
Families of automorphic forms

on definite quaternion algebras

and Teitelbaum’s conjecture

Massimo Bertolini

Henri Darmon
Adrian Iovita

January 5, 2010

Contents

1 Automorphic forms on quaternion algebras 7

2 Teitelbaum’s L-invariant 11

3 Families of automorphic forms on B 14

4 A geometric interpretation of p-adic
families of automorphic forms 21

5 Orton’s L-invariant 32

6 Distribution-valued modular symbols 37

1



Introduction

Let f =
∑
anq

n be a newform of even weight k0 + 2 ≥ 2 on Γ0(Np), where
N ≥ 4 is a positive integer and p is a prime which does not divide N . We
denote by L(f, s) the complex L-function attached to f , and by L(f, χ, s) its
twist by a Dirichlet character χ. A theorem of Shimura asserts the existence
of a complex period Ωf such that the special values

L(f, χ, j)/Ωf with 1 ≤ j ≤ k0 + 1

belong to the subfield Kf of C generated by the Fourier coefficients of f ,
and even to its ring of integers. These special values (when χ ranges over
the Dirichlet characters of p-power conductor) can be interpolated p-adically,
yielding the Mazur-Swinnerton-Dyer p-adic L-function Lp(f, s), a p-adic an-
alytic function whose definition depends on the choice of Ωf . Denote by

L∗(f, χ, 1 + k0/2) := L(f, χ, 1 + k0/2)/Ωf ,

the algebraic part of L(f, χ, s) at the central critical point s = 1 + k0/2.
The modular form f is said to be split multiplicative if

f |Up = pk0/2f.

In that case, Lp(f, s) has a so-called exceptional zero at s = 1 + k0/2 arising
from the p-adic interpolation process. In fact, like its classical counterpart,
the p-adic L-function Lp(f, s) has a functional equation of the form

Lp(f, k0 + 2 − s) = εp(f)〈N〉s−1−k0/2Lp(f, s), (1)

and the sign εp(f) = ±1 that appears in this equation is related to the the
sign ε∞(f) in the classical functional equation for L(f, s) by the rule

εp(f) =

{
−ε∞(f) if f is split multiplicative;
ε∞(f) otherwise.

In the case where f is a split multiplicative newform, Mazur, Tate and
Teitelbaum made the following conjecture in [MTT]:

Conjecture 1. There exists a constant L(f) ∈ Cp, which depends only on
the restriction of the Galois representation attached to f to a decomposition
group at p, and such that

L′p(f, χ, 1 + k0/2) = L(f)L∗(f, χ, 1 + k0/2), (2)

for all χ with χ(−1) = χ(p) = 1.
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The constant L(f), which Mazur, Tate and Teitelbaum called the L-
invariant, was only defined in [MTT] in the weight two case k0 = 0. In the
higher weight case k0 > 0, several a priori inequivalent definitions of L(f)
were subsequently proposed.

1. In [T], Teitelbaum offered the first definition for L(f). This invariant,
denoted LT (f), is based on the Cerednik-Drinfeld theory of p-adic uni-
formisation of Shimura curves and is only defined for modular forms
which are the Jacquet-Langlands lift of a modular form on a Shimura
curve uniformized by Drinfeld’s p-adic upper half plane. This occurs,
for example, when the conductor of f can be written as a product of
three pairwise relatively prime integers of the form

pN = pN+N−,

where N− is the square-free product of an odd number of prime factors.
A modular form which satisfies this condition will be said to be p-
adically uniformisable.

2. Coleman [Co2] then proposed an analogous but more general invariant
LC(f) by working directly with p-adic integration on the modular curve
attached to the group Γ0(p) ∩ Γ1(N).

3. Fontaine and Mazur [Ma] gave a definition for the so-called Fontaine-
Mazur L-invariant LFM(f) in terms of the filtered, Frobenius mon-
odromy module of the p-adic Galois representation attached to f .

4. In [Or], Orton has introduced yet a further L-invariant LO(f), based on
the group cohomology of arithmetic subgroups of GL2(Z[1/p]), extend-
ing to forms of higher weight the approach taken in [Da1] for k0 = 0.

5. Finally Breuil defined in [Br] the L-invariant LBr(f) in terms of the
p-adic representation of GL2(Qp) attached by him to f .

We now know that all the above L-invariants are equal (when they are de-
fined) as result of work of many people, which we briefly list below (see [Cz4]
for a more detailed account of these various articles and preprints).

The equality of the L-invariants LC(f) and LFM(f) was proved in [CI]
by making explicit the comparison isomorphism between the p-adic étale
cohomology and log-crystalline cohomology of the modular curve X0(Np)
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with respective coefficients. The equality of LT (f) and LC(f) (when they
are both defined) was proved in [IS] by interpreting LT (f) as the L-invariant
of a filtred, Frobenius monodromy module. Breuil proved in [Br] the equality
LBr(f) = LO(f), which is a manifestation of the local-global compatibility
for the p-adic Langlands correspondence.

It was first observed by Greenberg and Stevens for weight two (in [GS])
and by Stevens in general (in [St]) that p-adic deformations of f , i.e. p-adic
families of modular eigenforms are relevant for conjecture (1). To describe
these objects precisely, let

W := Homcont(Z
×
p ,Q

×
p )

denote the weight space, viewed as the Qp-points of a rigid analytic space.
There is a natural inclusion Z ⊂ W by sending k to the function x 7→ xk.
Write A(U) for the ring of rigid analytic functions on U , for any affinoid disk
U ⊂ W.

A p-adic family of eigenforms interpolating f is the data of a disk U with
k0 ∈ U , and of a formal q-expansion

f∞ =

∞∑

n=1

anq
n, (3)

with coefficients in A(U) satisfying:

1. For every k ∈ U ∩ Z≥0,

fk :=

∞∑

n=1

an(k)qn

is the q-expansion of a normalized eigenform of weight k + 2 on the
congruence group Γ1(p) ∩ Γ0(N);

2. fk0 = f .

The existence and essential uniqueness of the family f∞ interpolating f is
proved in [Co1].

Greenberg and Stevens for weight two and Stevens in general first proved
that LC(f) = −2(dlogap)κ=k0. Colmez generalized the Galois cohomology
calculations in [GS] by working inside Fontaine’s rings and proved the equal-
ity LFM(f) = −2(dlogap)κ=k0 in [Cz2]. He also proved the equality LBr(f) =
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−2(dlogap)κ=k0 in [Cz3] by using the p-adic local Langlands correspondence
for trianguline representations. Let us remark that in fact the quantity
L(f)NoName := −2(dlogap)κ=k0 behaves like an L-invariant: it satisfies the
equation (2) of conjecture 1 (see [St]) and it is a local invariant of f in the
sense that it is invariant to twists of f by Dirichlet characters trivial at p (in
fact it is invariant to all twists by Dirichlet characters.)

Conjecture (1) was first proved in [GS] for weight two, and several differ-
ent proofs have been announced in the higher weight case:

1. By Kato-Kurihara-Tsuji, working with the invariant LFM(f);

2. By Glenn Stevens, working with LC(f);

3. By Orton, working with LO(f) in [Or];

4. By Emerton working with LBr(f) in [E].

The first two proofs are still unpublished but an account of the approach
of Kato-Kurihara-Tsuji can be found in [Cz1] while Stevens gave a series
of lectures on his theory during the Automorphic Forms semester in Paris,
1998. Notes to these lectures, to which we will refer as [St], although not
yet published circulated widely in the mathematical community and greatly
influenced articles like [Bu], [Ch] and the present note. As these notes have
not been published we will sketch proofs of all the results quoted from them.

The main goal of this note is to describe a new proof of Conjecture 1
which applies to forms which are p-adically uniformisable.

Theorem 2. Assume that f is p-adically uniformisable. Then

L′p(f, χ, 1 + k0/2) = LT (f)L∗(f, χ, 1 + k0/2), (4)

for all Dirichlet characters χ satisfying χ(−1) = χ(p) = 1.

Our proof of Theorem 2 is based on Teitelbaum’s definition of the L-
invariant: this is why it needs to be assumed that f is p-adically uniformis-
able. Thus the Cerednik-Drinfeld theory of p-adic uniformisation of Shimura
curves and the Jacquet-Langlands correspondence, which play no role in the
earlier proofs of Stevens and Kato-Kurihara-Tsuji, are key ingredients in our
approach. Section 1 supplies the necessary definitions concerning automor-
phic forms on definite quaternion algebras, and Section 2 recalls a few basic
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facts concerning p-adic integration on Shimura curves, including Teitelbaum’s
theory of the “p-adic Poisson kernel” and his definition of the invariant LT (f).

Guided by the Jacquet-Langlands correspondence between classical mod-
ular forms and automorphic forms on quaternion algebras, Section 3 describes
a theory of p-adic families of automorphic forms on definite quaternion al-
gebras, based on ideas of Stevens, Buzzard and Chenevier. The resulting
structures are used to prove the following theorem in Section 4, which re-
lates Teitelbaum’s L-invariant to the derivative of the Fourier coefficient ap(k)
with respect to k.

Theorem 3. Suppose that f is p-adically uniformisable. Then

LT (f) = −2dlog(ap)κ=k0. (5)

The ideas of Orton in [Or], which are recalled in Section 5, make it appar-
ent that the definition of the invariants LT (f) and LO(f) are very similar in
flavour. The calculations of Sections 1 to 4, when transposed to the context
of a modular form on GL2(Q), with the “integration on Hp × H” defined
in terms of modular symbols playing the role of the p-adic line integrals on
Drinfeld’s upper half-plane, leads to the proof of the following analogue of
Theorem 3, which is described in Section 6:

Theorem 4. Let f be a modular form of weight k on Γ0(N) which is split
multiplicative at p. Then

LO(f) = −2dlog(ap)κ=k0. (6)

Theorem 2 now follows directly from Theorems 3 and 4, in light of Orton’s
proof of Conjecture (1).

The remainder of the text will focus on explaining the proofs of Theorems
3 and 4, which are independent (both in their statement, and their formu-
lation) of the existence and basic properties of either the p-adic L-function
or the p-adic Galois representation attached to f and the Coleman family
interpolating it.

We emphasize that the proof of Theorem 2 owes much to the ideas that
are already present in the earlier (although still unpublished) approaches
of Stevens and Kato-Kurihara-Tsuji. The main virtues (and drawbacks) of
our method are inherently the same as those in Teitelbaum’s approach to
defining the L-invariant: a gain in simplicity (because the method involves
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p-adic integration on a Mumford curve rather than a modular curve, and
requires no information about Galois representations) offset by a certain loss
of generality (since the method only applies to automorphic forms that can
be obtained as the Jacquet-Langlands lift of a modular form on a p-adically
uniformized Shimura curve). A second, less immediately apparent advantage
of our approach lies in the insights arising from the connection that is drawn
between the two-variable p-adic L-function Lp(k, s) attached to f∞ and the
p-adic uniformisation of Shimura curves. In particular, the new ideas intro-
duced in this article form the basis for the proof of the main result of [BD],
which, in the case where f corresponds to a modular elliptic curve E over Q

and ε∞(f) = −εp(f) = −1, relates the leading term of Lp(k, s) at the central
critical point (k, s) = (2, 1) to the formal group logarithm of a global point
on E(Q).

1 Automorphic forms on quaternion algebras

Suppose from now on that f is p-adically uniformisable, so that its level pN
can be factored as

pN = pN+N−, where gcd(N+, N−) = 1, (7)

and where N− is square-free and has an odd number of prime factors. Let
B denote the quaternion algebra over Q ramified exactly at N−∞, and let
R denote a maximal order in B. For each ` not dividing N− we fix an
isomorphism

ι` : B ⊗ Q`
∼= M2(Q`), with ι`(R⊗ Z`) = M2(Z`).

Let Ẑ denote the profinite completion of Z and let B̂ := B ⊗Z Ẑ.
Let Σ =

∏
` Σ` be any compact open subgroup of B̂×, and let V be any

Qp-vector space equipped with a right action by Σp. The following definition
is taken from Section 4 of [Bu].

Definition 1.1. A V -valued automorphic form on B of level Σ is a function

ϕ : B̂× −→ V satisfying ϕ(bsσ) = ϕ(s)σp, (8)

for all b ∈ B×, s ∈ B̂×, and σ ∈ Σ, where σp denotes the component of σ at
p.
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The space of all V -valued automorphic forms on B of level Σ will be
denoted S(Σ, V ). It is equipped with the action of Hecke operators T` with
` 6 |N as well as the operator Up, defined as in [Bu], section 4.

Let

Γ̃ = ιp

(
R[1/p]× ∩

∏

6̀=p

Σ`

)
,

and let Γ denote the subgroup of Γ̃ of elements of determinant 1. The strong
approximation theorem for B asserts that

B̂× = B×GL2(Qp)Σ,

so that we may write

S(Σ, V ) = {ϕ : GL2(Qp) −→ V | ϕ(γgu) = ϕ(g)u} (9)

for all γ ∈ Γ̃, g ∈ GL2(Qp), and u ∈ Σp.
We will be mostly interested in a specific choice of level structure Σ. Let

Σ(N, p) :=
∏

` Σ` ⊂ B̂× be the compact open subgroup defined by

• Σp = ι−1
p (Γ0(pZp));

• Σ` = (R⊗ Z`)
×, if ` divides N−;

• Σ` = ι−1
` (Γ1(NZ`)) if ` divides N+;

• Σ` = (R⊗ Z`)
×, otherwise.

The group Σ(N, 1) is defined in a similar way, with Γ0(pZp) replaced by
GL2(Zp) in the definition of Σp.

Weights. If k is a positive integer, let Pk := Qp[z]
deg≤k be the space of

polynomials of degree ≤ k, equipped with the right action of GL2(Qp) given
by

(Pβ)(z) = (ad− bc)−k(cz + d)kP

(
az + b

cz + d

)
, for β =

(
a b
c d

)
∈ GL2(Qp).

Let Vk = HomQp
(Pk,Qp) denote its Qp-dual, equipped with the left action

given by
(βh)(P ) = h(Pβ) for P ∈ Pk and h ∈ Vk.
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We may also make Vk into a right GL2(Qp)-module by the rule

hβ = β−1h, for h ∈ Vk and β ∈ GL2(Qp).

The module Vk is isomorphic to Pk as a GL2(Qp)-module, and hence the
following definition of the space of (classical) automorphic forms on B of
weight k + 2 and level Σ(N, p) is equivalent to the one given in Section 4 of
[Bu]:

Sk+2(N, p) := S(Σ(N, p), Vk).

If g ∈ GL2(Qp) we denote by |g| := det(g).
Of crucial importance for our arguments is the Hecke operator Up acting

on the space Sk+2(N, p), whose precise definition we now describe. Let α1

be the matrix

(
1 0
0 p

)
and decompose the double coset space Σpα1Σp as a

disjoint union of left cosets:

Σpα1Σp = ∪p
j=1αjΣp.

Then
(Upϕ)(g) = |α1|

k/2
∑

j

ϕ(gαj)α
−1
j .

It is useful to have a geometric interpretation of automorphic forms
in terms of certain functions on the edges of the Bruhat-Tits tree T of
PGL2(Qp). Recall that T denotes the tree whose vertices are in bijection
with the homothety classes of Zp-lattices in Q2

p, two vertices being joined by
an (unordered) edge if they admit representatives which are contained one in
the other with index p. Let T0 and T1 denote the set of vertices and edges of
T respectively, and let E(T ) denote the set of ordered edges of T , i.e., the set
of ordered pairs of adjacent vertices. If e = (vs, vt) is such an ordered edge,
we will call the vertex s(e) := vs the source of e, and t(e) := vt its target.
The edge ē := (vt, vs) obtained from e by interchanging its source and target
is called the edge opposite to e.

Let v∗ be the vertex associated to the homothety class of the standard
lattice Z2

p. The index p sublattices of Z2
p are naturally in bijection with P1(Fp)

by setting

Lj := {(x, y) ∈ Z2
p such that [x : y] ≡ j (mod p)}, j = 0, 1, . . . , p− 1,∞.
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Let vj be the vertex associated to the homothety class of Lj, and let

ej = (v∗, vj) ∈ E(T ).

A vertex in T0 is said to be even or odd if its distance from v∗ is even or odd.
Likewise, an ordered edge in E(T ) is even (resp. odd) if its source is even
(resp. odd).

The groups GL2(Qp) and PGL2(Qp) act naturally on T via their left
action on Q2

p, viewed as column vectors. The resulting actions of these groups
on T0, T1, and E(T ) are transitive, while the subgroup PSL2(Qp) preserves
the even and odd elements in T0 and E(T ). The stabiliser of v∗ in PGL2(Qp)
is the group PGL2(Zp), while the stabiliser of the ordered edge e∞ is the
projective image of the group Γ0(pZp). Hence the assignment g 7→ ge∞
identifies the quotient PGL2(Qp)/Γ0(pZp) with E(T ).

To each η ∈ Sk+2(N, p), viewed as a function on GL2(Qp) via the descrip-
tion (9), is attached a Vk-valued, Γ-invariant function cη on E(T ) by setting,
for all even e = ge∞ with g ∈ GL2(Qp), and for all P ∈ Pk,

cη(e)(P ) := |g|−k/2(gη(g))(P ), (10)

and extending cη to a function on the odd edges of T by setting

cη(ē) = −cη(e).

It is easy to see that the expression on the right of equation (10) depends
only on the class of g in PGL2(Qp)/Γ0(pZp), so that the value of cη is well-
defined. Moreover, if γ is any element of Γ, and e = ge∞ is an even edge in
E(T ), we have

cη(γe)(P ) = |γg|−k/2(γgη(γg))(P ) = γ(|g|−k/2gη(g))(P )

= (γcη(e))(P ) = cη(e)(Pγ).

Since η can be recovered from the datum of cη, the assignment η 7→ cη iden-
tifies Sk+2(N, p) with the space C(E , Vk)

Γ of Γ-invariant Vk-valued functions
on E(T ). Let us spell out the action of the Hecke operator Up on C(E , Vk)

Γ

which is deduced from this identification.

Lemma 1.2. For all η ∈ Sk+2(N, p), we have

(cUpη)(e) = pk/2
∑

s(e′)=t(e)

e′ 6=e

cη(e
′).

Proof. This follows from a direct calculation.
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2 Teitelbaum’s L-invariant

Let f be the normalised eigenform of weight k0 + 2 on Γ0(N) that was dis-
cussed in the introduction. The definition of Teitelbaum’s invariant LT (f)
rests crucially on the Jacquet-Langlands correspondence which associates to
f an automorphic form on a definite quaternion algebra in the sense of the
previous section.

Theorem 2.1. There exists an automorphic form φ ∈ Sk0+2(N, p) which is
an eigenform for the Hecke operators and satisfies

φ|T` = a`(k0)φ, for all ` 6 |Np, φ|Up = pk0/2φ.

This φ is unique up to multiplication by a non-zero scalar in C×p .

Let φ ∈ Sk0+2(N, p) be the modular form obtained from f via Theorem
2.1, and recall the Γ-equivariant Vk-valued function cφ on E(T ) that was
associated to it in the previous section. A function c on E is called a harmonic
cocycle if

c(ē) = −c(e),
∑

s(e)=v

c(e) = 0, for all v ∈ T0.

Lemma 2.2. The function cφ attached to φ is a Vk0-valued harmonic cocycle
on T .

Proof. The fact that cφ(ē) = −cφ(e) follows directly from the definition of
cφ. Let v be any vertex of E and let e be an ordered edge of T satisfying
t(e) = v. Since cφ|Up = pk0/2cφ, it follows from the description of Up given in
Lemma 1.2 that

pk0/2cφ(e) = (cφ|Up)(e) = pk0/2
∑

s(e′)=v

e′ 6=e

cφ(e
′),

so that ∑

s(e′)=v

cφ(e
′) = 0

for all e ∈ E(T ) and v = t(e).
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We now explain how the cocycle cφ gives rise to a locally analytic distri-
bution on P1(Qp), denoted µφ. To do this, let W := Q2

p − {0}, equipped
with its natural p-adic topology. There is a natural continuous projection

π : W −→ P1(Qp), π((x, y)) = x/y.

If L is any Zp-lattice in Q2
p, let L′ := L− pL be the compact open subset

of W consisting of the primitive vectors in L. If e = (s, t) ∈ E(T ) is an
ordered edge of T , let Ls and Lt denote Zp-lattices whose homothety classes
correspond to the source and the target of e respectively, chosen in such a
way that Ls contains Lt with index p. To the edge e are associated the subset
We ⊂ W and the compact open subset Ue ⊂ P1(Qp) by the rules

We = L′s ∩ L
′
t, Ue = π(We).

Note that the set We depends on the choice of Ls and Lt, so that We is only
well-defined (as a function of e) up to multiplication by elements of Q×p . The
subset Ue, on the other hand, depends only on e and not on the choices of
representative lattices Ls and Lt that were made to define it.

Let us now briefly recall some of the theory of locally analytic distribu-
tions. Let X be a compact open subset of W ⊂ Q2

p. For each integer n ≥ 0,
denote by B[X, p−n] the affinoid subdomain of C2

p given by

B[X, p−n] := {z ∈ C2
p | there exists x ∈ X with |z − x| ≤ p−n}.

The region B[X, p−n] is a finite disjoint union of closed polydisks of radius
p−n defined over Qp. Therefore B[X, p−n] is also defined over Qp. Let An(X)
denote the Qp-affinoid algebra of B[X, p−n]. It is a Banach algebra over Qp

under the spectral norm,

||h||An(X) := sup
z∈B[X,p−n]

|h(z)|.

If m ≥ n ≥ 0, restriction defines a continuous map

An(X) −→ Am(X).

The direct limit
A(X,Qp) := lim

→,n
An(X)
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is called the space of locally analytic functions on X. It is endowed with the
inductive limit of the Banach topologies on each of the An(X)’s. Let

Dn(X) := Homcont(An(X),Qp)

denote the Qp-Banach-dual to An(X) and let

D(X,Qp) := lim
←,n

Dn(X) = Homcont(A(X,Qp),Qp).

This space, endowed with the projective limit of the Banach topologies of
the Dn(X)’s, is called the space of locally analytic distributions on X. It is
a Fréchet space over Qp.

These definitions can be extended without difficulty to the case where X
is a compact open subset of the projective space P1(Qp). (see [St].)

Following the approach described in [T], the harmonic cocycle cφ can be
used to define a locally analytic distribution µφ on P1(Qp), determined by
the property: ∫

Ue

P (t)µφ(t) = cφ(e)(P ), (11)

for all e ∈ E(T ) and P ∈ Pk0.
Let Hp := P1(Cp) − P1(Qp) denote the p-adic upper half-plane. In [T],

the distribution µφ is used to define a rigid analytic function

ψ = ψf : Hp −→ Cp

by the rule

ψ(z) =

∫

P1(Qp)

(
1

t− z

)
dµφ(t). (12)

By Theorem 3 of [T], the function ψ is a rigid analytic modular form on
Γ\Hp of weight k0 + 2, i.e., it satisfies the relation

ψ(γz) = (cz + d)k0+2ψ(z), for all γ =

(
a b
c d

)
∈ Γ.

The p-adic Coleman line integral attached to ψ, a polynomial P ∈ Vk0 ,
and two endpoints τ1 and τ2 ∈ Hp is defined in terms of the distribution µφ

by the rule
∫ τ2

τ1

ψ(z)P (z)dz :=

∫

P1(Qp)

log

(
t− τ2
t− τ1

)
P (t)µφ(t). (13)
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This formula can be used as a definition for the Coleman line integral in this
setting, in light of Teitelbaum’s theory of the “p-adic Poisson kernel”. (See
[T] for a more complete discussion.) In particular, it satisfies the additivity
properties suggested by the line integral notation.
Let us now fix base points v0 ∈ T0 and z0 ∈ Hp. (For example, one could take
v0 = v∗, but this is not necessary.) The harmonic cocycle cφ gives rise (after
extending scalars from Vk0 to Vk0 ⊗ Cp) to a Vk0 ⊗ Cp-valued one-cocycle on
Γ (where Vk0 is viewed as a left Γ-module) defined by the rule:

κord
φ (γ)(P ) =

∑

e:v0→γv0

cφ(e)(P ), (14)

where the sum is taken over the ordered edges in the path joining v0 to
γv0. Likewise, the associated rigid analytic modular form ψ gives rise to the
Vk0 ⊗ Cp-valued one-cocycle on Γ defined by

κlog
φ (γ)(P ) =

∫ γz0

z0

ψ(z)P (z)dz. (15)

The images [κord
φ ] and [κlog

φ ] of κord
φ and κlog

φ in H1(Γ, Vk0⊗Cp) are independent
of the choices of v0 and z0 that were made to define them. These classes lie in
the one-dimensional f -isotypic component of H1(Γ, Vk0 ⊗ Cp) for the action
of the Hecke operators. Furthermore, Theorem 1 of [T] shows that the class
of κord

φ is non-zero. We are now in a position to recall the definition of LT (f)
given in [T].

Definition 2.3. The Teitelbaum L-invariant attached to f is the unique
scalar LT (f) ∈ Cp such that

[κlog
φ ] = LT (f)[κord

φ ].

Note that multiplying φ, and the resulting cocycle and locally analytic
distribution, by a non-zero scalar multiplies both κord and κlog by that same
scalar and hence does not affect the value of LT (f), which is therefore a
genuine invariant of f (once the factorisation (7) has been fixed) in light of
the uniqueness of φ described in Theorem 2.1.

3 Families of automorphic forms on B

The group GL2(Qp) acts naturally on W := Q2
p −{0} on the left, by viewing

elements of W as non-zero column vectors. Of considerable importance is
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the resulting action of the scalar matrices in Z×p , which commutes with the
GL2(Qp) action, and preserves L′ for any Zp-lattice L ⊂ Q2

p. This latter
action is denoted by

λ · (x, y) := (λx, λy).

Recall the standard lattice L∗ = Z2
p, and let A(L′∗,Qp) denote as above

the space of locally analytic Qp-valued functions on L′∗. It is equipped with
a right action by GL2(Zp) given by:

(f |u)(x, y) = f(ax+ by, cx+ dy) for u =

(
a b
c d

)
∈ GL2(Zp).

Let
D := D(L′∗,Qp)

be the space of locally analytic distributions on L′∗. The natural, continuous
left action of GL2(Zp) can be turned into a right action by the rule:

µ · u := u−1µ, for u ∈ GL2(Zp), µ ∈ D.

Let R := D(Z×p ,Qp) be the Qp-algebra of locally analytic distributions on
Z×p .

The Z×p -action on L′∗ equips D with a natural R-module structure

R× D −→ D sending (α, µ) to α · µ,

where α · µ is defined by the rule:
∫

L′
∗

F (x, y)(α · µ)(x, y) :=

∫

Z
×

p ×L′
∗

F (tx, ty)α(t)µ(x, y),

where F (x, y) belongs to A(L′∗,Qp) and the variables of integration t and
(x, y) range over Z×p and L′∗ respectively.

Let us now fix an integer k0 ≥ 0 and let U be an affinoid disk defined over
the finite extension K of Qp such that k0 ∈ U ⊂ W. Let A(U) denote the
K-affinoid algebra of U . Then we have a natural Qp-algebra homomorphism
R −→ A(U) defined by rule

α → (κ→

∫

Z
×

p

κ(t)α(t)), for all α ∈ R, κ ∈ U. (16)

15



Remark 3.1. Let κ ∈ U(K), then κ can be uniquely written κ = ε(t)χ(t)〈t〉c

for ε : Z×p −→ K× a character of order dividing p − 1, χ : Z×p −→ K×

a character of order a power of p and c ∈ OK . So we may think of κ as
determined by the pair (εχ, c). Let us remark that if K is fixed and the
radius r of U is small enough the associated pair (εχ, c) is characterized by:

ε(t) = (
t

〈t〉
)k0 , χ(t) = 1 and |c − k0| ≤ r. In other words κ is entirely

determined by c.

Denote by DU := A(U)⊗̂RD and let GL2(Qp) act on the right on DU via
its action on D.

A natural R-module structure on S(N, p) is obtained by setting

(α · Φ)(g) := α · Φ(g), for α ∈ R, Φ ∈ S(N, p), and g ∈ GL2(Qp).

Definition 3.2. Fix k0 and U as above. The space

SU (N, p) := S(Σ(N, 1),DU)

is called the space of p-adic families of automorphic forms on B of level
Σ(N, p) parametrized by weights in U .

Remark 3.3. Note that the space SU(N, p) is defined using a level struc-
ture Σ(N, 1) in which the prime p has been removed. In other words, these
functions satisfy an equivariance property, on the right, by the full group
GL2(Zp) and not just Γ0(pZp).

The terminology introduced in Definition 3.2 is justified by the fact that
SU(N, p) is equipped with natural Hecke-equivariant specialization maps ρk

to Sk+2(N, p) for every even integer k ≥ 0 in U . In order to define ρk, it is
convenient to introduce

W∞ := L′∗ ∩ L
′
∞ = Z×p ⊕ pZp ⊂ W,

where L∞ = Zp ⊕ pZp, as before. If P ∈ Pk is a polynomial (of degree ≤ k),
let

P̃ (x, y) = ykP (x/y)

denote the corresponding homogeneous polynomial in x and y of degree k.
More generally let κ ∈ U and let k ≥ 0 be an integer and define for X = L′∗
or W :

A(κ)(X) := {f : L′∗ −→ K locally analytic | f(tx, ty) = κ(t)f(x, y)

for all t ∈ Z×p , (x, y) ∈ X}
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and

A
(κ)
k (W ) := {f : W −→ K locally analytic | f(tx, ty) = κ(t)f(x, y)

and f(px, py) = pkf(x, y) for all t ∈ Z×p , (x, y) ∈ W}

Let us fix κ ∈ U(K) and define

Bκ : A(U) × D −→ Homcont,Qp
(Aκ(L′∗), K)

by

Bκ(α, µ)(f) := α(κ)

∫

L′
∗

f(x, y)µ(x, y),

where f ∈ A(κ)(L′∗), α ∈ A(U), and µ ∈ D. Moreover we have

|Bκ(α, µ)(f)|K = |α(κ)|K · |

∫

L′
∗

fµ|Qp
≤ ||κ|| · ||α||A(U) · ||f || · ||µ||D

= ||κ|| · ||f || · ||(α, µ)||.

Therefore, for every (α, µ) ∈ A(U)×D, Bκ(α, µ) is continuous and Qp-linear,
therefore an element of Homcont,Qp

(A(κ)(L′∗), K), and Bκ is a continuous, Qp-
bilinear map. Moreover if r ∈ R, α ∈ A(U), µ ∈ D we have

Bκ(α, rµ)(f) = α(κ

∫

L′
∗

f(rµ) =

∫

Z
×

p ×L′
∗

f(tx, ty)r(t)µ(x, y)

= α(κ)r(κ)

∫

L′
∗

f(x, y)µ(x, y) = Bκ(rα, µ)(f).

By the universal property of completed tensor product, there is a unique
continuous, Qp-linear map Lκ : A(U)⊗̂RD −→ Homcont,Qp

(Aκ(L′∗), K) such
that the following diagram is commutative

A(U) × D
Bκ−→ Homcont,Qp

(A(κ)(L′∗), K)

↓ ||

A(U)⊗̂RD
Lκ−→ Homcont,Qp

(A(κ)(L′∗), K)

Finally, if µ ∈ DU = A(U)⊗̂RD and f ∈ A(κ)(L′∗) we denote

Lκ(µ)(f) =

∫

L′
∗

fµ.
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Let now k ≥ 0 be an integer such that k ∈ U and P ∈ Pk. Let us remark
that as the Z×p -action on L′∗ preserves W∞, the function P̃ χW∞

∈ A(k)(L′∗)
where χW∞

is the characteristic function of W∞ in L′∗. Let Φ ∈ SU(N, p).

Definition 3.4. The specialisation map in weight k + 2 is the map

ρk : SU (N, p) −→ Sk+2(N, p)

defined by

ρk(Φ)(g)(P ) =

∫

W∞

P̃ (x, y)Φ(g)(x, y),

for g ∈ GL2(Qp) and P ∈ Pk.

Remark 3.5. Note that the stabiliser of the ordered edge e∞ := ([L∗], [L∞])
in PGL2(Zp), and therefore of W∞, is the image of Γ0(pZp). This is why
the prime p arises in the level of the specialisation ρk(Φ), even though Φ was
taken to be equivariant under the larger group Σ(N, 1).

The group B̂× can be written as a finite disjoint union of double cosets

B̂× = ∪q
i=1B

×diΣ(N, p),

for elements di, i = 1, ..., q in B̂×. The condition N ≥ 4 insures that the
groups d−1

i B×di ∩Σ(N, p) are trivial, so that there is a natural identification

S(N, p) −→ Dq, given by ϕ −→ (ϕ(di))1≤i≤q.

The spaces R and D with their natural topologies are Fréchet spaces. Thus
S(N, p) inherits from D a topology under which it becomes a Fréchet space
(just like R and D). Moreover SU(N, p) = S(Σ(N, 1),DU) ∼= S(N, p)⊗̂RA(U).
See Section 4 of [Bu] for more details.

Definition 3.6. Let M be a Fréchet space which is an R-module. We’ll
say that M is an orthonormalizable R-module if, for each n ≥ 0 there are
orthonormalizable Rn = Dn(Z×p )-Banach modules Mn such that M ∼= lim

←,n
Mn

as R-modules.

Theorem 3.7. The Fréchet spaces D and S(N, p) are orthonormalizable R-
modules.
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Proof. We have a natural projection π : W∞ −→ Zp given by (x, y) −→ y/x,
whose fibers are isomorphic to Z×p . Moreover π is equipped with a natural
continuous section s defined as follows. For each i = 0, 1, ..., p−1,∞ ∈ P1(Fp)
let Ci ⊂ P1(Qp) denote the residue class of i. The we can write L′∗ as
the disjoint union (Z×p ⊕ pZp) ∪ (Zp ⊕ Z×p ) such that π(Z×p ⊕ pZp) = C∞
and π(Zp ⊕ Z×p ) = P1(Qp) − C∞ = ