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Abstract

Let g =
∑

c(D) qD and f =
∑

an qn be modular forms of half-integral weight k + 1/2
and integral weight 2k respectively which are associated to each other under the Shimura-
Kohnen correspondence. For suitable fundamental discriminants D, a theorem of Wald-
spurger relates the coe�cient c(D) to the central critical value L(f,D, k) of the Hecke
L-series of f twisted by the quadratic Dirichlet character of conductor D.

This article establishes a similar kind of relationship for central critical derivatives in
the special case k = 1, where f is of weight 2. The role of c(D) in our main theorem is
played by the �rst derivative in the weight direction of the D-th fourier coe�cient of a
p-adic family of half-integral weight modular forms. This family arises naturally, and is
related under the Shimura correspondence to the Hida family interpolating f in weight 2.

The proof of our main theorem rests on a variant of the Gross-Kohnen-Zagier formula for
Stark-Heegner points attached to real quadratic �elds which may be of some independent
interest. We also formulate a more general conjectural formula of Gross-Kohnen-Zagier
type for Stark-Heegner points, and present numerical evidence for it in settings which
seem inaccessible to our methods of proof based on p-adic deformations of modular forms.

1. Introduction

Let N > 1 be an odd square-free integer, and let S2k(N) denote the space of cusp forms of even
weight 2k on the Hecke congruence group Γ0(N). Following the de�nitions in [Ko82], we denote
by S+

k+1/2(4N) the space of modular forms which transform like θ(τ)2k+1 under the action of

Γ0(4N), and belong to the plus space: this means that they have a fourier expansion of the form∑
D>0 c(D) qD, where c(D) = 0 unless

D∗ := (−1)kD ≡ 0, 1 (mod 4).

The spaces S2k(N) and S+
k+1/2(4N) are equipped with an action of Hecke operators and with a

notion of newforms. (For forms of integral weight, this is classical Atkin-Lehner theory, while for
forms of half-integral weight these notions are made precise in [Ko82].) The Hecke operators acting
on Sk+1/2(4N) are indexed by squares of integers, and the operators T`2 , for ` a prime not dividing
2N , preserve the subspace Snew

k+1/2(4N) of newforms.

A basic theorem of Shimura and Kohnen [Ko82, Theorem 2, Section 5], states that the spaces
Snew

2k (N) and Snew
k+1/2(4N) are isomorphic as Hecke modules. More precisely, if f =

∑
an qn is any

normalised newform of weight 2k on Γ0(N), there is a newform g ∈ Snew
k+1/2(4N), which is unique up

to scaling and satis�es

T`2 g = a` g, for all primes ` - 2N.
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The forms f and g are said to be in Shimura correspondence. We write

g =
∑
D>0

c(D) qD

for the fourier expansion of g.

The fourier coe�cients a` (for ` a prime) of the integral weight eigenform f can be recovered
from those of g by the rule

a` =

{
c(D`2)
c(D) +

(
D∗

`

)
`k−1 if ` - N ;

c(D`2)
c(D) if ` | N,

where D is any integer for which c(D) 6= 0. (Cf. formula (11) of [Ko85].)

The arithmetic signi�cance of the coe�cients c(D) is revealed by the following fundamental
formula of Kohnen and Waldspurger (cf. Corollary 1 of [Ko85]):

|c(D)|2 =
{

λgD
k−1/2L(f,D∗, k) if

(
D∗

`

)
= w` for all ` | N,

0 otherwise,
(1)

where

(a) The complex number λg is a non-zero scalar which depends only on the choice of g;

(b) the function

L(f,D∗, s) =
∑

n

anχD∗(n)n−s

is the twisted L-series attached to f and the quadratic Dirichlet character χD∗ :=
(

D∗ )
of

conductor D∗;

(c) the integers w` ∈ {±1} are the eigenvalues of the Atkin-Lehner involutions W` acting on f .

For example, suppose that f is of weight 2 and has rational fourier coe�cients, so that it cor-
responds to an elliptic curve E over Q of conductor N . The Birch and Swinnerton-Dyer conjecture
then predicts that, if c(D1) and c(D2) are non-zero, we have

c(D1)
c(D2)

= ±

√
#X(E−D1)
#X(E−D2)

,

where ED denotes the twist of the elliptic curve E by the quadratic Dirichlet character attached to
D. In this way, the coe�cients of g package arithmetic information concerning the twists of E. In
particular, once a sign for one of the non-vanishing coe�cients c(D) has been �xed, the remaining
coe�cients pick out well-de�ned choices of square-roots for #X(E−D). The law that governs the
variation of their signs is not well understood.

We remark that the sign w(f,D∗) ∈ {±1} that appears in the functional equation for L(f,D∗, s)
is equal to

w(f,D∗) = (−1)kχD∗(−N)wN , where wN :=
∏
`|N

w`.

In particular, w(f,D∗) = 1 whenever D satis�es χD∗(`) = w` for all ` | N .

When w(f,D∗) = −1, the central critical value L(f,D∗, k) vanishes for parity reasons. It then
becomes natural to study the central critical derivative L′(f,D∗, k). One of the motivating questions
behind the present paper is the following:

Question 1.1. Can the data of L′(f,D∗, k), (at least for certain D satisfying w(f,D∗) = −1) be
packaged into the coe�cients of a modular generating series?
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Our main result�Theorem 1.5 below�provides an element of answer to this question by relating
some of these central critical derivatives to the fourier coe�cients of p-adic families of modular forms
of half-integral weight.

p-adic families. Denote by Cp the completion of an algebraic closure Q̄p of Qp and �x embeddings
of Q̄ into Cp and C once and for all. Fix a compact open region U ⊂ Zp, and let A(U) denote the
ring of Cp-valued p-adic analytic functions on U . Given a formal q series

f :=
∑
n>0

an qn (2)

whose coe�cients an belong to A(U), we will denote by

fk := f(k) =
∑
n>0

an(k) qn

its specialisation to k ∈ U , viewed as a formal power series with coe�cients in Cp. A point k ∈ U is
said to be classical if

k ∈ Z>1 and k ≡ 1 (mod p− 1),
and the set of all classical points in U is denoted by Ucl.

For the purposes of this article, a p-adic family of modular forms on Γ0(N) is a formal q-series
f as in (2) with the property that fk is a classical normalised eigenform of weight 2k on Γ0(N),
for all k ∈ Ucl. This means that the fourier coe�cients of fk belong to Q̄ (and in fact generate a
�nite extension Kfk

of Q), and that the image of fk in C[[q]] under the chosen complex embedding
Kfk

↪→ C is a classical modular form of weight 2k on Γ0(N).
Classical examples of p-adic families of modular forms include:

(a) Eisenstein series of varying weights,

Ek := ζ∗(1− 2k) + 2
∞∑

n=1

σ∗2k−1(n) qn,

where ζ∗(s) = (1 − p−s)ζ(s) is the Riemann zeta function with its Euler factor at p removed,
and σ∗2k−1(n) =

∑
d|n

(p,d)=1

d2k−1.

(b) The binary theta series associated to the powers of a �xed Hecke Grossencharacter Ψ of in�nity
type (1, 0) of an imaginary quadratic �eld K. These theta series are de�ned by letting, for all
ideals a �OK of the ring of integers of K,

Ψ∗(a) =
{

Ψ(a) if p - aā,
0 otherwise,

and setting

θk :=
∑

a�OK

Ψ∗(a)2k−1 qaā.

A third class of examples arises from a theorem of Hida, which we will now state in a special case.

Assume for this statement that f is a newform of weight 2 on Γ0(N), and �x a prime p that
divides N . Note that p 6= 2, since we are assuming N to be odd.

Proposition 1.2 (Hida). There is a unique p-adic family f (de�ned on a suitable neighbourhood

U of k = 1) satisfying f1 = f .

This proposition attaches to f an in�nite collection of normalised eigenforms fk, of varying
weights, indexed by the k ∈ Ucl.
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We mention in passing that Hida's theorem is considerably more general than the special case
given in Proposition 1.2. For instance, f could be an eigenform of arbitrary weight, and the condition
p | N could have been relaxed to the assumption that f be ordinary at p. However, Proposition 1.2
is the only case that is germane to the concerns of this article.

For classical points k > 1, the modular form fk obtained from Proposition 1.2 is not new at p.
This is because fk is ordinary at p, i.e., of slope 0, while newforms of level N and weight 2k have
slope k − 1.

More precisely, writing N = pM , there is a unique normalised newform f ]
k in S2k(M) satisfying

T`(f
]
k) = a`(k)f ]

k, for all primes ` with (`,N) = 1.

Let

gk =
∑
D>0

c(D, k) qD

denote the (unique, up to scaling) eigenform in S+
k+1/2(4M) that is associated to f ]

k by the Shimura-

Kohnen correspondence, and let g = g1 be the newform in S+
3/2(4N) associated to f .

It is crucial for our main result that the half-integral weight forms gk have, a priori, �twice as
many� non-vanishing fourier coe�cients as the modular form g. The values of D for which c(D, k)
need not vanish can be divided into two categories.

I. The D for which χ−D(`) = w`, for all ` dividing N .

II. The D for which {
χ−D(`) = w` for all ` | M,
χ−D(p) = −wp.

For these D, we have c(D) = 0; furthermore, L(f,−D, 1) = 0, because w(f,−D) = −1.

We will call discriminants −D of the �rst type Type I discriminants, and those of the second type,
Type II discriminants.

Since the functions k 7→ an(k) on Ucl extend to analytic functions on U , it is natural to expect a
similar principle for the functions k 7→ c(D, k). The fact that the individual forms gk are only de�ned
up to a nonzero scaling factor makes it necessary to introduce a normalisation. We do this by �xing
a type I discriminant −∆0 for which c(∆0) 6= 0. A theorem of Hida and Stevens (cf. Theorem 5.5
and Lemma 6.1 of [St94]) then gives:

Proposition 1.3. There is a p-adic neighbourhood of k = 1 in U on which c(∆0, k) is everywhere
non-vanishing. After replacing U by such a neighbourhood, the normalised coe�cient attached to

k ∈ Ucl ∩ Z>1 by

c̃(D, k) =

(
1−

(
−D
p

)
ap(k)−1pk−1

)
c(D, k)(

1−
(
−∆0

p

)
ap(k)−1pk−1

)
c(∆0, k)

=
c(p2D, k)
c(p2∆0, k)

extends to a p-adic analytic function on U , which satis�es

c̃(D, 1) =
c(p2D)
c(p2∆0)

=
c(D)
c(∆0)

.

In particular, if −D is a type II discriminant, then c(D) = 0 and hence c̃(D, 1) = 0. It then
becomes natural to consider the derivative of c̃(D, k) with respect to k at k = 1.

We note in passing that the vanishing of the coe�cient c̃(D, 1) when D is of type II can be traced
to two di�erent causes. Firstly, the Euler factor appearing in the numerator of c̃(D, k) vanishes
at k = 1. Viewed in this light, the identity c̃(D, 1) = 0 is an instance of the �exceptional zero
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phenomenon" for p-adic L-functions that was �rst explored in [MTT86]. Secondly, it follows from
the properties of the Shimura-Kohnen lift that the classical coe�cients c(D, 1) also vanish. Theorem
1.5 leads to the conclusion that c̃(D, k) frequently vanishes to order 1 at k = 1. This is not in
contradiction with the factorisation of c̃(D, k) appearing in Proposition 1.3, since the individual
factors that appear there are not p-adic analytic functions of k.

Assume now, for simplicity, that the newform f ∈ S2(N) has rational fourier coe�cients, so that
it corresponds to an elliptic curve E of conductor N . Since p divides N exactly, the curve E has
(split or non-split) multiplicative reduction at p. Let

ΦTate : C×p /qZ −→ E(Cp)

be Tate's p-adic uniformisation of E, and let

logE : E(Cp) −→ Cp

be the p-adic formal group logarithm, which can be de�ned by

logE(P ) = logq(Φ
−1
Tate(P )),

where logq is the branch of the p-adic logarithm that vanishes on qZ. We extend this logarithm to
E(Cp)⊗Q by Q-linearity.

Let E(Q(
√
−D))− denote the submodule of E(Q(

√
−D)) on which the non-trivial involution in

Gal(Q(
√
−D)/Q) acts as −1. When −D is a type II discriminant, we have

χ−D(p) = −wp = ap,

and hence the quadratic twist E−D of E over Q(
√
−D) has split multiplicative reduction at p.

Lemma 1.4. If P belongs to E(Q(
√
−D))−, then

logE(P ) belongs to Qp.

Proof. The Tate uniformisation induces a homomorphism

ΦTate : (Qnr
p )×/qZ −→ E(Qnr

p ),

where Qnr
p is the maximal unrami�ed extension of Qp. Let σ be the frobenius element in Gal(Qnr

p /Qp).
Then for all points P ∈ E(Q(

√
−D))−, we have

i) P σ = χ−D(p)P = apP ,

ii) Φ−1
Tate(P

σ) = apΦ−1
Tate(P )σ.

It follows that logE(P )σ = logE(P ), and the lemma follows.

One of the main theorems of this article is:

Theorem 1.5. Let −D be a discriminant of type II. There is an element PD ∈ E(Q(
√
−D))− ⊗Q

satisfying

i) d
dk c̃(D, k)k=1 = logE(PD);

ii) PD 6= 0 if and only if L′(E,−D, 1) 6= 0.

Although the points PD only belong to E(Q(
√
−D)) ⊗ Q, the proof of Theorem 1.5 will show

that the collection {PD} has bounded denominators: there exists an integer tE , depending on E but
not on the type II discriminant −D, such that

tEPD belongs to E(Q(
√
−D))−.
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These global points, which are de�ned over a varying collection of quadratic �elds, display an a

priori unexpected coherence, which can be summarised by letting ε be a �rst order in�nitesimal
(satisfying ε2 = 0) and considering the formal q-series with coe�cients in Qp(ε):

g1+ε :=

 ∑
−D of type I

c̃(D) qD

+ ε

 ∑
−D of type II

logE(PD) qD

 .

Theorem 1.5 amounts to the statement that g1+ε is a �modular form of weight (3/2 + ε)� associated
to the Hida family f (or rather, to its specialisation to a �rst order neigbourhood of weight two)
under the Shimura correspondence.

The proof of Theorem 1.5 rests on two ingredients.

(i) A formula of Kohnen expressing the products c(D1, k)c(D2, k) of fourier coe�cients of gk in

terms of certain geodesic cycles integrals associated to f ]
k and to binary quadratic forms of

discriminant D1D2.

(ii) The theory of Stark-Heegner points, which relates these period integrals to global points de�ned
(conjecturally, in general) over ring class �elds of real quadratic �elds.

Sections 2 and 3 review these ingredients in turn. Section 4 describes the proof of Theorem
1.5. This proof suggests studying generating series whose coe�cients are built out of Stark-Heegner
points, in the spirit of the Gross-Kohnen-Zagier formula of [GKZ87] relating classical Heegner points
to coe�cients of modular forms of weight 3/2. Several theorems of �Gross-Kohnen-Zagier type� are
formulated and proved in Section 5. This section also formulates a more general Gross-Kohnen-
Zagier conjecture for Stark-Heegner points which in some cases falls squarely outside the scope of
the methods of this paper based on exploiting p-adic deformations of modular forms. Some of the
cases of the Gross-Kohnen-Zagier conjecture for which a proof eludes us are discussed further in
Section 6, and some numerical evidence for them is provided.

2. Kohnen's formula

In this section, and this section only, let f be a normalised newform of weight 2k on Γ0(M), and let
g =

∑
D c(D) qD be the newform in Sk+1/2(4M) which is attached to it under the Shimura-Kohnen

correspondence.

Our purpose is to brie�y recall a theorem of Kohnen which expresses the product c(D1)c(D2) of
two fourier coe�cients of g in terms of Shintani cycles which we proceed to describe, following the
treatment in [Ko85].

If c(D1) and c(D2) are non-zero, then D∗
1 and D∗

2 are discriminants of orders in a quadratic �eld,
satisfying

χD∗
1
(`) = χD∗

2
(`) = w`, for all ` | M, (3)

by the de�nition of Kohnen's plus space. Assume for simplicity that D∗
1 and D∗

2 are both fundamental
and prime to 2M . Then the product ∆ := D∗

1D
∗
2 is the discriminant of an order in a real quadratic

�eld K, or of an order in the split quadratic algebra Q×Q if D∗
1 = D∗

2. Note that all the ` | M are
split in K. In particular, it is possible to choose an integer δ such that

δ2 ≡ ∆ (mod 4M).

A primitive binary quadratic form Q(x, y) = Ax2 + Bxy + Cy2 of discriminant ∆ is said to be
a Heegner form (relative to the level M) if

M | A, B ≡ δ (mod M).
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Let CQ be the image in Γ0(M)\H of the geodesic in the Poincaré upper half plane consisting of the
complex numbers z = x + iy satisfying

A |z|2 + Bx + C = 0,

oriented from left to right if A > 0, from right to left if A < 0, and from −C/B to i∞ if A = 0. For
example, if ∆ is not a perfect square, let

r + s
√

∆ (4)

be the fundamental unit of norm 1 in O∆ := Z[∆+
√

∆
2 ], normalised so that r, s > 0. Then the path

CQ is equivalent to the path from τ to γQτ , where

γQ =
(

r+sB 2Cs
−2As r−sB

)
∈ Γ0(M) (5)

is a generator for the stabiliser subgroup of Q in Γ0(M), and τ ∈ H is any base point.

To each inde�nite quadratic form Q is associated the Shintani cycle

r(f,Q) =
∫

CQ

f(z)Q(z, 1)k−1dz. (6)

Note that r(f,Q) depends only on the Γ0(M)-equivalence class of Q.

Let

F∆ = { Heegner forms Ax2 + Bxy + Cy2 of discriminant ∆.}.
This set of binary quadratic forms is preserved under the usual right action of Γ0(M). De�ne a
function

ωD∗
1 ,D∗

2
: F∆/Γ0(M) −→ ±1

by the rule

ωD∗
1 ,D∗

2
(Q) =

{
0 if gcd(a, b, c, D1) > 1;(

D∗
1

Q(m,n)

)
where gcd(Q(m,n), D1) = 1, otherwise.

Genus theory shows that ωD∗
1 ,D∗

2
is well-de�ned, and that it is a quadratic character on the class

group of primitive binary quadratic forms of discriminant ∆. This character cuts out the biquadratic
�eld Q(

√
D∗

1,
√

D∗
2), an unrami�ed quadratic extension of Q(

√
∆).

The Shintani cycle associated to the pair (D∗
1, D

∗
2) is de�ned by the formula

r(f,D∗
1, D

∗
2) =

∑
Q∈(F∆/Γ0(M))

ωD∗
1 ,D∗

2
(Q)r(f,Q). (7)

The following theorem of Kohhen (cf. Theorem 3 of [Ko85]) plays a key role in this paper:

Theorem 2.1. For all D1 and D2 satisfying (3),

c(D1)c(D2)
〈g, g〉

= (−1)[k/2]2k × r(f,D∗
1, D

∗
2)

〈f, f〉
.

3. Stark-Heegner points

For this section, we revert to the notations that were in use in the statement of Theorem 1.5 of the
introduction. Thus, in particular, f is now a newform of weight 2 and level N = pM associated to
an elliptic curve E of conductor N .

Let ∆ be a fundamental discriminant satisfying

∆ > 0, χ∆(p) = −1, χ∆(`) = 1, for all ` | M. (8)
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The article [Dar01] (see also [BD06] and [Dar06]) introduces a conjectural p-adic variant of the
Heegner point construction, associating to every equivalence class of binary quadratic forms of
discriminant ∆ a p-adic point in E(Q̄p). These local points are called Stark-Heegner points in [Dar01],
and are predicted to be de�ned over ring class �elds of K = Q(

√
∆).

We will have no need for the original de�nition given in [Dar01] based on the modular symbols
attached to f . Rather, we will recall here an alternate description exploited in [BD06] which relies

on the p-adic family f
k
and the classical newforms f ]

k attached to f by Hida's Proposition 1.2.

For each eigenform fk with k ∈ Ucl, we begin by considering the complex period integrals

IC(fk, P, r, s) :=
∫ s

r
fk(z)P (z)dz, (9)

where P (z) ∈ Q[z][2k−2] is a polynomial of degree at most 2k − 2, and r, s are elements of P1(Q)
viewed as subsets of the extended Poincaré upper half plane H∗. The integral (9) converges because
fk is a cusp form. Note that in order to de�ne IC(fk, P, r, s) we use the chosen complex embedding
Kfk

↪→ C, so that fk can be viewed as a complex analytic function on H∗.

Let

I+
C (fk, P, r, s) := Real(IC(fk, P, r, s)),

I−C (fk, P, r, s) := Imag(IC(fk, P, r, s)).

The following theorem of Shimura gives a rationality property for these complex numbers.

Proposition 3.1 (Shimura). There exist periods Ω+
k ,Ω−k ∈ C× depending only on fk, for which

I±(fk, P, r, s) :=
1

Ω±k
I±C (fk, P, r, s) belongs to Kfk

,

for all P ∈ Q[z][2k−2], and r, s ∈ P1(Q).

It will lighten the notation to �x a choice of sign ε = {1,−1} and set

I(fk, P, r, s) := Iε(fk, P, r, s), Ωk := Ωε. (10)

For the proof of Theorem 1.5, it is only the value ε = −1 that is relevant, so the reader may assume
throughout Sections 3 and 4 that ε = −1. However, the possibility to choose ε = 1 allows a more
general de�nition of Stark-Heegner points which will be crucial in the theorems, conjectures and
numerical experiments described in Sections 5 and 6.

The identi�cation of the complex number I(fk, P, r, s) with an element of Kfk
is made via the

same complex embedding of Kfk
that was used to de�ne IC(fk, P, r, s). Recall that we have �xed an

embedding of Q̄ into Cp. Thanks to this embedding we can�and will�view the integrals I(fk, P, r, s)
as elements of Cp. We can then extend their de�nition to P ∈ Cp[z][2k−2] by Cp-linearity.

Let Qp2 ⊂ Cp be the quadratic unrami�ed extension of Qp, let Op2 be its ring of integers, and
let

H0
p :=

{
τ ∈ Op2 such that τ 6≡ 0, 1, . . . , p− 1 (mod p)

}
.

We now invoke the following theorem of Stevens which asserts that the quantities I(fk, P, r, s) can
in some sense be p-adically interpolated.

Proposition 3.2 (Stevens). After eventually replacing the region U by a smaller p-adic neigh-

bourhood of 1, the complex periods Ωk can be chosen in such a way that

i) The function k 7→ I(fk, (z−τ)2k−2, r, s) extends to an analytic function of k ∈ U , for all τ ∈ H0
p,

and all r, s ∈ P1(Q).
ii) The function (r, s) 7→ I(f1, 1, r, s) takes its values in Q and is not identically 0.
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Proof. This theorem is stated in Theorem 2.2.1 of [BD06]. In fact a more precise version is stated
there, and since the statement will be used later, we recall it brie�y here. Let (Z2

p)
′ denote the set of

primitive vectors in Z2
p, i.e., the vectors that are not divisible by p. Given a polynomial P ∈ Q[z][2k−2],

write P̃ (x, y) for its homogenisation of degree 2k−2. (Note in particular that P̃ (x, y) depends on k.)
Theorem 2.2.1 of [BD06] asserts the existence, for each r, s ∈ P1(Q), of a suitable p-adic distribution

µr,s on (Z2
p)
′ of total measure 0, satisfying

I(fk, P, r, s) =
∫

Zp×Z×
p

P̃ (x, y)dµr,s(x, y), for all k ∈ Ucl. (11)

For the most part, it is only the existence of the periods Ωk and the distributions µr,s that will
be used. Of course, the periods Ωk are far from unique, but if {Ωk} and {Ω′k} are any two choices,
then

Ω′k = λ(k)Ωk,

where λ extends to an analytic function on U satisfying λ(1) ∈ Q×. All the statements that will be
made concerning the periods I(fk, P, r, s) will be insensitive to a change in λ.

It is nonetheless useful to make a precise choice of periods {Ωk}k∈Ucl
satisfying the conclusion of

Proposition 3.2. This can be done in terms of the periods of (7) thanks to the following lemma.

Lemma 3.3. Let ∆0 be a fundamental discriminant satisfying

χ∆0(p) = wp, L(f,∆0, 1) 6= 0.

Assume that ∆0 is positive if the sign ε in (10) is 1, and that it is negative if ε = −1. Then there

exists a p-adic neighbourhood U of k = 1 such that

Ωk := r(fk,∆0,∆0) = (1− χ∆0(p)ap(k)−1pk−1)2r(f ]
k,∆0,∆0) (12)

is non-zero for all k ∈ Ucl. Furthermore, this choice of Ωk satis�es the conclusion of Proposition 3.2.

Proof. Proposition 3.2 implies that r(fk,∆0,∆0) has all the required properties, provided that it is
non-zero. A formula of Birch and Manin expresses r(f,∆0,∆0) as a non-zero multiple of L(f,∆0, 1).
(Cf. for example the last equation on Page 241 of [Ko85].) The result follows.

We next de�ne the periods I(f ]
k, P, r, s) ∈ Cp as in Proposition 3.1, but with fk replaced by f ]

k.
(In particular, we use the same choice of complex periods Ωk that was made to de�ne I±(fk, P, r, s).)

Finally, we �regularize� these periods by setting, for all k ∈ Ucl,

J(f ]
k, P, r, s) := (1− ap(k)−2p2k−2)I(f ]

k, P, r, s). (13)

Proposition 3.4. For all τ ∈ H0
p and all r, s ∈ P1(Q), the function

k 7→ J(f ]
k, (z − τ)2k−2, r, s)

extends to a p-adic analytic function of k which vanishes at k = 1.

Proof. This follows from Proposition 2.2.3 of [BD06]. This proposition also expresses J(f ]
k, P, r, s)

in terms of the distributions µr,s alluded to in equation (11). More precisely,

J(f ]
k, P, r, s) =

∫
(Z2

p)′
P̃ (x, y)dµr,s(x, y). (14)

Proposition 3.4 then follows from the fact that P = (z − τ)2k−2 is a continuous function on the
compact space (Z2

p)
′ and is analytic as a function of k. The fact that µr,s has total measure zero

9
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thus implies that the function k 7→ J(f ]
k, (z− τ)2k−2, r, s) vanishes at k = 1. Alternatively, note that

the Euler factor in (13) vanishes at k = 1 since ap(1)2 = 1.

Recall the set F(∆) of Heegner forms of discriminant ∆ attached to the level M . In order to
de�ne this set, we had to choose a square root δ of ∆ modulo M . We now choose a square root of
∆ in Cp, which we will simply denote by

√
∆. For Q = [A,B, C] ∈ F(∆), let

τQ :=
−B +

√
∆

2A

be a root of Q(z, 1) = 0. Assumption (8) implies that this element belongs to H0
p, for all Q ∈ F(∆).

Recall the matrix γQ de�ned in (5). We now choose an arbitrary base point r ∈ P1(Q) and de�ne

J(f,Q) =
d

dk

(
J(f ]

k, (z − τQ)2k−2, r, γQr)
)

k=1
. (15)

The following lemma collects some of the basic properties of the invariants J(f,Q).

Lemma 3.5. (a) The expression J(f,Q) does not depend on the r ∈ P1(Q) that was chosen to

de�ne it.

(b) The function Q 7→ J(f,Q) depends only on the image of Q in the class group F∆/Γ0(M).

