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Introduction

Let E be an elliptic curve over Q attached to a newform f of weight two on
Γ0(N). Let K be a real quadratic field, and let p||N be a prime of multi-
plicative reduction for E which is inert in K, so that the p-adic completion
Kp of K is the quadratic unramified extension of Qp.

Subject to the condition that all the primes dividing M := N/p are split
in K, the article [Dar] proposes an analytic construction of “Stark–Heegner
points” in E(Kp), and conjectures that these points are defined over specific
class fields of K. More precisely, let

R :=

{(

a b
c d

)

∈M2(Z[1/p]) such that M divides c

}

be an Eichler Z[1/p]-order of level M in M2(Q), and let Γ := R×
1 denote

the group of elements in R of determinant 1. This group acts by Möbius
transformations on the Kp-points of the p-adic upper half-plane

Hp := P1(Kp) − P1(Qp),

and preserves the non-empty subset Hp ∩ K. In [Dar], modular symbols
attached to f are used to define a map

Φ : Γ\(Hp ∩K)−→E(Kp), (1)
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whose image is conjectured to consist of points defined over ring class fields
of K. Underlying this conjecture is a more precise one, analogous to the
classical Shimura reciprocity law, which we now recall.

Given τ ∈ Hp ∩K, the collection Oτ of matrices g ∈ R satisfying

g

(

τ
1

)

= λg

(

τ
1

)

for some λg ∈ K, (2)

is isomorphic to a Z[1/p]-order in K, via the map g 7→ λg. This order is also
equipped with the attendant ring homomorphism η : Oτ−→Z/MZ sending
g to its upper left-hand entry (taken modulo M). The map η is sometimes
referred to as the orientation at M attached to τ . Conversely, given any
Z[1/p]-order O of discriminant prime to M equipped with an orientation η,
the set HO

p of τ ∈ Hp with associated oriented order equal to O is preserved
under the action of Γ, and the set of orbits Γ\HO

p is equipped with a natural
simply transitive action of the group G = Pic+(O), where Pic+(O) denotes
the narrow Picard group of oriented projective O-modules of rank one. De-
note this action by (σ, τ) 7→ τσ, for σ ∈ G and τ ∈ Γ\HO

p . Class field theory
identifies G with the Galois group of the narrow ring class field of K attached
to O, denoted HK. It is conjectured in [Dar] that the points Φ(τ) belong to
E(HK) for all τ ∈ HO

p , and that

Φ(τ)σ = Φ(τσ), for all σ ∈ Gal(HK/K) = Pic+(O). (3)

In particular it is expected that the point

PK := Φ(τ1) + · · ·+ Φ(τh)

should belong to E(K), where τ1, . . ., τh denote representatives for the dis-
tinct orbits in Γ\HO

p . The article [BD3] shows that the image of PK in
E(Kp) ⊗ Q is of the form t · PK , where

1. t belongs to Q×;

2. PK ∈ E(K) is of infinite order precisely when L′(E/K, 1) 6= 0;

provided the following ostensibly extraneous assumptions are satisfied

1. P̄K = apPK, where P̄K is the Galois conjugate of PK over Kp, and ap
is the pth Fourier coefficient of f .
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2. The elliptic curve E has at least two primes of multiplicative reduction.

The main result of [BD3] falls short of being definitive because of these two
assumptions, and also because it only treats the image of PK modulo the
torsion subgroup of E(Kp).

The main goal of this article is to examine certain “finer” invariants as-
sociated to PK and to relate these to special values of L-series, guided by
the analogy between the point PK and classical Heegner points attached to
imaginary quadratic fields.

In setting the stage for the main formula, let E/Q be an elliptic curve
of conductor M ; it is essential to assume that all the primes dividing M
are split in K. This hypothesis is very similar to the one imposed in [GZ]
when K is imaginary quadratic, where it implies that L(E/K, 1) vanishes
systematically because the sign in its functional equation is −1. In the case
where K is real quadratic the “Gross-Zagier hypothesis” implies that the
sign in the functional equation for L(E/K, s) is 1 so that L(E/K, s) vanishes
to even order and is expected to be frequently non-zero at s = 1. Consistent
with this expectation is the fact that the Stark–Heegner construction is now
unavailable, in the absence of a prime p||M which is inert in K.

The main idea is to bring such a prime into the picture by “raising the level
at p” to produce a newform g of level N = Mp which is congruent to f . The
congruence is modulo an appropriate ideal λ of the ring Og generated by the
Fourier coefficients of g. Let Ag denote the abelian variety quotient of J0(N)
attached to g by the Eichler-Shimura construction. The main objective,
which can now be stated more precisely, is to relate the local behaviour at p
of the Stark–Heegner points in Ag(Kp) to the algebraic part of the special
value of L(E/K, 1), taken modulo λ.

The first key ingredient in establishing such a relationship is an extension
of the map Φ of (1) to arbitrary eigenforms of weight 2 on Γ0(Mp) such as g,
and not just eigenforms with rational Fourier coefficients attached to elliptic
curves, in a precise enough form so that phenomena related to congruences
between modular forms can be analyzed. Let T be the full algebra of Hecke
operators acting on the space of forms of weight two on Γ0(Mp). The theory
presented in Section 1, based on the work of the third author [Das], produces
a torus T over Kp equipped with a natural T-action, whose character group
(tensored with C) is isomorphic as a T ⊗ C-module to the space of weight 2
modular forms on Γ0(Mp) which are new at p. It also builds a Hecke-stable
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lattice L ⊂ T (Kp), and a map Φ generalising (1)

Φ : Γ\(Hp ∩K)−→T (Kp)/L. (4)

It is conjectured in Section 1 that the quotient T/L is isomorphic to the rigid
analytic space associated to an abelian variety J defined over Q. A strong
partial result in this direction is proven in [Das], where it is shown that T/L is
isogenous over Kp to the rigid analytic space associated to the p-new quotient
J0(N)p-new of the jacobian J0(N). In Section 1, it is further conjectured that
the points Φ(τ) ∈ J(Kp) satisfy the same algebraicity properties as were
stated for the map Φ of (1).

