is self-dual.

Suppose that ψ =ψr+1
A . In this case, the aforementioned setup simplifies drastically

since Eθψ =Q, and we may choose F = K. The modular parameterization Φ? arises from

a class in CHr+1(Xr × A)(K)⊗Q and induces a natural transformation of functors on
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K-algebras:

Φ? : CHr+1(Xr)0 ⊗Q−→A⊗Q. (2.24)
�

2.5 Generalized Heegner cycles and Chow–Heegner points

Recall the notation Γ := Γε(N)⊂ Γ0(N) in (2.4) The associated modular curve C = Xε(N)

has a model over Q obtained by realizing C as the solution to a moduli problem, which

we now describe. Given an abelian group G of exponent N, denote by G∗ the set of

elements of G of order N. This set of “primitive elements” is equipped with a natural

free action by (Z/NZ)×, which is transitive when G is cyclic.

Definition 2.14. A Γ -level structure on an elliptic curve E is a pair (C N, t), where

(1) C N is a cyclic subgroup scheme of E of order N,

(2) t is an orbit in C ∗N for the action of ker ε.

If E is an elliptic curve defined over a field L, then the Γ -level structure (C N, t) on E is

defined over the field L if C N is a group scheme over L and t is fixed by the natural action

of Gal(L̄/L). �

The curve C coarsely classifies the set of isomorphism classes of triples

(E,C N, t), where E is an elliptic curve and (C N, t) is a Γ -level structure on E . When

Γ is torsion-free (which occurs, for example, when ε is odd and N is divisible by a prime

of the form 4n+ 3 and a prime of the form 3n+ 2), the curve C is even a fine moduli

space; for any field L, one then has

C (L)= {Triples (E,C N, t) defined over L}/L-isomorphism.

Since the datum of t determines the associated cyclic group C N , we sometimes drop the

latter from the notation, and write (E, t) instead of (E,C N, t) when convenient.

We assume now that OK contains a cyclic ideal N of norm N. Since N = D ·
NK/Q(fψ), this condition is equivalent to requiring that fψ is a (possibly empty) product

fψ =
∏

i

qni
i ,
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where qi is a prime ideal in OK lying over a rational prime qi split in K and the qi are

pairwise coprime. The group scheme A[N] of N-torsion points in A is a cyclic subgroup

scheme of A of order N. A Γ -level structure on A of the form (A[N], t) is said to be of

Heegner type (associated to the ideal N).

Fixing a choice t of Γ -level structure on Aattached to N, the datum of (A, t) deter-

mines a point PA on C (F̃ ) for some abelian extension F̃ of K, and a canonical embedding

ιA of Ar into the fiber in Wr above PA. We will assume henceforth that the extension F of

K has been chosen large enough so that F ⊇ F̃ . More generally then, if ϕ : A−→A′ is an

isogeny defined over F whose kernel intersects A[N] trivially (i.e., an isogeny of elliptic

curves with Γ -level structure), then the pair (A′, ϕ(t)) determines a point PA′ ∈ C (F ) and

an embedding ιϕ : (A′)r−→Wr which is defined over F . We associate to such an isogeny

ϕ a codimension r + 1 cycle Υϕ on the variety Xr by letting Graph(ϕ)⊂ A× A′ denote the

graph of ϕ and setting

Υϕ :=Graph(ϕ)r ⊂ (A× A′)r
�−→ (A′)r × Ar ⊂Wr × Ar,

where the last inclusion is induced from the pair (ιA′ , idr
A). We then set

Δϕ := εXΥϕ ∈CHr+1(Xr)0(F ), (2.25)

where εX is the idempotent given in [2, Equation (2.2.1)], viewed as an element of the ring

Corr0(Xr, Xr) of algebraic correspondences from Xr to itself.

Definition 2.15. The Chow–Heegner point attached to the data (ψ, ϕ) is the point

P ?
ψ(ϕ) :=Φ?

F (Δϕ) ∈ A(F )⊗ Eθψ = A(F )⊗OK Eψ. �

Note that this definition is only a conjectural one, since the existence of the

homomorphism Φ?
F depends on the existence of the algebraic cycle Π ?.

We now discuss some specific examples of ϕ that will be relevant to us. Let c be

a positive integer and suppose that F contains the ring class field of K of conductor c.

An isogeny ϕ0 : A−→A0 (defined over F ) is said to be a primitive isogeny of conductor

c if it is of degree c and if the endomorphism ring End(A0) is isomorphic to the order

Oc in K of conductor c. The kernel of a primitive isogeny necessarily intersects A[N]

trivially, that is, such a ϕ0 is an isogeny of elliptic curves with Γ -level structure. The

corresponding Chow–Heegner point P ?
ψ(ϕ0) is said to be of conductor c.
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Once ϕ0 is fixed, one can also consider an infinite collection of Chow–Heegner

points indexed by certain projective Oc-submodules of Oc. More precisely, let a be such

a projective module for which

A0[a] ∩ ϕ0(A[N])= 0,

and let

ϕa : A0−→Aa := A0/A0[a]

denote the canonical isogeny of elliptic curves with Γ -level structure given by the theory

of complex multiplication. Since the isogeny ϕa is defined over F , the Chow–Heegner

point

P ?
ψ(a) := P ?

ψ(ϕaϕ0)=Φ?
F (Δa), where Δa =Δϕaϕ0 ,

belongs to A(F )⊗ Eθψ as well.

Lemma 2.16. For all elements λ ∈Oc that are prime to N, we have

P ?
ψ(λa)= ε(λ mod N)λr P ?

ψ(a) in A(F )⊗OK Eψ.

More generally, for any b,

ϕa(P
?
ψ(ab))=ψ(a)P ?

ψ(b)
σa,

where σa is the Frobenius element in Gal(F/K) attached to a. �

Proof. Let Pa be the point of C (F ) attached to the elliptic curve Aa with Γ -level struc-

ture, and recall that π−1(Pa) is the fiber above Pa for the natural projection π : Xr−→C .

The algebraic cycle

Δλa − ε(λ)λrΔa

is entirely supported in the fiber π−1(Pa), and its image in the homology of this fiber

under the cycle class map is 0. The result follows from this using the fact that the image

of a cycle Δ supported on a fiber π−1(P ) depends only on the point P and on the image

of Δ in the homology of the fiber. The proof of the general case is similar. �

Now pick a rational integer c prime to N and recall that we have defined in [3,

Section 3.2] a set of Hecke characters of K denoted by Σcc(c,N, ε). (In loc. cit., we required

c to be prime to pN, where p is a fixed prime split in K; however, this is not a key part
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of the definition, and in this paper we shall pick such a p later.) The set Σcc(c,N, ε) can

be expressed as a disjoint union

Σcc(c,N, ε)=Σ(1)
cc (c,N, ε) ∪Σ(2)

cc (c,N, ε),

where Σ
(1)
cc (c,N, ε) and Σ

(2)
cc (c,N, ε) denote the subsets consisting of characters of infinity

type (k+ j,− j) with 1− k≤ j ≤−1 and j ≥ 0, respectively. If p is a rational prime split in

K and prime to cN, we shall denote by Σ̂cc(c,N, ε) the completion of Σcc(c,N, ε) relative

to the p-adic compact open topology on Σcc(c,N, ε), which is defined in [2, Section 5.2].

We note that the set Σ
(2)
cc (c,N, ε) of classical central critical characters “of type 2” is

dense in Σ̂cc(c,N, ε).

Let χ be a Hecke character of K of infinity type (r,0) such that χNK belongs to

Σ
(1)
cc (c,N, ε) (so that χ is self-dual as well) and let Eψ,χ denote the field generated over K

by the values of ψ and χ . By Lemma 2.16, the expression

χ(a)−1 P ?
ψ(a) ∈ A(F )⊗OK Eψ,χ

depends only on the image of a in the class group Gc := Pic(Oc). Hence, we can define

the Chow–Heegner point attached to the theta series θψ and the character χ by summing

over this class group:

P ?
ψ(χ) :=

∑
a∈Pic(Oc)

χ−1(a)P ?
ψ(a) ∈ A(F )⊗OK Eψ,χ . (2.26)

The Chow–Heegner point P ?
ψ(χ) thus defined belongs (conjecturally) to A(F )⊗OK Eψ,χ .

2.6 A special case

We now specialize the Chow–Heegner point construction to a simple but illustrative

case, in which the hypotheses of Remark 2.13 are imposed. Thus, ψ =ψr+1
A , and the

modular parameterization Φ? gives a homomorphism from CHr+1(Xr)(K) to A(K)⊗Q.

We further assume that

(1) The integer r is odd. This implies that ψ is an unramified Hecke character of

infinity type (r + 1,0) with values in K, and that its associated theta series

θψ belongs to Sr+2(Γ0(D), εK).
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(2) The character χ as above is a Hecke character of infinity type (r,0), and

χNK belongs to Σ(1)
cc (c, dK , εK),

with c prime to D. Bertolini et al. [3, proof of Lemma 3.34] shows that any

such χ can be written as

χ =ψr
Aχ
−1
0 ,

where χ0 is a ring class character of K of conductor dividing c.

Under these conditions, we have

Γ = ΓεK (D)=
{(

a b

c d

)
∈ Γ0(D) such that εK(a)= 1

}
.

Furthermore, the action of GK on the cyclic group A[dK ](K̄) is via the Dth cyclotomic

character, and therefore, a Γ -level structure of Heegner type on the curve A is necessar-

ily defined over K. The corresponding Γ -level structures on A0 and on Aa are, therefore,

defined over the ring class field Hc. It follows that the generalized Heegner cycles Δϕ

belong to CHr+1(Xr)0,Q(Hc), for any isogeny ϕ of conductor c, and therefore—assuming

the existence of Φ?−–that

P ?
ψ(a) belongs to A(Hc)⊗OK K, P ?

ψ(χ) belongs to (A(Hc)⊗OK Eχ )
χ0 ,

where the χ0-component (A(Hc)⊗OK Eχ )
χ0 of the Mordell–Weil group over the ring class

field Hc is defined by

(A(Hc)⊗OK Eχ )
χ0 := {P ∈ A(Hc)⊗OK Eχ such that σ P = χ0(σ )P , ∀σ ∈Gal(Hc/K)}. (2.27)

3 Chow–Heegner Points Over Cp

3.1 The p-adic Abel–Jacobi map

The construction of the point P ?
ψ(χ) is only conjectural, since it depends on the existence

of the cycle Π ? and the corresponding map Φ?. In order to obtain unconditional results,

we will replace the conjectural map Φ? by its analog in p-adic étale cohomology.

Let F0 denote the finite Galois extension of K which was denoted by F in

Section 2.2. Recall that ψ ◦NF0/K =ψr+1
A , where ψA is the Hecke character associated
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to an elliptic curve A/F0 with CM by OK . Fix a rational prime p that does not divide the

level N of θψ , and such that there exists a prime v0 of F0 above p with F0,v0 =Qp. Recall

that the choice of the place v0 above p in F0 allows us to define a normalized map

Φ∗et,p : H2r+1
et (X̄r,Qp(r + 1))⊗Q Eθψ → H1

et(Ā,Qp(1))⊗Q Eθψ = Vp(A)⊗Q Eθψ = Vp(A)⊗K Eψ

of Eθψ ⊗Qp[GF0 ]-modules as in Equation (2.21).

Let F be any finite extension of K containing F0 such that the generalized Heeg-

ner cycle Δϕ is defined over F . The global cohomology class

κψ(ϕ) :=Φ∗et,p(AJ(Δϕ)) ∈ H1(F,Vp(A))⊗ Eθψ

belongs to the pro-pSelmer group of Aover F , tensored with Eθψ (see [14, Theorem 3.1.1]),

and is defined independently of any conjectures. Furthermore, if the correspondence Φ?

exists, then Proposition 2.11 implies that

κψ(ϕ)= cψ,F0 · δ(P ?
ψ(ϕ)), (3.1)

where

δ : A(F )⊗ Eθψ−→H1(F,Vp(A))⊗ Eθψ

is the connecting homomorphism of Kummer theory, and cψ,F0 is an element in (F0 ⊗
Eθψ )

× ↪→ (Qp⊗ Eθψ )
×.