(c) The element J(f,Q) belongs to the quadratic unrami�ed extension Qp2 of Qp. If x 7→ x denotes

the non-trivial automorphism of this �eld, then

J(f,Q) + J(f,Q) = 2
d

dk
(r̃(f ]

k, Q)),

where

r̃(f ]
k, Q) =

1
Ωk

× (1− ap(k)−2p2k−2)r(f ]
k, Q),

and r(f ]
k, Q) is the invariant de�ned in (6).

Proof. (a) A direct calculation shows that (az + b)− (cz + d)τQ = ε(z− τQ), where γQ =
(

a b
c d

)
, and

ε is the fundamental unit of the order of discriminant ∆, as in (4). It follows that

(γQz − τQ)2k−2 =
(

ε

cz + d

)2k−2

(z − τQ)2k−2.

Since we have γQ ∈ Γ0(M), and using the fact that f ]
k is modular for Γ0(M), we get

IC(f ]
k, (z − τQ)2k−2, γQr, γQs) =

∫ γQs

γQr
f ]

k(z) (z − τQ)2k−2 dz

=
∫ s

r
f ]

k(γQz) (γQz − τQ)2k−2 dγQz

=
∫ s

r
(cz + d)2kf ]

k(z)
(

ε

cz + d

)2k−2

(z − τQ)2k−2 dz

(cz + d)2

= ε2k−2 IC(f ]
k, (z − τQ)2k−2, r, s).

From this it follows immediately that

J(f ]
k, (z − τQ)2k−2, r, γQr) − J(f ]

k, (z − τQ)2k−2, s, γQs)

= J(f ]
k, (z − τQ)2k−2, r, s)− J(f ]

k, (z − τQ)2k−2, γQr, γQs)

= (1− ε2k−2) J(f ]
k, (z − τQ)2k−2, r, s),

10
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where we can view ε as an element of Q×
p2 . The expression on the right is a product of two p-adic

analytic functions which vanish at k = 1, and hence vanishes to order at least 2 at k − 1. Part (a)

follows. As for part (b), let Q′ = Qα, where α =
(

a b
c d

)
. A direct calculation then shows that

J(f ]
k, Q

′, α−1r, γQ′α−1r) = (cτQ + d)2k−2J(f ]
k, Q, r, γQr).

Part (b) now follows from the fact that (cτ + d)2k−2 is a p-adic analytic function of k ∈ U which is
equal to 1 at k = 1. To prove part (c), we �rst remark that, by (15),

J(f,Q) + J(f,Q) =
d

dk

(
J(f ]

k, (z − τQ)2k−2, r, γQr)

+ J(f ]
k, (z − τQ)2k−2, r, γQr)

)
k=1

.

By (14), the right-hand side in this equation can be rewritten as:

d

dk

(∫
(Z2

p)′
(x− τQy)2k−2 + (x− τQy)2k−2dµr,γQr(x, y)

)
k=1

= 2

(∫
(Z2

p)′
(logp(x− τQy) + logp(x− τQy))dµr,γQr(x, y)

)

= 2

(∫
(Z2

p)′
(logp A + logp(x− τQy) + logp(x− τQy))dµr,γQr

)

= 2

(∫
(Z2

p)′
logp Q̃(x, y)dµr,γQr(x, y)

)
,

where we have used the fact that µr,s((Z2
p)
′) = 0 in deriving the penultimate equality. We can rewrite

this last expression as

J(f,Q) + J(f,Q) = 2
d

dk

(∫
(Z2

p)′
Q̃(x, y)k−1dµr,γQr(x, y)

)
k=1

= 2
d

dk

(
J(f ]

k, Q
k−1, r, γQr)

)
k=1

= 2
d

dk

(
(1− ap(k)−2p2k−2)I(f ]

k, Q
k−1, r, γQr)

)
k=1

= 2
d

dk

(
1

Ωk
× (1− ap(k)−2p2k−2)r(f ]

k, Q)
)

k=1

,

where the third equality follows from (13). The result now follows from the de�nition of r̃(f ]
k, Q).

Thanks to part (b) of Lemma 3.5, we can attach to any factorisation of ∆ as a product D1D2 of
two fundamental discriminants, the invariants

r̃(f ]
k, D1, D2) =

∑
Q∈F∆/Γ0(M)

ωD1,D2(Q)r̃(f ]
k, Q),

J(f,D1, D2) =
∑

Q∈F∆/Γ0(M)

ωD1,D2(Q)J(f,Q),

where ωD1,D2 is the genus character that was introduced in Section 2. We assume in this de�nition
that the sign ε of (10) has been chosen to be 1 if D1 and D2 are positive, and −1 if they are both
negative.

11
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Note that, for any pair (D1, D2) of fundamental discriminants occurring in a factorisation of ∆,
we necessarily have

D1D2 > 0, χD1(p) = −χD2(p), χD1(`) = χD2(`), for all ` | M.

In particular, the signs in the functional equations for the twisted L series L(f,D1, s) and L(f,D2, s)
are opposite. By interchanging D1 and D2 if necessary, assume that

w(f,D1) = 1, w(f,D2) = −1.

It is not hard to see that J(f,D1, D2) is in an eigenspace for the non-trivial automorphism in
Gal(Qp2/Qp). More precisely, we have

J(f,D1, D2) =
{

J(f,D1, D2) if χD2(p) = −wp;
−J(f,D1, D2) if χD2(p) = wp.

(16)

We can now recall the following conjecture on �Stark-Heegner points� that is formulated in [BD06].

Conjecture 3.6. Let H be the ring class �eld associated to the order Z[∆+
√

∆
2 ] of K = Q(

√
∆)).

(a) For each Q ∈ F∆/Γ0(M), there exists PQ ∈ E(H)⊗Q such that J(f,Q) = logE(PQ).
(b) There is a global point P (f,D1, D2) ∈ E(Q(

√
D2))− ⊗Q such that

J(f,D1, D2) = logE(P (f,D1, D2)).

Furthermore, P (f,D1, D2) is of in�nite order if and only if

L′(E/Q(
√

∆), ωD1,D2 , 1) = L(f,D1, 1) L′(f,D2, 1)

is non-zero.

While Conjecture 3.6 appears di�cult, we have been able to prove the following special case
which will play a key role in the proof of Theorem 1.5

Theorem 3.7. Assume that

(a) The level N is divisible by at least two primes.

(b) We have χD2(p) = −wp, (so that in particular J(f,D1, D2) belongs to Qp).

Then

i) We have

J(f,D1, D2) = logE(P (f,D1, D2)),
for some element P (f,D1, D2) ∈ E(Q(

√
D2))− ⊗Q.

ii) There exists an integer tE , depending on E but not on (D1, D2), such that tEP (f,D1, D2)
belongs to E(Q(

√
D2))−.

iii) The invariant P (f,D1, D2) corresponds to a point of in�nite order if and only if

L′(E/Q(
√

∆), ωD1,D2 , 1) = L(f,D1, 1) L′(f,D2, 1)

is non-zero.

Theorem 3.7 is a special case of Theorem 1 of [BD06]. To recall the proof here would take us too
far a�eld. (The key idea is to use the main theorem of [BD07] to express the periods J(f,D1, D2) in
terms of actual Heegner points arising from parametrisations of E by Shimura curves associated to
quaternion algebras that are rami�ed at p.) We will content ourselves with drawing attention to the

important relationship between J(f,D1, D2) and the periods r̃(f ]
k, D1, D2) that arise in Kohnen's

formula.

12
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Lemma 3.8. Under the assumptions of Theorem 3.7,

J(f,D1, D2) =
d

dk

(
r̃(f ]

k, D1, D2)
)

k=1
.

Proof. Since J(f,D1, D2) belongs to Qp,

2J(f,D1, D2) = J(f,D1, D2) + J(f,D1, D2) = 2
d

dk

(
r̃(f ]

k, D1, D2)
)

k=1
,

where the last equality follows from part (c) of Lemma 3.5.

4. Proof of Theorem 1.5

Let −D2 be a discriminant of type II. Choose an auxiliary discriminant −D1 of type I satisfying

(a) gcd(D1, D2) = 1;
(b) c(D1) 6= 0.

This implies that the product ∆ = D1D2 satis�es assumption (8). Note also that in this case

w(f,−D1) = 1, w(f,−D2) = −1, χ−D2(p) = −wp.

Hence all the conditions in the statement of Theorem 3.7 are satis�ed.

By de�nition of the normalised coe�cients, we have

c̃(D1, k)c̃(D2, k) =
(1− ap(k)−2p2k−2)c(D1, k)c(D2, k)

(1− wpap(k)−1pk−1)2c(∆0, k)2
.

Hence by Theorem 2.1,

c̃(D1, k)c̃(D2, k) =
(1− ap(k)−2p2k−2)r(f ]

k,−D1,−D2)

(1− wpap(k)−1pk−1)2r(f ]
k,−∆0,−∆0)

=
(1− ap(k)−2p2k−2)r(f ]

k,−D1,−D2)
Ωk

,

where the last equality follows from the choice of Ωk that was made in (12), in light of the fact that

χ−∆0(p) = wp. By the de�nition of the period r̃(f ]
k,−D1,−D2) given in Lemma 3.5, it follows that

c̃(D1, k)c̃(D2, k) = r̃(f ]
k,−D1,−D2).

Di�erentiating both sides with respect to k, evaluating at k = 1 and applying Lemma 3.8, yields

c̃(D1)
d

dk
c̃(D2, k)k=1 = J(f,−D1,−D2). (17)

The �rst part of Theorem 1.5 is now a consequence of Theorem 3.7 combined with the rationality
of c̃(D1). The second part follows from the fact that c̃(D1) 6= 0 if and only if L(f,−D1, 1) 6= 0.

5. Gross-Kohnen-Zagier formulae for Stark-Heegner points

The conjectures of [Dar01] predict that Stark-Heegner points should have many of the properties
of their classical counterparts. It is therefore natural to look for analogues of the theorem of Gross,
Kohnen and Zagier relating Stark-Heegner points to the fourier coe�cients of modular forms of
weight 3/2. In fact, the method of proof of Theorem 1.5 yields some results in this direction.

For example, we have:

Theorem 5.1. Let −D2 be a �xed discriminant of type II associated to f . Then

13
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(a) The periods b(D1) := J(f,−D1,−D2), as −D1 varies over the type I discriminants attached

to f , are (proportional to) the fourier coe�cients c(D1) of a Shimura-Kohnen lift g ∈ S+
3/2(4N)

attached to f .

(b) Assume further that N is the product of at least two primes. Then the function D1 7→ b(D1)
is non-zero if and only if

L′(f,−D2, 1) 6= 0.

Proof. This follows directly from (17), which shows that the ratio between b(D1) and c(D1) is equal
to the expression d

dk c̃(D2, k)k=1, which does not depend on D1. When N is divisible by at least
two primes, Theorem 3.7 relates this expression to a global point on E(Q(

√
−D2))− ⊗ Q which is

non-zero precisely when L′(f,−D2, 1) 6= 0.

Observe that Theorem 3.7 is not needed to prove part (a) of Theorem 5.1. In particular, when
f is a form of prime conductor, the invariants J(f,−D1,−D2) (as D1 varies, and D2 is �xed) can
still be related to the fourier coe�cients of a modular form of weight 3/2, even though the proof of
Theorem 3.7 breaks down for such modular forms and we are unable to relate J(f,−D1,−D2) to
a global point on E(Q(

√
−D2))−. This remark leads to the following corollary which gives further

evidence for the general conjectures on Stark-Heegner points formulated in [Dar01].

Corollary 5.2. Let −D2 be a �xed discriminant of type II. Assume that there exists a type I
discriminant −D1 for which

J(f,−D1,−D2) = logE(P (f,−D1,−D2)) 6= 0,

with P (f,−D1,−D2) ∈ E(Q(
√
−D2))−⊗Q. Then for all type I discriminants −D1, the expressions

J(f,−D1,−D2) are equal to the formal group logarithm of global points in E(Q(
√
−D2))− ⊗Q.

In order to generalise this discussion, let D2 be any �xed discriminant (either positive, or negative)
satisfying

w(f,D2) = −1,

but not necessarily of type II. Then the invariants J(D1, D2) are de�ned on all fundamental dis-
criminants D1 satisfying

D1D2 > 0, χD1(p) = −χD2(p), χD1(`) = χD2(`) for all ` | M. (18)

The coe�cients b(D1) := J(f,D1, D2), as D1 varies over fundamental discriminants satisfying
(18), are really only de�ned up to sign, since they depend on the choice of a p-adic square root
of D1D2. But for discriminants D1 that are congruent to each other modulo p, it is possible to
make a consistent choice of square root and remove the sign ambiguity in the de�nition of b(D1) for
D1 in a �xed residue class modulo p. Section 6.2 discusses this issue in more detail, and explains
how in certain cases (for example, when p ≡ 3 modulo 4) the coe�cient b(D1) can even be de�ned
unambiguously for all D1.

Theorem 5.1 suggests the following conjecture.

Conjecture 5.3. The coe�cients b(D) are proportional to the Dth fourier coe�cients of a mod-

ular form of weight 3/2 on Γ1(4N2) associated to f by a (suitably generalised) Shimura-Kohnen

correspondence. Furthermore, these coe�cients vanish identically if and only if L′(f,D2, 1) = 0.

Conjecture 5.3 can be divided into two cases:

Case 1: The case where χD2(p) = −wp.

In that case the invariants J(f,D1, D2) belong to Qp, and the key Lemma 3.8 still holds. One
therefore has a hope of proving Conjecture 5.3 by suitably generalising Kohnen's formula. Some
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progress in this direction has been made by work of Mao, Rodriguez-Villegas and Tornaría [MRVT07]
and of Mao [Ma08]. See also [PT08] for more examples of the generalized Shimura-Kohnen corre-
spondence in the case of composite levels.

Case 2: The case where χD2(p) = wp.

In that case one has

J(f,D1, D2) = −J(f,D1, D2),

and the proof of Lemma 3.8 breaks down completely. In fact, the periods r̃(f ]
k, D1, D2) vanish

identically in this case, and there is therefore little hope of controlling the Stark-Heegner points
J(f,D1, D2) by exploiting the p-adic variation of modular forms. In this setting, Conjecture 5.3 is
more mysterious, and we can give little theoretical evidence for it. We have however gathered some
numerical evidence in its support in the next section.