Letting Φp denote the group of connected components in the Néron model
of J over the maximal unramified extension of Qp, one has a natural Hecke-
equivariant projection

∂p : J(Cp)−→Φp. (5)

The group Φp is described explicitly in Section 1, yielding a concrete descrip-
tion of the Hecke action on Φp and a description of the primes dividing the
cardinality of Φp in terms of “primes of fusion” betwen forms on Γ0(M) and
forms on Γ0(Mp) which are new at p.

This description also makes it possible to attach to E and K an explicit
element

L(E/K, 1)(p) ∈ Φ̄p,

where Φ̄p is a suitable f -isotypic quotient of Φp. Thanks to a theorem of Popa
[Po], this element is closely related to the special value L(E/K, 1), and, in
particular, one has the equivalence

L(E/K, 1) = 0 ⇐⇒ L(E/K, 1)(p) = 0 for all p.

Section 2 contains an exposition of Popa’s formula.
Section 3 is devoted to a discussion of L(E/K, 1)(p); furthermore, by

combining the results of Sections 1 and 2, it proves the main theorem of this
article, an avatar of the Gross-Zagier formula which relates Stark–Heegner
points to special values of L-series.

Main Theorem. For all primes p which are inert in K,

∂p(PK) = L(E/K, 1)(p).
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Potential arithmetic applications of this theorem (conditional on the va-
lidity of the deep conjectures of Section 1) are briefly discussed in Section 4.

Aknowledgements. It is a pleasure to thank the anonymous referee, for some
comments which led us to improve our exposition.

1 Stark–Heegner points on J0(Mp)p-new

Heegner points on an elliptic curve E defined over Q can be defined analyti-
cally by certain complex line integrals involving the modular form

f :=

∞
∑

n=1

an(E)e2πinz

corresponding to E, and the Weierstrass parametrization of E. To be precise,
let τ be any point of the complex upper half plane H := {z ∈ C|=z > 0}.
The complex number

Jτ :=

∫ τ

∞

2πif(z)dz ∈ C

gives rise to an element of C/ΛE
∼= E(C), where ΛE is the Néron lattice of

E, and hence to a complex point Pτ ∈ E(C). If τ also lies in an imaginary
quadratic subfield K of C, then Pτ is a Heegner point on E. The theory of
complex multiplication shows that this analytically defined point is actually
defined over an abelian extension of K, and it furthermore prescribes the
action of the Galois group of K on this point.

The Stark–Heegner points of [Dar], defined on elliptic curves over Q with
multiplicative reduction at p, are obtained by replacing complex integration
on H with a double integral on the product of a p-adic and a complex upper
half plane Hp ×H.

We now very briefly describe this construction. Let E be an elliptic
curve over Q of conductor N = Mp, with p - M . The differential ω :=
2πif(z)dz and its anti-holomorphic counterpart ω̄ = −2πif(z̄)dz̄ give rise to
two elements in the DeRham cohomology of X0(N)(C):

ω± := ω ± ω̄.

To each of these differential forms is attached a modular symbol

m±
E{x→ y} := (Ω±

E)−1

∫ y

x

ω±, for x, y ∈ P1(Q).
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Here Ω±
E is an appropriate complex period chosen so that m±

E takes values in
Z and in no proper subgroup of Z.

The group Γ defined in the Introduction acts on P1(Qp) by Möbius trans-
formations. For each pair of cusps x, y ∈ P1(Q) and choice of sign ±, a
Z-valued additive measure µ±{x→ y} on P1(Qp) can be defined by

µ±{x→ y}(γZp) = m±
E{γ

−1x→ γ−1y}, (6)

where γ is an element of Γ. Since the stabilizer of Zp in Γ is Γ0(N), equation
(6) is independent of the choice of γ by the Γ0(N)-invariance of m±

E. The mo-
tivation for this definition, and a proof that it extends to an additive measure
on P1(Qp), comes from “spreading out” the modular symbol m±

E along the
Bruhat-Tits tree of PGL2(Qp) (see [Dar], [Das], and Section 1.2 below). For
any τ1, τ2 ∈ Hp and x, y ∈ P1(Qp), a multiplicative double integral on Hp×H
is then defined by (multiplicatively) integrating the function (t− τ1)/(t− τ2)
over P1(Qp) with respect to the measure µ±{x→ y}:

×

∫ τ2

τ1

∫ y

x

ω± := ×

∫

P1(Qp)

(

t− τ2
t− τ1

)

dµ±{x→ y}(t)

= lim
||U||→0

∏

U∈U

(

tU − τ2
tU − τ1

)µ±{x→y}(U)

∈ C×
p . (7)

Here the limit is taken over uniformly finer disjoint covers U of P1(Qp) by
open compact subsets U , and tU is an arbitrarily chosen point of U . Choosing
special values for the limits of integration, in a manner motivated by the
classical Heegner construction described above, one produces special elements
in C×

p . These elements are transferred to E using Tate’s p-adic uniformization
C×
p /qE

∼= E(Cp) to define Stark–Heegner points.
In order to lift the Stark–Heegner points on E to the Jacobian J0(N)p-new,

one can replace the modular symbols attached to E with the universal mod-
ular symbol for Γ0(N). In this section, we review this construction of Stark–
Heegner points on J0(N)p-new, as described in fuller detail in [Das].

1.1 The universal modular symbol for Γ0(N)

The first step is to generalize the measures µ±{x → y} on P1(Qp). As we
will see, the new measure naturally takes values in the p-new quotient of the
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homology group H1(X0(N),Z). Once this measure is defined, the construc-
tion of Stark–Heegner points on J0(N)p-new can proceed as the construction
of Stark–Heegner points on E given in [Dar]. The Stark–Heegner points
on J0(N)p-new will map to those on E under the modular parametrization
J0(N)p-new → E.

We begin by recalling the universal modular symbol for Γ0(N). Let M :=
Div0 P1(Q) be the group of degree zero divisors on the set of cusps of the
complex upper half plane, defined by the exact sequence

0 → M → Div P1(Q) → Z → 0. (8)

The group Γ acts on M via its action on P1(Q) by Möbius transformations.
For any abelian group G, a G-valued modular symbol is a homomorphism

m : M−→G; we write m{x→ y} for m([x]− [y]). Let M(G) denote the left
Γ-module of G-valued modular symbols, where the action of Γ is defined by
the rule

(γm){x→ y} = m{γ−1x→ γ−1y}.

Note that the natural projection onto the group of coinvariants

M−→MΓ0(N) = H0(Γ0(N),M)

is a Γ0(N)-invariant modular symbol. Furthermore, this modular symbol
is universal, in the sense that any other Γ0(N)-invariant modular symbol
factors through this one.

One can interpret H0(Γ0(N),M) geometrically as follows. Given a divi-
sor [x]− [y] ∈ M, consider any path from x to y in the completed upper half
plane H∪P1(Q). Identifying the quotient Γ0(N)\(H∪P1(Q)) with X0(N)(C),
this path gives a well-defined element of H1(X0(N), cusps,Z), the singular
homology of the Riemann surface X0(N)(C) relative to the cusps. Manin
[Man] proves that this map induces an isomorphism between the maximal
torsion-free quotient H0(Γ0(N),M)T and H1(X0(N), cusps,Z). Furthermore,
the torsion of H0(Γ0(N),M) is finite and supported at 2 and 3. The projec-
tion

M → MΓ0(N) → H1(X0(N), cusps,Z)

is called the universal modular symbol for Γ0(N).
The points of X0(N) over C correspond to isomorphism classes of pairs

(E,CN) of (generalized) elliptic curves E/C equipped with a cyclic subgroup
CN ⊂ E of order N. To such a pair we can associate two points of X0(M),
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namely the points corresponding to the pairs (E,CM) and (E/Cp, CN/Cp),
where Cp and CM are the subgroups of CN of size p and M , respectively.
This defines two morphisms of curves

f1 : X0(N) → X0(M) and f2 : X0(N) → X0(M), (9)

each of which is defined over Q. The map f2 is the composition of f1 with the
Atkin-Lehner involution Wp on X0(N). Write f∗ = f1∗⊕f2∗ and f ∗ = f ∗

1 ⊕f
∗
2

(resp. f∗ and f ∗) for the induced maps on singular homology (resp. relative
singular homology):

f∗ : H1(X0(N),Z) → H1(X0(M),Z)2

f∗ : H1(X0(N), cusps,Z) → H1(X0(M), cusps,Z)2

f ∗ : H1(X0(M),Z)2 → H1(X0(N),Z)

f ∗ : H1(X0(M), cusps,Z)2 → H1(X0(N), cusps,Z).

The abelian variety J0(N)p-new is defined to be the quotient of J0(N) by the
images of the Picard maps on Jacobians associated to f1 and f2. Define H
and H to be the maximal torsion-free quotients of the cokernels of f ∗ and
f ∗, respectively:

H := (coker f ∗)T and H := (coker f ∗)T .

If we write g for the dimension of J0(N)p-new, the free abelian groups H and
H have ranks 2g+1 and 2g, respectively, and the natural map H → H is an
injection ([Das, Prop. 3.2]).

The groups H and H have Hecke actions generated by T` for ` - N , U`
for `|N , and Wp. We omit the proof of the following proposition.

Proposition 1.1. The group (H/H)T ∼= Z is Eisenstein; that is, T` acts as

`+ 1 for ` - N , U` acts as ` for `|M , and Wp acts as −1.

Proposition 1.1 implies that it is possible to choose a Hecke equivariant
map ψ : H → H such that the composition

H−→H
ψ

−→H (10)

has finite cokernel. For example, we may take ψ to be the Hecke operator
(p2 − 1)(Tr − (r + 1)) for any prime r - N . We fix a choice of ψ for the
remainder of the paper.
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1.2 A p-adic uniformization of J0(N)p-new

For any free abelian group G, let Meas(P1(Qp), G) denote the Γ-module
of G-valued measures on P1(Qp) with total measure zero, where Γ acts by
(γµ)(U) := µ(γ−1U).

In order to construct a Γ-invariant Meas(P1(Qp), H)-valued modular sym-
bol, we recall the Bruhat-Tits tree T of PGL2(Qp). The set of vertices V(T )
of T is identified with the set of homothety classes of Zp-lattices in Q2

p. Two
vertices v and v′ are said to be adjacent if they can be represented by lattices
L and L′ such that L contains L′ with index p. Let E(T ) denote the set of
oriented edges of T , that is, the set of ordered pairs of adjacent vertices of
T . Given e = (v1, v2) in E(T ), call v1 = s(e) the source of e, and v2 = t(e)
the target of e. Define the standard vertex vo to be the class of Z2

p, and
the standard oriented edge eo = (vo, v) to be the edge whose source is vo

and whose stabilizer in Γ is equal to Γ0(N). Note that E(T ) is equal to the
disjoint union of the Γ-orbits of eo and ēo, where ēo = (v, vo) is the opposite
edge of eo. A half line of T is a sequence (en) of oriented edges such that
t(en) = s(en+1). Two half lines are said to be equivalent if they have in com-
mon all but a finite number of edges. It is known that the boundary P1(Qp)
of the p-adic upper half plane bijects onto the set of equivalence classes of
half lines. For an oriented edge e, write Ue for the subset of P1(Qp) whose
elements correspond to classes of half lines passing through e. The sets Ue
are determined by the rules: (1) Uēo = Zp, (2) Uē = P1(Qp) − Ue, and (3)
Uγe = γUe for all γ ∈ Γ. The Ue give a covering of P1(Qp) by compact open
sets. Finally, recall the existence of a Γ-equivariant reduction map

r : (Kp − Qp)−→V(T ),

defined on the Kp-points of Hp. (As before, Kp is an unramified extension
of Qp.) See [GvdP] for more details.

Define a function
κ{x→ y} : E(T )−→H

as follows. When e belongs to the Γ-orbit of eo and γ ∈ Γ is chosen so that
γe = eo, let κ{x → y}(e) be ψ applied to the image of γ−1([x] − [y]) in
H under the universal modular symbol for Γ0(N). Let κ{x → y}(e) be the
negative of this value when the relation γe = ēo holds.

The function κ{x→ y} is a harmonic cocycle on T , that is, it obeys the
rules
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1. κ{x→ y}(ē) = −κ{x → y}(e) for all e ∈ E(T ), and

2.
∑

s(e)=v κ{x → y}(e) = 0 for all v ∈ V(T ), where the sum is taken over

the p+ 1 oriented edges e whose source s(e) is v.

Furthermore, we have the Γ-invariance property

κ{γx→ γy}(γe) = κ{x→ y}(e)

for all γ ∈ Γ.
The natural bijection between Meas(P1(Qp), H) and the group of har-

monic cocycles on T valued in H shows that the definition

µ{x→ y}(Ue) := κ{x→ y}(e)

yields a Γ-invariant Meas(P1(Qp), H)-valued modular symbol µ ([Das, Prop.
3.1]). When m = [x] − [y] ∈ M, we write µm for µ{x→ y}.

We can now define, for τ1, τ2 ∈ Hp and m ∈ M, a multiplicative double
integral attached to the universal modular symbol for Γ0(N):

×

∫ τ2

τ1

∫

m

ω := ×

∫

P1(Qp)

(

t− τ2
t− τ1

)

dµm(t)

= lim
||U||→0

∏

U∈U

(

tU − τ2
tU − τ1

)

⊗ µm(U) ∈ C×
p ⊗Z H,

with notations as in (7). One shows that this integral is Γ-invariant:

×

∫ γτ2

γτ1

∫

γm

ω = ×

∫ τ2

τ1

∫

m

ω for γ ∈ Γ.

Letting T denote the torus T = Gm ⊗Z H, we thus obtain a homomorphism

((Div0 Hp) ⊗M)Γ → T (11)

([τ1] − [τ2]) ⊗m 7→ ×

∫ τ2

τ1

∫

m

ω.

Consider the short exact sequence of Γ-modules defining Div0 Hp:

0 → Div0 Hp → DivHp → Z → 0.
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After tensoring with M, the long exact sequence in homology gives a bound-
ary map

δ1 : H1(Γ,M) → ((Div0 Hp) ⊗M)Γ. (12)

The long exact sequence in homology associated to the sequence (8) defining
M gives a boundary map

δ2 : H2(Γ,Z) → H1(Γ,M). (13)

Define L to be the image of H2(Γ,Z) under the composed homomorphisms
in (11), (12), and (13): H2(Γ,Z) → T (Qp). Note that the Hecke algebra T
of H acts on T .

Theorem 1.2 ([Das], Thm. 3.3). Let Kp denote the quadratic unramified

extension of Qp. The group L is a discrete, Hecke stable subgroup of T (Qp)
of rank 2g. The quotient T/L admits a Hecke-equivariant isogeny over Kp to

the rigid analytic space associated to the product of two copies of J0(N)p-new.

Remark 1.3. If one lets the nontrivial element of Gal(Kp/Qp) act on T/L
by the Hecke operator Up, the isogeny of Theorem 1.2 is defined over Qp.

Remark 1.4. As described in [Das, §5.1], Theorem 1.2 is a generalization
of a conjecture of Mazur, Tate, and Teitelbaum [MTT, Conjecture II.13.1]
which was proven by Greenberg and Stevens [GS].

Theorem 1.2 implies that T/L is isomorphic to the rigid analytic space
associated to an abelian variety J defined over a number field (which can be
embedded in Qp). We now state a conjectural refinement of Theorem 1.2.

Conjecture 1.5. The quotient T/L is isomorphic over Kp to the rigid an-

alytic space associated to an abelian variety J defined over Q.

Presumably, the abelian variety J will have a natural Hecke action, and
the isomorphism of Conjecture 1.5 will be Hecke equivariant; furthermore we
expect that if one lets the nontrivial element of Gal(Kp/Qp) act on T/L by
the Hecke operator Up, the isomorphism will be defined over Qp.

The abelian variety J breaks up (after perhaps an isogeny of 2-power
degree) into a product J+ × J−, where the signs represent the eigenvalues
of complex conjugation on H, and Theorem 1.2 (or rather its proof) implies
that each of J± admits an isogeny denoted ν± to J0(N)p-new.
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Throughout this article, we will need to avoid a certain set of bad primes.
Let S denote a finite set of primes containing those dividing 6ϕ(M)(p2 − 1)
or the size of the cokernel of the composite map (10). We say that two
abelian varieties (or two analytic spaces) are S-isogenous if there is an isogeny
between them whose degree is divisible only by primes in S. We expect
that ν± may be chosen to be S-isogenies defined over Q, but as we will not
need this result in the current article, we refrain from stating it as a formal
conjecture.

1.3 Stark–Heegner points on J and J0(N)p-new

Fix τ ∈ Hp and x ∈ P1(Q). The significance of the subgroup L is that it
is the smallest subgroup of T such that the cohomology class in H2(Γ, T/L)
given by the 2-cocycle

dτ,x(γ1, γ2) := ×

∫ γ−1

1
τ

τ

∫ γ2x

x

ω (mod L)

vanishes (the cohomology class of this cocycle, and hence the smallest triv-
ializing subgroup L, is independent of τ and x). Thus there exists a map
βτ,x : Γ → T/L such that

βτ,x(γ1γ2) − βτ,x(γ1) − βτ,x(γ2) = ×

∫ γ−1

1
τ

τ

∫ γ2x

x

ω (mod L). (14)

The 1-cochain βτ,x is defined uniquely up to an element of Hom(Γ, T/L). The
following proposition, which follows from the work of Ihara and whose proof
is reproduced in [Das, Prop. 3.7], allows us to deal with this ambiguity.

Proposition 1.6. The abelianization of Γ is finite, and any prime dividing

its size divides 6ϕ(M)(p2 − 1).

We may now define Stark–Heegner points on J and J0(N)p-new. Let K be
a real quadratic field such that p is inert in K, and choose a real embedding
σ of K. For each τ ∈ Hp ∩ K, consider its associated order Oτ as defined
in (2). Let γτ be the generator of the group of units in O×

τ of norm 1
whose associated λγ (see (2)) is greater than 1 under σ. Finally, choose any
x ∈ P1(Q), and let t denote the exponent of the abelianization of Γ. We then
define the Stark–Heegner point associated to τ by

Φ(τ) := t · βτ,x(γτ) ∈ T (Kp)/L.
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The multiplication by t ensures that this definition is independent of the
choice of βτ,x, and one also checks that Φ(τ) is independent of x. Further-
more, the point Φ(τ) depends only on the Γ-orbit of τ , so we obtain a map

Φ : Γ\(Hp ∩K) → T (Kp)/L = J(Kp). (15)

Following [Das], we conjecture that the images of Φ satisfy explicit alge-
braicity properties analogous to those mentioned in the Introduction. Fix a
Z[1/p]-order O in K, and let HK be the narrow ring class field of K attached
to O, whose Galois group is canonically identified by class field theory with
Pic+(O). If h is the size of this Galois group, there are precisely h distinct
Γ-orbits of points in Hp ∩ K whose associated order is O. Let τ1, . . . , τh be
representatives for these orbits.

Conjecture 1.7. The points Φ(τi) are global points defined over HK:

Φ(τi) ∈ J(HK). (16)

They are permuted simply transitively by Gal(HK/K), so the point

PK := Φ(τ1) + · · ·+ Φ(τh) (17)

lies in J(K).

While a proof of this conjecture (particularly, of equation (16)) seems far
from the methods we have currently developed, one may still hope to glean
some information from the p-adic invariants of Stark–Heegner points, and it
seems of independent interest to relate such invariants to special values of
Rankin L-series. Let PK = J(Kp) be as in (17). The goal of Section 3 is to
relate PK to a certain algebraic part of L(E/K, 1), the latter being defined in
terms of a formula of Popa that is explained in Section 2. This approach lends
itself to generalisations to linear combinations of the points Φ(τi) associated
to the complex characters of Gal(HK/K) (see Section 4 for more details).

We conclude this section by remarking that Stark–Heegner points on
J0(N)p-new are defined by composing the map Φ of (15) with the maps ν±
resulting from Theorem 1.2. In [Das] it is conjectured that Stark–Heegner
points on J0(N)p-new are defined over HK; Conjecture 1.7 may thus be viewed
as a refinement.
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2 Popa’s formula

Let D denote the discriminant of K, and fix an orientation η : OK−→Z/MZ
of the ring of integers O := OK of K. With notations as in the Introduction,
there are exactly h = #G different R0(M)× conjugacy classes of oriented
optimal embeddings of O into the order R0(M) of matrices in M2(Z) which
are upper triangular modulo M . Let Ψ1, . . . ,Ψh denote representatives for
these classes of embeddings. After fixing a fundamental unit εK of K of norm
one, normalised so that εK > 1 with respect to the fixed real embedding of
K, set

γj := Ψj(εK) ∈ Γ0(M). (18)

Let f be the normalised eigenform attached to E. Then we have

Proposition 2.1 (Popa). The equality

L(E/K, 1) · (D1/2/4π2) =

(

h
∑

j=1

∫ γjz0

z0

f(z)dz

)2

holds, for any choice of z0 in the extended complex upper half plane.

Proof. See Theorem 6.3.1 of [Po].

Remark 2.2. The result of Popa, which is stated here for simplicity in the
case of the trivial character, deals more generally with twists of the L-series
of E/K by complex characters of Pic+(O) (and even with twists by complex
characters attached to more general orders of K). In order to formulate the
result in this more general form, one needs to define an action of Pic(OK)
on the set of conjugacy classes of oriented optimal embeddings of O into the
order R0(M). See [Po] for more details.

The eigenform f determines an algebra homomorphism ϕf : T−→Z sat-
isfying

ϕf(Tn) = an(f), for (n,N) = 1, ϕf(U`) = a`(f), for `|N.

Write If for the kernel of ϕf . For a T-module A, let Af := A/IfA be the
largest quotient of A on which T acts via ϕf . Note that H1(X0(M),Z)f
is a Z-module of rank 2. Given a finite set of primes S, let ZS denote the
localization of Z in which the primes of S are inverted. By possibly enlarging
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S, we may assume that H1(X0(M),ZS)f is torsion-free, and hence a free ZS-
module of rank 2.

For any such S, denote by [γj] ∈ H1(X0(M),ZS) the homology class
corresponding to γj, and let

[γK] :=
h
∑

j=1

[γj].

Define the algebraic part of L(E/K, 1) by the formula

L(E/K, 1) = L(E/K, 1)S := the natural image of [γK] in H1(X0(M),ZS)f .

Proposition 2.1 directly implies the following

Corollary 2.3. L(E/K, 1) 6= 0 if and only if L(E/K, 1) 6= 0.

3 The main formula

The goal of this section is to compute the image of the Stark-Heegner point
PK in the group of connected components at p of the abelian variety J
introducted in Section 1, and relate it to L(E/K, 1).

3.1 The p-adic valuation

The image of the multiplicative double integral under the p-adic valuation
map has a simple combinatorial description.

Proposition 3.1 ([BDG], Lemma 2.5 or [Das], Lemma 4.2). For τ1,
τ2 ∈ Kp − Qp, and x, y ∈ P1(Q), the equality

ordp×

∫ τ2

τ1

∫ y

x

ω =
∑

e:v1→v2

κ{x→ y}(e)

holds in H, where vi ∈ V(T ), i = 1, 2 is the image of τi by the reduction

map, and the sum is taken over the edges in the path joining v1 to v2.

This proposition implies:

Proposition 3.2 ([Das], Props. 4.1, 4.9). The image of L under

∂p = ordp⊗ Id : T (Qp) = Q×
p ⊗H → Z ⊗H = H

is equal to the image of ker f̄∗ by the composition of ψ with the natural pro-

jection H1(X0(N), cusps,Z) −→ H̄.
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3.2 Connected components and primes of fusion

Let Φp denote the quotient

coker f ∗/ ker f∗.

Let S be a finite set of primes chosen as at the end of section 1.2, that is, S
contains the primes dividing 6ϕ(M)(p2 − 1) or the size of the cokernel of the
composite map (10).

The group Φp is finite, and the primes dividing the cardinality of Φp⊗ZS

are “congruence primes.” This will be discussed further below.
Let Φp,S denote the ZS-module Φp ⊗ ZS. By Proposition 3.2, combined

with the results of [Das], pp. 438-441, for any unramified extension Kp of Qp,
the p-adic valuation gives a well-defined homomorphism

∂p,S : T (Kp)/L→ Φp,S.

By the theory of p-adic uniformisation of abelian varieties, the group of
connected components of the Néron model of J over the maximal unramified
extension of Qp, tensored with ZS, is equal to Φp,S.

Let T̃, resp. T denote the Hecke algebra acting faithfully onH1(X0(N),Z),
resp. H1(X0(M),Z). This algebra is generated by the Hecke operators T̃q for
q 6 |N and Ũq for q | N , resp. Tq for q 6 |M and Uq for q |M .

Identify
H1(X0(M),Z)2

with a submodule ofH1(X0(N),Z) via f ∗. Note that H1(X0(M),Z)2 is stable
for the action of T̃. For (n, p) = 1, the action of the operator T̃n ∈ T̃ on
H1(X0(M),Z)2 is equal to the diagonal action of Tn ∈ T; moreover, the

action of Ũp ∈ T̃ is equal to that of the operator Up :=

(

Tp −1
p 0

)

. Note

that Up and Tp (with Tp acting diagonally) satisfy the relation

U2
p − TpUp + p = 0.

The maximal quotient of T̃ acting on H1(X0(M),Z)2 is called the p-old quo-
tient of T̃, and is denoted T̃p-old.

Proposition 3.3. There is a T̃-equivariant isomorphism

Φp,S ' H1(X0(M),ZS)
2/Im(f∗ ◦ f

∗). (19)
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Proof. The module Φp,S is isomorphic to the quotient of H1(X0(N),ZS) by
the ZS-submodule generated by the image of f ∗ and the kernel of f∗. It
follows from a result of Ribet that the size of the cokernel of f∗ divides ϕ(M)
(see [Rib1, Thm 4.3]). Thus, having tensored with ZS, we find that Φp,S is
isomorphic to the cokernel of the endomorphism f∗ ◦ f

∗ of H1(X0(M),ZS)
2.

Corollary 3.4. There is an isomorphism

Φp,S
∼= H1(X0(M),ZS)/(T

2
p − (p+ 1)2), (20)

which is compatible for the action of the Hecke operators T̃n ∈ T̃, resp. Tn ∈
T, for (n, p) = 1, on the left-, resp. right-hand side.

Proof. The endomorphism f∗ ◦ f
∗ is given explicitly by the matrix

f∗ ◦ f
∗ =

(

p+ 1 Tp
Tp p+ 1

)

.

Since p + 1 is invertible in ZS, the cokernel of this map is isomorphic to

H1(X0(M),ZS)/(T
2
p − (p+ 1)2).

Remark 3.5. In this remark, assume as in Section 2 that f is the nor-
malised eigenform attached to E, and write an(f) ∈ Z for the n-th Fourier
coefficient of f . Let S = Sf be a finite set of primes containing those dividing
6ϕ(M)(p2 − 1)(ar(f)− (r+ 1)), for a prime r not dividing N . An argument
similar to the proof of Corollary 3.4 shows that there is an isomorphism

(Φp,S)f = Φp,S/IfΦp,S
∼= H1(X0(M),ZS)f/(ap(f)2 − (p+ 1)2). (21)

Let λ be a maximal ideal of T belonging to the support of the module
H1(X0(M),ZS)/(T

2
p − (p + 1)2), and let ` be the characteristic of the finite

field T/λT. The algebra homomorphism

π : T−→T/λT

is identified with the reduction in characteristic ` of a modular form f on
Γ0(M). (The normalised eigenform attached to an elliptic curve of conductor
M has Fourier coefficients in Z, and therefore arises in this way.)
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Let λ̃ be a maximal ideal of T̃ compatible with λ, in the sense that λ̃ arises
from a maximal ideal λ̄ of T̃p-old, and both λ and λ̄ are contained in a maximal
ideal of the Hecke ring T[Up]. (Note that the existence of λ̃ is guaranteed by
the going-up theorem of Cohen-Seidenberg.) The isomorphism (19) shows
that λ̃ is p-new (besides being p-old), since it appears in the support of the
component group Φp,S, on which T̃ acts via its maximal p-new quotient.
Therefore, λ̃ = λ̃g corresponds to the reduction in characteristic ` of a p-new
modular form g on Γ0(N).

In the terminology of Mazur, λ̃ is an ideal of fusion between the p-old
and the p-new subspaces of modular forms on Γ0(N). The forms f and g
are called congruent modular forms. For more details on these concepts, see
[Rib2].

3.3 Specialisation of Stark-Heegner points

This section computes the image ∂p,S(Φ(τ)) of a Stark-Heegner point Φ(τ)
in the group of connected components Φp,S.

Assume that S contains the primes dividing 6ϕ(M)(p2−1)(ar(f)−(r+1)),
for a prime r not dividing N , and is such that H1(X0(M),ZS)f is a free ZS-
module of rank 2.

We begin by imitating the definition of the map κ, with the group Γ0(M)
replacing Γ0(N). Let Γ̃ = R×, where R is the order appearing in the Intro-
duction. Define a function

κ̄{x→ y} : V(T )−→H1(X0(M), cusps,ZS)

by setting κ̄{x → y}(v) = image of ([γx] − [γy]), where γ ∈ Γ̃ is chosen
so that γv = vo. Since the stabilizer of vo in Γ̃ is Γ0(M), and the natural
homomorphism from M to H1(X0(M), cusps,ZS) factors through Γ0(M), it
follows that the map κ̄ is well defined.

Recall the compatible ideals λf ⊂ T and λ̃g ⊂ T̃ introduced in Section
3.2. Assume in the sequel that f is the eigenform with rational coefficients
attached to E, and that the p-th Hecke operator Ũp ∈ T̃ maps to 1 in the
quotient ring T̃/λ̃g. (Since λ̃g is p-new, Ũp maps to ±1 in T̃/λ̃g; the condition
we are imposing is equivalent to requiring that λf belongs to the support of
the module H1(X0(M),ZS)/(Tp − (p+ 1)).)

The identification

H1(X0(M), cusps,ZS)/λfH1(X0(M), cusps,ZS) = H/λ̃gH = Φp,S/λ̃gΦp,S,
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which follows from Remark 3.5, implies that the reduction modulo λf of κ̄
can also be viewed as a Φp,S/λ̃gΦp,S-valued function.

Lemma 3.6. The relation

κ̄{x→ y}(v′) − κ̄{x→ y}(v) = κ{x→ y}(e) (mod λ̃gΦp,S)

holds for all the oriented edges e = (v, v ′).

Proof. By our choice of S, the reduction modulo λf of κ̄ yields a map

ηf : V(T )−→H1(X0(M),ZS)/λfH1(X0(M),ZS) ' F2,

where F is the finite field with ` elements. The map

η]f : E(T )−→F2

given by the rule η]f(e) = ηf(v
′)−ηf (v), for e = (v, v′), defines the p-stabilised

eigenform associated to ηf . It satisfies the relation Ũpη
]
f = η]f , where the

operator Ũp acts by sending an oriented edge e to the formal sum of the
oriented edges originating from e. Since λ̃g is a prime of fusion, it follows

that η]f coincides with the reduction of κ modulo λ̃g.

Let v ∈ V(T ) denote the reduction of τ . Define a 1-cochain

β̄τ,x : Γ → Φp,S/λ̃gΦp,S

by the rule
β̄τ,x(γ) = κ̄{x→ γx}(v).

A direct calculation using the equation

κ̄{x→ y}(γv) = κ̄{γ−1x→ γ−1y}(v)

along with Lemma 3.6 and Proposition 3.1 shows that

β̄τ,x(γ1γ2) − β̄τ,x(γ1) − β̄τ,x(γ2) = ordp

(

×

∫ γ−1

1
τ

τ

∫ γ2x

x

ω

)

(22)

in Φp,S/λ̃gΦp,S. From equation (14) defining βτ,x and the fact that βτ,x is
unique up to translation by a homomorphism from Γ, it follows that

t · ordp (βτ,x(γ)) = t · β̄τ,x(γ)

in Φp,S/λ̃gΦp,S. In particular, we have
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Proposition 3.7. The equality

∂p,S(Φ(τ)) = t · κ̄{x→ γτx}(v)

holds in Φp,S/λ̃gΦp,S.

With notations as in the Introduction, let τ = τ1, . . . , τh be representatives
for the distinct Γ-orbits of points in Hp∩K corresponding to a real quadratic
order O. Define the Stark-Heegner point

PK := Φ(τ1) + . . .+ Φ(τh).

Write vj, j = 1, . . . , h for the image of τj by the reduction map, and γj ∈ O×
1

for the element appearing in the definition of Φ(τj). Normalise the τj so
that the associated γj are defined as in equation (18). This implies that the
vertices vj all coincide with the standard vertex vo.

One finds

Corollary 3.8. The equality

∂p,S(PK) =
h
∑

i=1

t · κ̄{x→ γix}(v
o)

holds in Φp,S/λ̃gΦp,S.

Recall the homology element L(E/K, 1) ∈ H1(X0(M),ZS) defined in Sec-
tion 2. In light of Proposition 3.3, let L(E/K, 1)(p) denote the natural image

of t · L(E/K, 1) in Φp,S/λ̃gΦp,S. (Note that t is a unit in ZS by Proposition
1.6, so that L(E/K, 1)(p) is non-zero if and only if the image of L(E/K, 1)

in Φp,S/λ̃gΦp,S is non-zero.) Then, combining Corollary 3.8 with Proposition
2.1 yields the main theorem of the Introduction:

Theorem 3.9. For all primes p which are inert in K,

∂p,S(PK) = L(E/K, 1)(p).

Remark 3.10. The element L(E/K, 1)(p) depends on the choice of primes
p and ` (the residue characteristic of λf ), and of the set S. Given a ra-
tional prime p which is inert in K, it is certainly possible that the module
H1(X0(M),ZS)f/(ap(f) − (p + 1)) be zero, and that no modular form g,
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congruent to f , be available for which the quotient Φp,S/λ̃gΦp,S is non-zero.
For such a choice of p, the statement of Theorem 3.9 amounts to a trivial
equality. However, the Chebotarev density theorem can be used to produce
infinitely many p (for a fixed `) for which the equality of Theorem 3.9 is
non-trivial. Assume that L(E/K, 1) is non-zero, or equivalently by Corol-
lary 2.3, that L(E/K, 1) = L(E/K, 1)S is non-zero, where S is such that
H1(X0(M),ZS)f is a free ZS-module of rank 2. By a theorem of Serre, for
all but finitely many primes `, the element L(E/K, 1) is non-zero modulo `
and the Galois representation ρE,` attached to E[`]—the `-torsion of E—is
surjective. A standard application of the Chebotarev density theorem (see
for example [BD2]) shows that there exist infinitely many primes p which are
inert in K and such that the following conditions are satisfied:

1. ` divides the integer ap(f) − (p+ 1),

2. ` does not divide 6ϕ(M)(p2 − 1)(ar(f) − (r + 1)), for a prime r - Mp.

Enlarge the set S above by including all the primes dividing the quantity
6ϕ(M)(p2 − 1)(ar(f) − (r + 1)). For such an S, the results of Section 3.2—
see in particular Remark 3.5—show that there exists a congruent form g for
which L(E/K, 1)(p) is a non-zero element of Φp,S/λ̃gΦp,S. (Note that in this

case, the latter quotient is identified with Φp/λ̃gΦp, since all the primes in
S are units modulo `. Thus, the formula of Theorem 3.9 can be written by
omitting a reference to S.)

4 Arithmetic applications

The Shimura reciprocity law implies that the points Φ(τ), as τ varies over
Hp ∩K, satisfy the same norm-compatibility properties as classical Heegner
points attached to an imaginary quadratic K, and it is expected that they
should yield an “Euler system” in the sense of Kolyvagin. (Cf. [BD1], Prop.
6.18). Theorem 3.9 gives a relationship between Stark–Heegner points and
special values of related Rankin L-series, and one might ask whether this
result could have applications to the arithmetic of elliptic curves analogous
to those of the Gross-Zagier theorem.

For example, assume Conjecture 1.7 that PK belongs to J(K). Theorem
3.9 then shows that, when L(E/K, 1) 6= 0, the points PK are of infinite order
for infinitely many p (in fact, for precisely those p for which L(E/K, 1)(p) 6=
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0). The PK can then be used to construct a large and well-behaved supply of
cohomology classes in H1(K,Ep). Following the methods of Kolyvagin, such
classes could be used to prove the following theorem:

Theorem 4.1. Assume Conjecture 1.7. If L(E/K, 1) 6= 0, the Mordell-Weil

group and Shafarevich-Tate group of E over K are finite.

We omit the details of the proof, but point out that such a proof would
follow that same strategy as in [BD2], but with Stark-Heegner points replac-
ing the classical Heegner points that are used in [BD2]. (See also [Lo] where
a similar strategy is used to prove the Birch and Swinnerton-Dyer conjecture
for elliptic curves of analytic rank 0 defined over totally real fields which do
not necessarily arise as quotients of modular or Shimura curves.)

Theorem 4.1 has the drawback of being conditional on Conjecture 1.7—a
limitation that appears all the more flagrant when one notes that the con-
clusion of this theorem already follows, unconditionally, from earlier results
of Kolyvagin (or of Kato) applied in turn to E/Q and to the twist of E by
the even Dirichlet character associated to K.

However, greater generality could be achieved by introducing a ring class
character

χ : Gal(HK/K)−→C×

and considering twisted special values of L(E/K, χ, 1) along with related
eigencomponents of the Mordell-Weil group E(HK) and of the Shafarevich-
Tate group X := X(E/HK):

E(HK)χ := {P ∈ E(HK) ⊗ C such that σP = χ(σ)P, ∀ σ ∈ Gal(HK/K)};

X
χ := {x ∈ X ⊗ Z[χ] such that σx = χ(σ)x, ∀ σ ∈ Gal(HK/K)}.

In light of Proposition 2.1 and Remark 2.2, Theorem 3.9 generalises directly
to a relation between the special value L(E/K, χ, 1) and the images of the χ-
parts of Stark-Heegner points in connected components. Furthermore, when
χ is not a quadratic character an unconditional proof of the following theorem
would appear to lie beyond the scope of the known Euler systems discovered
by Kolyvagin and Kato, and would yield a genuinely new arithmetic appli-
cation of the conjectural Euler system made from Stark–Heegner points:

Theorem 4.2. Assume conjecture 1.7 of Section 1. If L(E/K, χ, 1) 6= 0,
then the Mordell-Weil group E(HK)χ is trivial and the Shafarevich-Tate

group X
χ is finite.
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Part of the inspiration for Theorem 3.9 is the strong analogy between it
and the “first explicit reciprocity law” of chapter 4 of [BD2] in the setting
where K is imaginary. (See in particular the displayed formula in lemma 8.1
of [BD2].) In [BD2] this first explicit reciprocity law was used in conjunction
with a “second explicit reciprocity law” to prove one divisibility in the anti-
cyclotomic Main Conjecture of Iwasawa Theory (for K imaginary quadratic).
Such a main conjecture has no counterpart when K is real quadratic (since K
has no “anti-cyclotomic Zp-extension”) but versions of this statement over
ring class fields of K (of finite degree) remain non-trivial and meaningful.
Note in this connection that it may be interesting to formulate a convincing
substitute for the “second explicit reciprocity law” of [BD2] describing the
local behaviour of the point PK at primes different from p.
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