Let v be a place of F above v0. Since κψ(ϕ) belongs to the Selmer group of A over

F , there is a local point in A(Fv)⊗ Eθψ , denoted P (v)
ψ (ϕ), such that

κψ(ϕ)|GFv
= δv(P

(v)
ψ (ϕ)).

More generally, as in (115) of Section 1, there exists a map

Φ
(v)
F : CHr+1(Xr)0(Fv)−→A(Fv)⊗ Eθψ

such that

Φ
(v)
F (Δϕ)= P (v)

ψ (ϕ).

The map Φ
(v)
F is the p-adic counterpart of the conjectural map Φ?

F .
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In light of Proposition 2.10 and of the construction of Chow–Heegner points

given in Definition 2.15, the following conjecture is a concrete consequence of the Tate

(or Hodge) conjecture for the variety Xr × A.

Conjecture 3.1. The local points P (v)
ψ (ϕ) ∈ A(Fv)⊗ Eθψ lie in Λ · (A(F )⊗ Eθψ ), where Λ :=

(F0 ⊗ Eθψ )
× ↪→ (Qp⊗ Eθψ )

×. �

The goal of this chapter is to prove Conjecture 3.1 in many cases. The proof

exploits the connection between the local points P (v)
ψ (ϕ) and the special values of two

different types of p-adic L-functions: the Katz p-adic L-function attached to K and the

p-adic Rankin L-function attached to θψ described in [3, Sections 3.1 and 3.2], respec-

tively. The reader should consult these sections for the notations and basic interpolation

properties defining these two types of p-adic L-functions.

We begin by relating P (v)
ψ (ϕ) to p-adic Abel–Jacobi maps. The p-adic Abel–Jacobi

map attached to the elliptic curve A/Fv is a homomorphism

AJA : CH1(A)0,Q(Fv)−→Ω1(A/Fv)
∨, (3.2)

where the superscript of ∨ on the right denotes the Fv-linear dual. Under the identifica-

tion of CH1(A)0,Q(Fv) with A(Fv)⊗Q, it is determined by the relation

AJA(P )(ω)= logω(P ), (3.3)

where ω ∈Ω1(A/Fv) and

logω : A(Fv)⊗Q−→Fv

denotes the formal group logarithm on A attached to this choice of regular differential.

It can be extended by Eθψ -linearity to a map from A(Fv)⊗ Eθψ to Fv ⊗ Eψ .

There is also a p-adic Abel–Jacobi map on null-homologous algebraic cycles

AJXr : CHr+1(Xr)0(Fv)−→Filr+1 H2r+1
dR (Xr/Fv)

∨

attached to the variety Xr, where Fil j refers to the jth step in the Hodge filtration on

algebraic de Rham cohomology. Details on the definition of AJXr can be found in [2,

Section 3], where it is explained how AJXr can be calculated via p-adic integration.
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In light of Remark 2.12, the functoriality of the Abel–Jacobi maps is expressed

in the following commutative diagram relating AJA and AJXr :

CHr+1(Xr)0(Fv)

Φ
(v)
F

��

AJXr

�� Filr+1 H2r+1
dR (Xr/Fv)

∨

Φ
∗,∨
dR,v

��

A(Fv)⊗ Eθψ

AJA

�� Ω1(A/Fv)
∨ ⊗ Eθψ

(3.4)

Proposition 3.2. For all isogenies ϕ : (A, tA, ωA)−→(A′, t′, ω′) of elliptic curves with

Γ -level structure,

logωA
(P (v)

ψ (ϕ))=AJXr (Δϕ)(ωθψ ∧ ηr
A). �

Proof. By Equation (3.3) and the definition of P (v)
ψ (ϕ),

logωA
(P (v)

ψ (ϕ))=AJA(P
(v)
ψ (ϕ))(ωA)=AJA(Φ

(v)
F (Δϕ))(ωA). (3.5)

The commutative diagram (3.4) shows that

AJA(Φ
(v)
F (Δϕ))(ωA)=AJXr (Δϕ)(Φ

∗
dR,v(ωA))=AJXr (Δϕ)(ωθψ ∧ ηr

A). (3.6)

Proposition 3.2 now follows from (3.5) and (3.6). �

We will study the local points P (v)
ψ (ϕ) via the formula of Proposition 3.2.

3.2 Rationality of Chow–Heegner points over Cp

We begin by placing ourselves in the setting of Section 2.6, in which

ψ =ψr+1
A , χ =ψr

Aχ0,

where χ0 is a ring class character of K of conductor c. In this case, we can take F0 = K.

Let p be a prime split in K and fix a prime p of K above p. We set

P (p)
A,r(χ0) := P (p)

ψr+1
A

(ψr
Aχ0)= P (p)

ψ (χ),
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the latter being defined analogously to (2.26). The next theorem is one of the main results

of this paper.

Theorem 3.3. There exists a global point PA,r(χ0) ∈ (A(Hc)⊗OK Eχ )
χ0 satisfying

log2
ωA
(P (p)

A,r(χ0))= log2
ωA
(PA,r(χ0)) (mod E×χ ).

Furthermore, the point PA,r(χ0) is of infinite order if and only if

L ′(ψAχ
−1
0 ,1) �= 0, L(ψ2r+1

A χ0, r + 1) �= 0.

�

Proof. By Proposition 3.2,

logωA
(P (p)

A,r(χ))=AJXr (Δψ(χ))(ωθψ ∧ ηr
A), (3.7)

for an explicit cycle Δψ(χ) ∈CHr+1(Xr)0 ⊗ Eχ . Theorem 5.13 of [2] with f = θψ and j = 0

gives

AJXr (Δψ(χ))(ωθψ ∧ ηr
A)

2 = L p(θψ, χNK)

Ωp(A)2r
(mod E×χ ), (3.8)

where L p(θψ, χNK) and Ωp(A) are, respectively, the p-adic Rankin L-function attached to

θψ and the p-adic period attached to A as described in [3, Sections 3.2 and 2.4]. The fact

that θψ has Fourier coefficients in Q and that its Nebentype character εK is trivial when

restricted to K implies that the field Eψ,χ,εK occurring in [3, Corollary 3.18 of Section 3.4]

is equal to Eχ . Therefore, this corollary implies that

L p(θψ, χNK)

Ωp(A)2r
=Lp,cdK (ψ

−1χNK)× Lp,cdK (ψ
∗−1χNK)

Ωp(A)2r
(mod E×χ )

= Lp,cdK (ν
∗)

Ωp(A)−1
× Lp,cdK (ψ

2r+1
A χ0N−r

K )

Ωp(A)2r+1
(mod E×χ ), (3.9)

where the factors Lp,cdK (ψ
−1χNK) and Lp,cdK (ψ

∗−1χNK) are values of the Katz two-

variable p-adic L-function with conductor cdK , following the notations that are adopted

in [3, Section 3.1]. The character ν∗ =ψ∗Aχ0 lies in the region Σ
(1)
sd (cdK) described in

Section 3.1 of loc. cit. and is of type (0,1). Hence, Theorem 3.30 of Section 3.6 of loc.
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cit. can be invoked. This theorem gives a global point PA(χ0) ∈ (A(Hc)⊗OK Eχ )
χ0 that is

of infinite order if and only if L ′(ψAχ
−1
0 ,1) �= 0 and satisfies

Lp,cdK (ψ
∗
Aχ0)=Ωp(A)

−1g(χ0) log2
ωA
(PA(χ0)) (mod E×χ ). (3.10)

Furthermore, the character ψ2r+1
A χ0N−r

K belongs to the domain Σ
(2)
sd (cdK) of classical inter-

polation for the Katz p-adic L-function. Proposition 2.15 and Lemma 2.14 in Section 2.3

of [3] show that the p-adic period attached to this central critical character is given by

Ωp((ψ
2r+1
A χ0N−r

K )∗)=Ωp(A)
2r+1g(χ0)

−1 (mod E×χ ). (3.11)

Corollary 3.3 of Section 3.1 of loc. cit. then implies that up to multiplication by a nonzero

element of Eχ ,

Lp,cdK (ψ
2r+1
A χ0N−r

K )=
⎧⎨
⎩0 if L(ψ2r+1

A χ0, r + 1)= 0,

Ωp(A)2r+1g(χ0)
−1 otherwise.

(3.12)

After setting

PA,r(χ0)=
⎧⎨
⎩0 if L(ψ2r+1

A χ0, r + 1)= 0,

PA(χ0) otherwise,
(3.13)

equations (3.10) and (3.12) can be used to rewrite (3.9) as

L p(θψ, χNK)

Ωp(A)2r
= log2

ωA
(PA,r(χ0)) (mod E×χ ). (3.14)

Theorem 3.3 now follows when (3.7), (3.8), and (3.14) are combined. �

We now state a more general, but less precise, version of Theorem 3.3. Let ψ

and χ be two self-dual characters of K of infinity types (r + 1,0) and (r,0), respectively,

as in Section 2.5. Let Fψ,χ be the subfield of Q̄ generated over K by F and Eψ,χ , and let

ν :=ψχ−1, so that ν is a self-dual Hecke character of K of infinity type (1,0) attached to

the pair (ψ, χ).
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Theorem 3.4. There exists a global point Pψ(χ) ∈ A(F )⊗OK Eψ,χ such that

log2
ωA
(P (v)

ψ (χ))= log2
ωA
(Pψ(χ)) (mod F×ψ,χ ),

for all differentials ωA∈Ω1(A/F ). This point is nonzero if and only if

L ′(ν,1) �= 0 and L(ψχ∗−1,1) �= 0. �

Proof. The proof proceeds along the same lines as (but is simpler than) the proof of

Theorem 3.3. This earlier proof applies to a more special setting but derives a more

precise result, in which it becomes necessary to keep a more careful track of the fields

of scalars involved. To prove Theorem 3.4, it suffices to rewrite the proof of Theorem 3.3

with E×χ replaced by F×ψ,χ and (ψr+1
A , ψr

Aχ0) replaced by (ψ, χ). Note that Equations (3.10)

and (3.11) hold modulo the larger group F×ψ,χ without the Gauss sum factors which can

therefore be ignored. �

We now specialize the setting of Theorem 3.3 even further by assuming that

χ0 = 1 is the trivial character, so that ψ =ψr+1
A and χ =ψr

A, and set

P (p)
A,r := P (p)

ψr+1
A

(ψr
A).

In this case, the coefficient field Eχ is equal to K, and Theorem 3.3 asserts the existence

of a point PA,r ∈ A(K)⊗Q such that

log2
ωA
(P (p)

A,r)= log2
ωA
(PA,r) (mod K×).

It is instructive to refine the argument used in the proof of Theorem 3.3 to resolve the

ambiguity by the nonzero scalar in K×, in order to examine the dependence on r of the

local point P (p)
A,r . This is the content of the next result.

Theorem 3.5. For all odd r ≥ 1, the Chow–Heegner point P (p)
A,r belongs to A(K)⊗Q and

is given by the formula

log2
ωA
(P (p)

A,r)= �(r) · log2
ωA
(PA), (3.15)
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where �(r) ∈Z satisfies

�(r)=± r!(2π)r

(2
√

D)rΩ(A)2r+1
L(ψ2r+1

A , r + 1),

and PA is a generator of A(K)⊗Q depending only on A but not on r. �

Proof. As in the proof of Theorem 3.3, we combine (3.7) and Theorem 5.13 of [2] with

( f, j)= (θψr+1
A

,0) and χNK =ψr
ANK playing the role of χ , to obtain

log2
ωA
(P (p)

ψ (χ))= (1− (pχ(p̄))−1ap(θψ)+ (pχ(p̄))−2 pr+1)−2 L p(θψ, χNK)

Ωp(A)2r
. (3.16)

Since χ(p̄)=ψA(p̄)
r and ap(θψ)=ψr+1

A (p̄)+ ψr+1
A (p), the Euler factor appearing in (3.16) is

given by

(1− ψ−1
A (p))−2(1− ψ2r+1

A (p)p−r−1)−2.

Therefore,

log2
ωA
(P (p)

ψ (χ))= (1− ψ−1
A (p))−2(1− ψ2r+1

A (p)p−r−1)−2 L p(θψ, χNK)

Ωp(A)2r
. (3.17)

On the other hand, by Bertolini et al. [3, Theorem 3.17] with c= 1 and j = 0

L p(θψ, χNK)

Ωp(A)2r
= w(θψ, χ)

−1

2r
×Lp(ψ

∗
A)×

Lp(ψ
2r+1
A N−r

K )

Ωp(A)2r
, (3.18)

where we write Lp for Lp,dK . By Bertolini et al. [2, Lemma 5.3], the norm 1 scalar w(θψ, χ)

belongs to K, and is divisible only by the primes above
√−D. Therefore, it is a unit in

OK , and hence is equal to ±1. We obtain

L p(θψ, χNK)

Ωp(A)2r
= ±1

2r
× Lp(ψ

∗
A)

Ωp(A)−1
× Lp(ψ

2r+1
A N−r

K )

Ωp(A)2r+1
. (3.19)

Let PA= PA(1) ∈ A(K)⊗Q be as in (3.10), but chosen specifically so that

Lp(ψ
∗
A)

Ωp(A)−1
= (1− ψ−1

A (p))2 log2
ωA
(PA). (3.20)
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By the interpolation property for the Katz L-function given, for instance, in [3, Proposi-

tion 3.5 of Section 3.1] with j = r and ν =ψ2r+1
A N−r

K =ψr+1
A ψ∗−r

A ,

Lp(ψ
2r+1
A N−r

K )

Ωp(A)2r+1
= (1− ψA(p)

2r+1 p−r−1)2 × r!(2π)r L((ψ∗A)
2r+1N−r−1

K ,0)√
D

r
Ω(A)2r+1

. (3.21)

After substituting Equations (3.20) and (3.21) into (3.19) and using the fact that

L((ψ∗A)
2r+1N−r−1

K ,0)= L(ψ2r+1
A , r + 1),

we find

(1− ψ−1
A (p))−2(1− ψA(p)

2r+1 p−r−1)−2 × L p(θψ, χNK)

Ωp(A)2r

= ±1

2r
log2

ωA
(PA)× r!(2π)r L(ψ2r+1

A , r + 1)√
D

r
Ω(A)2r+1

.

Hence, by (3.17), we obtain

log2
ωA
(P (p)

ψ (χ))=± r!(2π)r

(2
√

D)rΩ(A)2r+1
× L(ψ2r+1

A , r + 1)× log2
ωA
(PA).

The result follows since �(r) is shown to be an integer in [15]. �

4 Chow–Heegner Points Over C

4.1 The complex Abel–Jacobi map

For simplicity, we will confine ourselves in this section to working under the hypotheses

that were made in Remark 2.13 where K is assumed, in particular, to have discriminant

−D, with

D ∈ S := {7,11,19,43,67,163}.

Let us suppose for the moment that an algebraic correspondence Π ? ∈
CHr+1(Wr × Ar+1)⊗Q as in Proposition 2.10 exists. By taking an integer multiple of this

correspondence, we may assume that it has integer coefficients. As before then, viewing
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it as a correspondence

Φ? ∈CHr+1(Xr × A),

where Xr =Wr × Ar, we get a modular parameterization also denoted by Φ?:

Φ? : CHr+1(Xr)0−→CH1(A)0 = A.

By Propositions 2.10 and 2.11, we have (with ψ :=ψr+1
A )

Π ?∗
dR(ω

r+1
A )= cψ,K · ωθψ , Φ?∗

dR(ωA)= cψ,K · ωθψ ∧ ηr
A, (4.1)

for some scalar cψ,K ∈ K×. This scalar can be viewed as playing the role of the Manin-

constant in the context of the modular parameterization of A by CHr+1(Xr)0.

Question 4.1. When is it possible to choose an integral cycle Π ? so that cψ,K = 1? �

The difficulty in computing the modular parameterization Φ? and the resulting

Chow–Heegner points arises from the fact that it is hard in general to explicitly pro-

duce the correspondence Φ?, or even to prove its existence. In this section, we shall see

that it is possible to define a complex avatar ΦC of Φ? unconditionally and compute it

numerically to great precision in several examples. Note that if the cycle Φ? exists, then

Equation (4.1) shows that cψ,K · ωθψ ∧ ηr+1
A is an integral Hodge class on Wr × Ar+1. The

construction of ΦC is based on the observation that one can show the following inde-

pendently using a period computation, as in [16, Chapter 5, Theorem 2.4].

Proposition 4.2. There exists a scalar cr ∈ K× such that Ξ := cr · ωθψ ∧ ηr+1
A is an integral

Hodge class on Wr × Ar+1. �

Let us fix such a scalar cr ∈ K×. Clearly, we may assume that cr is in fact in OK .

Let

AJ∞A : CH1(A)0(C)−→Fil1 H1
dR(A/C)∨

ImH1(A(C),Z)
(4.2)

be the classical complex Abel–Jacobi map attached to A, where the superscript ∨ now

denotes the complex linear dual. The map AJ∞A is defined by the rule

AJ∞A (Δ)(ω)=
∫
∂−1Δ

ω, (4.3)
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the integral on the right being taken over any one-chain on A(C) having the degree zero

divisor Δ as boundary. This classical Abel–Jacobi map admits of a higher dimensional

generalization for null-homologous cycles on Xr introduced by Griffiths and Weil:

AJ∞Xr
: CHr+1(Xr)0(C)−→Filr+1 H2r+1

dR (Xr/C)∨

ImH2r+1(Xr(C),Z)
, (4.4)

defined just as in (4.3), but where AJ∞Xr
(Δ)(ω) is now defined by integrating any smooth

representative of the de Rham cohomology class ω against a (2r + 1)-chain on Xr(C)

having Δ as boundary. (Cf. the description in [4, Section 4] for example.) The map AJ∞Xr
is

the complex analog of the p-adic Abel–Jacobi map AJXr that was introduced and studied

in Section 3.

If the Hodge conjecture holds, there is an algebraic cycle Φ? =Π ? ∈CHr+1(Xr ×
A)⊗Q whose cohomology class equals Ξ . If further Φ? has integral coefficients, then

we have the following commutative diagram, which is the complex counterpart of (3.4)

and which expresses the functoriality of the Abel–Jacobi maps under correspondences:

CHr+1(Xr)0(C)

Φ?
C

��

AJ∞Xr

�� Filr+1 H2r+1
dR (Xr/C)∨/ImH2r+1(Xr(C),Z)

(Φ∗dR,C
)∨

��

CH1(A)0(C)

AJ∞A
�� Ω1(A/C)∨/ImH1(A(C),Z)

(4.5)

where the map Φ∗dR,C
is defined to be the one induced by the integral Hodge class Ξ .

Note that by construction

Φ∗dR,C(ωA)= cr · ωθψ ∧ ηr
A.

Since AJ∞A is an isomorphism, in the absence of knowing the Hodge conjecture, we can

simply define the complex analog ΦC of Φ
(v)
F as the unique map from CHr+1(Xr)0(C) to

A(C) for which the diagram above (with Φ?
C replaced by ΦC) commutes.

We will now discuss how the map ΦC can be computed in practice. Recall the

distinguished element ωA of Ω1(A/C) and let

ΛA :=
{∫

γ

ωA, γ ∈ H1(A(C),Z)

}
⊂C
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be the associated period lattice. Recall that ϕ : (A, tA, ωA)−→(A′, t′, ω′) is an isogeny of

elliptic curves with Γ -level structure if

ϕ(tA)= t′ and ϕ∗(ω′)=ωA.

The following proposition, which is the complex counterpart of Proposition 3.2,

expresses the Abel–Jacobi image of the complex point Pψ(ϕ) :=ΦC(Δϕ) in terms of the

Abel–Jacobi map on Xr.

Proposition 4.3. For all isogenies ϕ : (A, tA, ωA)−→(A′, t′, ω′) of elliptic curves with Γ -

level structure,

AJ∞A (Pψ(ϕ))(ωA)= cr · AJ∞Xr
(Δϕ)(ωθψ ∧ ηr

A) (mod ΛωA).

�

Proof. The proof is the same as for Proposition 3.2. By definition of Pψ(ϕ) combined

with the commutative diagram (4.5),

AJ∞A (Pψ(ϕ))(ωA)=AJ∞A (ΦC(Δϕ))(ωA)=AJ∞Xr
(Δϕ)(Φ

∗
dR,C(ωA)).

Since Φ∗dR,C
(ωA)= cr · ωθψ ∧ ηr

A, Proposition 4.3 follows. �

Remark 4.4. In the aforementioned proposition and elsewhere in the article, we

assume that Δϕ has been multiplied by a nonzero integer so as to have integral coef-

ficients. �

We now turn to giving an explicit formula for the right-hand side of the equation

in Proposition 4.3. To do this, let Λω′ ⊂C be the period lattice associated to the differen-

tial ω′ on A′. Note that ΛωA is contained in Λω′ with index deg(ϕ).

Definition 4.5. A basis (ω1, ω2) of Λω′ is said to be admissible relative to (A′, t′) if

(1) the ratio τ :=ω1/ω2 has a positive imaginary part;

(2) via the identification 1
NΛω′/Λω′ = A′(C)[N], the N-torsion point ω2/N belongs

to the orbit t′. �
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Given an arbitrary cusp form f ∈ Sr+2(Γ0(N), ε), consider the cohomology class

ω f ∧ ηr
A= (2πi)r+1 f(z)dzdwr ∧ ηr

A∈ Filr+1 H2r+1
dR (Xr/C).

Proposition 4.6. Let Δϕ be the generalized Heegner cycle corresponding to the isogeny

ϕ : (A, tA, ωA)−→(A′, t′, ω′)

of elliptic curves with Γ -level structure, let (ω1, ω2) be an admissible basis for Λω′ , and

let τ =ω1/ω2. Then

AJ∞Xr
(Δϕ)(ω f ∧ ηr

A)=ω−r
2

(2πi)r+1

(τ − τ̄ )r

∫ τ

i∞
(z− τ̄ )r f(z)dz. (4.6)

�

Proof. We begin by observing that replacing ωA by a scalar multiple λωA multiplies

both the left and right-hand sides of (4.6) by λ−r. Hence, we may assume, after possibly

rescaling Λω′ , that the admissible basis (ω1, ω2) is of the form (2πiτ,2πi) with τ ∈H. The

case j = 0 in [4, Theorem 8.2] then implies that

AJ∞Xr
(Δϕ)(ω f ∧ ηr

A)=
2πi

(τ − τ̄ )r

∫ τ

i∞
(z− τ̄ )r f(z)dz

=ω−r
2

(2πi)r+1

(τ − τ̄ )r

∫ τ

i∞
(z− τ̄ )r f(z)dz.

The proposition follows. �

Theorem 4.7. Let Pψ(ϕ) be the Chow–Heegner point corresponding to the generalized

Heegner cycle Δϕ . With notations as in Proposition 4.6,

AJ∞A (Pψ(ϕ))(ωA)= cr · ω−r
2

(2πi)r+1

(τ − τ̄ )r

∫ τ

i∞
(z− τ̄ )rθψ(z)dz (mod ΛωA). (4.7)

�

Proof. This is an immediate corollary of Propositions 4.3 and 4.6. �
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Table 1. The canonical elliptic curve A

D a1 a2 a3 a4 a6 Ω(A) PA

7 1 −1 0 −107 552 1.93331170 . . . −
11 0 −1 1 −7 10 4.80242132 . . . (4,5)

19 0 0 1 −38 90 4.19055001 . . . (0,9)

43 0 0 1 −860 9707 2.89054107 . . . (17,0)

67 0 0 1 −7370 243528 2.10882279 . . . ( 201
4 , −71

8 )

163 0 0 1 −2174420 1234136692 0.79364722 . . . (850,−69)

In the following, we shall describe some numerical evidence for the rationality

of the points Pψ(ϕ). Since the constant cr lies in OK \ {0} and since A has CM by OK , it

will suffice in the following to show rationality assuming cr = 1.

4.2 Numerical experiments

We now describe some numerical evaluations of Chow–Heegner points. As it stands, the

elliptic curve A of conductor D2 attached to the canonical Hecke character ψA=ψ0 is

determined only up to isogeny, and we pin it down by specifying that A is described by

the minimal Weierstrass equation

A : y2 + a1xy+ a3y= x3 + a2x2 + a4x+ a6,

where the coefficients a1, . . . ,a6 are given in Table 1.

The penultimate column in Table 1 gives an approximate value for the positive real

period Ω(A) attached to the elliptic curve A and its Néron differential ωA. In all cases,

the Néron lattice ΛA attached to (A, ωA) is generated by the periods

ω1 :=
(

D +√−D

2D

)
Ω(A), ω2 :=Ω(A), (4.8)

and (ω1, ω2) is an admissible basis for ΛA in the sense of Definition 4.5. The elliptic curve

A has Mordell–Weil rank 0 over Q when D = 7 and rank 1 otherwise. A specific generator

PA for A(Q)⊗Q is given in the last column of Table 1.
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Table 2. The constants mr for 1≤ r ≤ 15

11 19 43 67 163

1 1 1 1 1 1

3 2 6 36 114 2172

5 −8 −16 440 6920 3513800

7 14 −186 −19026 −156282 3347376774

9 304 4176 −8352 −34999056 −238857662304

11 −352 −33984 33708960 3991188960 −3941159174330400

13 76648 545064 −2074549656 46813903656 1904546981028802344

15 274736 40959504 47714214240 −90863536574160 8287437850155973464480

4.2.1 Chow–Heegner points of level 1

For D ∈ S := {11,19,43,67,163}, the elliptic curve A has rank 1 over Q. Let r ≥ 1 be an

odd integer. As already remarked, it suffices to check rationality assuming cr = 1. By

Theorem 4.7, the Chow–Heegner point PA,r attached to the class of the diagonal Δ⊂
(A× A)r is given by

AJ∞A (PA,r)(ωA)= Jr :=ω−r
2

(2πi)r+1

(τ − τ̄ )r

∫ τ

i∞
(z− τ̄ )rθψ(z)dz, (4.9)

where (ω1, ω2) is the admissible basis of ΛA given in (4.8) and τ = ω1
ω2
= D+√−D

2D . Hence,

the complex point PA,r can be computed as the natural image of the complex number Jr

under the Weierstrass uniformization.

We have calculated the complex points PA,r for all D ∈ S and all r ≤ 15, to roughly

200 digits of decimal accuracy. The calculations indicate that

PA,r
?=√−D ·mr · PA (mod A(C)[ιr]), (4.10)

where PA is the generator of A(Q)⊗Q given in Table 1, ιr is a small integer, and mr is

the rational integer listed in Table 2, in which the columns correspond to D ∈ S and the

rows to the odd r between 1 and 15.

The first 6 lines in this table, corresponding to 1≤ r ≤ 11, are in perfect agree-

ment with the values that appear in the third table of [15, Section 3.1 ]. This coincidence,
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Table 3. The ambiguity factor ιr for 1≤ r ≤ 31

r 11 19 43 67 163 r 11 19 43 67 163

1 3 1 1 1 1 17 33 7 1 19 1

3 3 · 5 5 1 1 1 19 3 · 52 52 · 11 11 1 1

5 2 · 32 2 · 7 2 2 2 21 3 · 23 23 23 23 1

7 2 · 7 5 1 1 1 23 32 · 5 5 · 7 13 1 1

9 3 11 11 1 1 25 3 1 1 1 1

11 32 · 5 5 · 7 13 1 1 27 3 · 5 5 1 29 1

13 3 1 1 1 1 29 32 · 31 7 · 11 11 · 31 1 1

15 3 · 5 5 · 17 17 17 1 31 3 · 5 5 · 17 17 1 1

combined with [15, Theorem 3.1], suggests the following conjecture, which is consistent

with the p-adic formulae obtained in Theorem 3.5.

Conjecture 4.8. For all D ∈ S and all odd r ≥ 1, the Chow–Heegner point PA,r belongs to

A(K)⊗Q and is given by the formula

PA,r =
√−D ·mr · PA, (4.11)

where mr ∈Z satisfy the formula

m2
r =

2r!(2π
√

D)r

Ω(A)2r+1
L(ψ2r+1

A , r + 1),

and PA is the generator of A(Q)⊗Q given in Table 1. �

The optimal values of ιr that were observed experimentally are recorded in

Table 3, for 1≤ r ≤ 31.

Remark 4.9. The data in Table 3 suggest that the term ιr in (4.10) is divisible only by

primes that are less than or equal to r + 2. One might, therefore, venture to guess that the

primes � dividing ιr are only those for which the mod � Galois representation attached

to ψr+1
A has very small image, or perhaps nontrivial GK-invariants. �
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4.2.2 Chow–Heegner points of prime level

We may also consider (for a fixed D and a fixed odd integer r) the Chow–Heegner points

on A attached to nontrivial isogenies ϕ. For instance, let � �= D be a prime. There are

�+ 1 distinct isogenies ϕ j : A−→A′j of degree � (with j = 0,1, . . . , �− 1,∞) attached to

the lattices Λ′0, . . . , Λ
′
�−1,Λ

′
∞ containing ΛA with index �. These lattices are generated by

the admissible bases

Λ′j =Z

(
ω1 + jω2

�

)
⊕ Zω2, Λ′∞ =Zω1 ⊕ Z

ω2

�
.

The elliptic curves A′j and the isogenies ϕ are defined over the ring class field H� of K of

conductor �. Let

Jr(�, j) := �rω−r
2

(2πi)r+1

(τ − τ̄ )r

∫ τ+ j
�

i∞

(
z− τ̄ + j

�

)r

θD,r(z)dz, 0≤ j ≤ �− 1,

Jr(�,∞) := εK(�)ω
−r
2

(2πi)r+1

(τ − τ̄ )r

∫ �τ

i∞
(z− �τ̄ )rθψ(z)dz

be the associated complex invariants and let PA,r(�, j) and PA,r(�,∞) denote the corre-

sponding points in C/ΛA= A(C).

We have attempted to verify the following conjecture numerically.

Conjecture 4.10. For all � �= D and all j ∈ P1(F�), some (nonzero) multiple of the complex

points PA,r(�, j) belong to the Mordell–Weil group A(H�). �

We have tested this prediction numerically for r = 1 and all

D ∈ S, �= 2,3,5,7,11,

as well as in a few cases where r = 3. Such calculations sometimes required several hun-

dred digits of numerical precision, together with a bit of trial and error. The necessity

for this arose because Conjecture 4.10 only predicts that some multiple of the points

PA,r(�, j) belong to A(H�), as one would expect from Remark 4.4 as well as the possi-

bility that the constant cr is not 1. One finds in practice that these complex points do

need to be multiplied by an (typically small) integer in order to belong to A(H�). Fur-

thermore, the resulting global points appear (as suggested by (4.11) in the case �= 1) to

be divisible by
√−D, and this causes their heights to be rather large. It is, therefore,

better in practice to divide the PA,r(�, j) by
√−D, which introduces a further ambiguity
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of A(C)[
√−D] in the resulting global point. The conjecture that was eventually tested

numerically is the following nontrivial strengthening of Conjecture 4.10:

Conjecture 4.11. Given integers n∈Z≥1 and 0≤ s≤ D − 1, let

J ′r(�, j)=n · Jr(�, j)− sω1√−D
, 0≤ j ≤ �− 1,

J ′r(�,∞)=n · Jr(�,∞)− sεK(�)�
rω1√−D

,

and let P ′A,r(�, j) ∈ A(C) be the associated complex points. Then there exist n=nD,r and

s= sD,r, depending on D and r but not on � and j, for which the points P ′r(�, j) belong to

A(H�) and satisfy the following:

(1) If � is inert in K, then Gal(H�/K) acts transitively on the set

{P ′A,r(�, j), j ∈ P1(F�)}

of Chow–Heegner points of level �.

(2) If �= λλ̄ is split in K, then there exist j1, j2 ∈ P1(F�) for which

P ′A,r(�, j1)= εK(λ)λ
r P ′A,r, P ′A,r(�, j2)= εK(λ̄)λ̄

r P ′A,r,

and Gal(H�/K) acts transitively on the remaining set

{P ′A,r(�, j), j ∈ P1(F�)− { j1, j2}}

of Chow–Heegner points of level �. �

We now describe a few sample calculations that lend support to Conjecture 4.11.

1. The case D = 7. Consistent with the fact that the elliptic curve A has rank 0 over Q

(and hence over K as well), the point PA,r appears to be a torsion point in A(C), for

all 1≤ r ≤ 31. For example, the invariant J1 agrees with (ω1 + ω2)/8 to the 200 decimal

digits of accuracy that were calculated. When �= 2, it also appears that the quantities

J1(2, j) belong to 1
8Λ7. There is no reason, however, to expect the Chow–Heegner points

PA,r(�, j) to be torsion for larger values of �. Experiments suggest that the constants in
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Conjecture 4.11 are

n7,1 = 4, s7,1 = 0.

For example, when �= 3, the ring class field of conductor � is a cyclic quartic extension of

K containing K(
√

21) as its quadratic subfield. In that case, the points P ′A,1(3, j) satisfy

P ′A,1(3,0)= P ′A,1(3,1)=−P ′A,1(3,2)=−P ′A,1(3,∞),

and agree to 600 digits of accuracy with a global point in A(Q(
√

21)) of relatively small

height, with x-coordinate given by

x= 259475911175100926920835360582209388259

41395589491845015952295204909998656004
.

2. The case D = 19. To compute the Chow–Heegner points of conductor 3 in the case

D = 19 and r = 1, it appears that one can take

n19,1 = 1, s19,1 = 1.

Perhaps because of the small value of n19,1, the points P ′A,1(�, j) appear to be of relatively

small height and can easily be recognized as global points, even for moderately large

values of �. For instance, the points P ′A,1(3, j) seem to have x-coordinates of the form

x= −19± 3
√

57

2
,

and their y-coordinates satisfying the degree 4 polynomial

x4 + 2x3 + 8124x2 + 8123x− 217886,

whose splitting field is the ring class field H3 of K of conductor 3.

When �= 7, which is split in K/Q, the ring class field H7 is a cyclic extension of

K of degree 6. It appears that the points P ′A,1(7,3) and P ′A,1(7,5) belong to A(K) and are

given by

P ′A,1(7,3)= 3+√−19

2
PA, P ′A,1(7,5)= 3−√−19

2
PA.
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The six remaining points are grouped into three pairs of equal points,

P ′A,1(7,0)= P ′A,1(7,2), P ′A,1(7,1)= P ′A,1(7,6), P ′A,1(7,4)= P ′A,1(7,∞),

whose x and y coordinates appear to satisfy the cubic polynomials

9x3 + 95x2 + 19x− 1444 and 27x3 − 235x2 + 557x+ 1198,

respectively. The splitting field of both of these polynomials turns out to be the cubic

subfield L of the ring class field of K of conductor 7. One obtains as a by-product of this

calculation three independent points in A(L) which are linearly independent over OK .

We expect that these three points give a K-basis for A(L)⊗Q (and therefore that A(L)

has rank 6) but have not checked this numerically.
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