6. Numerical evidence

In this section we present some numerical evidence for Conjecture 5.3, in the case�which is the
simplest and most natural for calculations�where

i) The elliptic curve E has prime conductor p and odd analytic rank, so that wp = 1;

ii) the auxiliary discriminant D2 is equal to 1.

Under these hypotheses, we �nd ourselves in case 2 in the discussion of Conjecture 5.3. This set-
ting is therefore the most interesting from a theoretical point of view because both hypotheses in
Theorem 3.7 fail, and Lemma 3.8 does not hold.

For fundamental discriminants ∆ > 0 satisfying χ∆(p) = −1 (i.e. for real quadratic �elds K in
which p is inert), we can use the computer package shp of [DP] to check and (conjecturally) compute
the corresponding global point P (∆) ∈ E(Q) (the �trace� of the Stark-Heegner points for K).

On the other hand, a construction given in [MRVT07] associates to f a modular form g+ of weight
3/2 on Γ1(4p2) whose coe�cients c(∆) are indexed by real quadratic discriminants ∆ > 0 satisfying
χ∆(p) = −1, and are related to a square root of the central values L(f,∆, 1). This computation is
done by a PARI/GP [PARI] package which computes modular forms of half integral weight as linear
combinations of generalised theta series associated to positive de�nite ternary quadratic forms. The
linear combinations are determined from Brandt matrices using the package qalgmodforms from
[CNT].

6.1 The curve 37a

The smallest prime conductor for which there is an elliptic curve with sign −1 in its functional
equation is p = 37. Indeed, the quotient of the modular curve X0(37) by the Atkin-Lehner involution
is an elliptic curve, denoted by 37a in the tables of Cremona, and given by the equation

E : y2 + y = x3 − x.

Note that this curve is unique in its Q-isogeny class.

The computation of the Stark-Heegner points for this curve has been discussed in [DP06], which
focuses on a few small discriminants with relatively large class number. This time we computed the
traces of the Stark-Heegner points over a much larger range�for discriminants ∆ 6 10000 with
χ∆(37) = −1. The computations were carried to 20 signi�cant 37-adic digits, which was enough to
recognize all of the traces but one (see below).

To compare these traces with coe�cients of modular forms of weight 3/2, we write P (∆) = m∆P0,
where m∆ ∈ Z and P0 = (0, 0) is a �xed generator of E(Q). The traces P (∆) and the values m∆ for

15



Henri Darmon and Gonzalo Tornaría

∆ h(∆) P (∆) m∆ ∆ h(∆) P (∆) m∆

5 1 (0, 0) 1 61 1 ∞ 0
8 1 (0, 0) 1 69 1 ∞ 0

13 1 (0,−1) −1 76 1 (0,−1) −1
17 1 (0,−1) −1 88 1 (0,−1) −1
24 1 (0,−1) −1 89 1 (0,−1) −1
29 1 (1, 0) 2 92 1 (1,−1) −2
56 1 (0,−1) −1 93 1 (1, 0) 2
57 1 (0,−1) −1 97 1 ∞ 0
60 2 (0, 0) 1 105 2 (0,−1) −1

Table 1. Traces of Stark-Heegner points in 37a

∆ 5 8 13 17 24 29 56 57 60 61 69

c(∆) 1 -1 -1 -1 1 -2 -1 -1 -1 0 0

∆ 76 88 89 92 93 97 105 . . . 461 . . . 8357

c(∆) -1 1 -1 -2 2 0 -1 . . . 5 . . . 22

Table 2. Coe�cients of g+ corresponding to 37a

fundamental discriminants ∆ 6 105 are shown in Table 1.

Note that the values of m∆ in the table being rather small, the points P (∆) are usually of small
height, and thus rational reconstruction from the 37-adic approximation is very easy. For instance

P (461) ≡ (3606438279313387, 3005365232761155) (mod 3710),

is easily recognized as the global point P (461) =
(

1
4 ,−5

8

)
= 5P0.

As the discriminant ∆ gets larger, so does m∆. In our computation for ∆ 6 10000 we found
one discriminant for which the working precision of 20 signi�cant 37-adic digits is not enough to
recognize P (∆):

P (8357) =
(

51678803961
12925188721

,−12133184284073305
1469451780501769

)
= −22P0.

It turns out this is the largest value of m∆ in our range. Of course we expect |m8357| = 22 from
reading a coe�cient of a modular form of weight 3/2 (see Table 2), and we can still check a posteriori

that this is consistent with the value of P (8357) computed modulo 3720.

The computation of the modular form g+ of weight 3/2 corresponding to 37a can be done
following [MRVT07]. The fourier expansion of g+ begins

g+ = q5 − q8 − q13 − q17 + q20 + q24 − 2q29 + O(q30).

Note that due to some choices in the construction, the sign of the coe�cients is not well de�ned.
The sign of the coe�cients here may di�er from the ones given in [MRVT07].

The coe�cients of g+ =
∑

c(∆) q∆ for the fundamental discriminants ∆ 6 105, ∆ = 461 and
∆ = 8357 are shown in Table 2.

16



Stark-Heegner points and the Shimura correspondence

∆ h(∆) P (∆) m∆ ∆ h(∆) P (∆) m∆

76 1 (0,−1) −1 1001 2 (0, 0) 1
113 1 ∞ 0 1112 1 ∞ 0
409 1 ∞ 0 1149 1 (1, 0) 2
520 4 ∞ 0 1297 11 (0,−1) −1
557 1

(
21
25 ,− 56

125

)
−8 1704 2 (0,−1) −1

668 1
(
−5

9 , 8
27

)
7 1741 1 (0,−1) −1

705 2 (0,−1) −1 1852 1 ∞ 0
853 1 (1, 0) 2 1889 1 (−1,−1) 3

Table 3. Traces of Stark-Heegner points in 37a for ∆ ≡ 2 (mod 37)

∆ 76 113 409 520 557 668 705 853

c(∆) -1 0 0 0 -8 7 -1 2

∆ 1001 1112 1149 1297 1704 1741 1852 1889

c(∆) 1 0 2 -1 -1 -1 0 3

Table 4. Coe�cients of g+ for ∆ ≡ 2 (mod 37)

6.2 The mysterious signs

The Stark-Heegner points as we have described them have an inherent ambiguity of sign. This
is because their calculation depends essentially on a choice of

√
∆ ∈ Cp. In the case of classical

Heegner points in the original Gross-Kohnen-Zagier formula, square roots in C of imaginary quadratic
discriminants are canonically chosen to be in the upper half plane. At this stage, Conjecture 5.3 only
makes sense up to a sign; this is tantamount to a Gross-Zagier type formula for the heights of the
(traces of) Stark-Heegner points, and does not include a statement about the �mysterious signs�.

We remark that g+ itself is not unique (not even up to a single constant, unlike for the case
of classical Heegner points). However, having the level bounded at 4p2 restricts the choices quite a
lot. There is still room to change signs of the di�erent coe�cients so long as the change is periodic
modulo p. In particular, the sign of c(∆1)/c(∆2) is well de�ned, provided ∆1 ≡ ∆2 (mod p).

In harmony with this observation, notice that if ∆1 ≡ ∆2 6≡ 0 (mod p), there is a natural way
to choose

√
∆2 ∈ Cp once

√
∆1 ∈ Cp has been choosen: namely, make the unique choice such that√

∆2 is congruent to
√

∆1 modulo p. Thus, the ambiguity in sign can be resolved for Stark-Heegner
points attached to like discriminants modulo p.

For instance, the traces P (∆) and the values m∆ for fundamental discriminants ∆ ≡ 2 (mod 37)
with ∆ 6 2000 are shown in Table 3. The coe�cients of g+, which are displayed in Table 4, agree
with the m∆ including the sign.

There is also a special case in which the signs can be completely well de�ned. Namely, when
p ≡ 3 (mod 4) we can employ the fact that the quadratic character χ−p of conductor p is odd. Once√

∆0 has been chosen, it determines a canonical choice for
√

∆ ∈ Cp by requiring

χ−p(
√

∆/
√

∆0) = 1.

On the side of half-integral weight modular forms, the form g+ is also determined uniquely up
to a single constant by requiring it to have character χ4p = χ−4χ−p of conductor 4p. This weight
3/2 modular form g+ can be characterised as being in Shimura correspondence with the quadratic
twist f ⊗χ−p, of level p2. The Shimura correspondence for level p2 has been worked out explicitly in
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∆ h(∆) P (∆) m∆ ∆ h(∆) P (∆) m∆

5 1 (0, 0) 1 69 1 (0,−1) −1
8 1 (0,−1) −1 73 1 (0, 0) 1

12 1 (0, 0) 1 76 1 ∞ 0
28 1 (0,−1) −1 77 1 (1, 1) −3
29 1 (0,−1) −1 85 2 (0, 0) 1
33 1 (0,−1) −1 88 1 (0,−1) −1
37 1 (−1,−1) 2 89 1 (0, 0) 1
61 1 (0, 0) 1 93 1 (1,−2) 3
65 2 (0,−1) −1 104 2 (0, 0) 1

Table 5. Traces of Stark-Heegner points in 43a

∆ 5 8 12 28 29 33 37 61 65

c(∆) 1 -1 1 -1 -1 -1 2 1 -1

∆ 69 73 76 77 85 88 89 93 104

c(∆) -1 1 0 -3 1 -1 1 3 1

Table 6. Coe�cients of g+ corresponding to 43a

[PT07a], and examples of its application to central values of real quadratic twists, and in particular
to computing the fourier coe�cients of g+, appear in [PT07b].

6.3 The curve 43a

The smallest conductor p ≡ 3 (mod 4) for which there is an elliptic curve with sign −1 in its
functional equation is p = 43. The quotient of the modular curve X0(43) by the Atkin-Lehner
involution is again an elliptic curve, denoted by 43a in the tables of Cremona, and is given by the
equation

E : y2 + y = x3 + x2.

This curve is unique in its Q-isogeny class.

We computed the traces of the Stark-Heegner points for fundamental discriminants ∆ 6 10000
with χ∆(43) = −1, using a precision of 20 signi�cant 43-adic digits, which was enough to recognize
all of the traces as global points in E(Q) except for P (7613) = 21P0.

We will write P (∆) = m∆P0 with m∆ ∈ Z and P0 = (0, 0) is a �xed generator of E(Q). These
data, for fundamental discriminants ∆ 6 104, are show in Table 5.

The computation of the modular form g+ of weight 3/2 corresponding to 43a can be done
following either [PT07b] or [MRVT07]. The fourier expansion of g+ begins

g+ = q5 − q8 + q12 + q20 − q28 − q29 + O(q30).

In this case the sign of its coe�cients is canonically de�ned, after setting c(g+, 5) = 1. We veri�ed
that the resulting coe�cients agree with the values of m∆ computed above, for all ∆ 6 10000.

The coe�cients of g+ =
∑

c(∆) q∆ for the fundamental discriminants ∆ 6 104 are shown in
Table 6. A few more coe�cients (for all ∆ < 200) can be found in [MRVT07].
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E #∆ x E #∆ x

37a 1483 1 101a 1514 0
43a 1491 1 131a 1515 0
53a 1490 3 163a 1508 2
61a 1504 0 197a 1524 1
79a 1504 0 229a 1525 10
83a 1513 10 269a 1519 4
89a 1509 0 277a 1524 106

Table 7: Number of discriminants ∆ 6 10000 we used for each curve. The column labeled x
indicates the number of such discriminants for which the precision of 20 signi�cant p-adic digits was
not enough to recognize the trace of the Stark-Heegner point.

6.4 Other curves

In addition to the elliptic curves of 37a and 43a already discussed, we also did computations for the
following 12 curves:

53a : y2 + xy + y = x3 − x
61a : y2 + xy = x3 − 2x + 1
53a : y2 + xy + y = x3 − x
61a : y2 + xy = x3 − 2x + 1
79a : y2 + xy + y = x3 + x2 − 2x
83a : y2 + xy + y = x3 + x2 + x
89a : y2 + xy + y = x3 + x2 − x

101a : y2 + y = x3 + x2 − x− 1
131a : y2 + y = x3 − x2 + x
163a : y2 + y = x3 − 2x + 1
197a : y2 + y = x3 − 5x + 4
229a : y2 + xy = x3 − 2x− 1
269a : y2 + y = x3 − 2x− 1
277a : y2 + xy + y = x3 − 1

These are all the isogeny classes of elliptic curves of prime conductor p < 300 and rank 1. Note that
for p up to 131, these are isomorphic to the quotient of the modular curve X0(p) by the Atkin-Lehner
involution. All of these curves are unique in their Q-isogeny class.

For each of these curves we computed the traces of the Stark-Heegner points for discriminants
∆ 6 10000 with χ∆(p) = −1. All the computations were carried to 20 signi�cant p-adic digits, which
was enough to recognize almost all of the traces. In Table 7 we indicate the number of discriminants
for each curve, and the number of discriminants for which the precision was insu�cient to recognize
the point.

For the 5 curves with conductor p ≡ 3 (mod 4), the corresponding modular forms of weight 3/2
level 4p2 and character χ4p (and many more) can be obtained from the data in [To04]. We veri�ed
that their coe�cients agree with the values of m∆, for ∆ 6 10000.

For the other 7 curves with conductor p ≡ 1 (mod 4), we computed the corresponding modular
forms of weight 3/2 for Γ1(4p2) following the method explained in [MRVT07], and veri�ed that their
coe�cients agree with the values of m∆ up to a sign function de�ned modulo p, for all ∆ 6 10000.

The complete set of data that we computed, comprising the traces of the Stark-Heegner points
and the values m∆ for discriminants ∆ 6 10000 with χ∆(p) = −1, for each of the curves mentioned
above, is available online at [DT07].
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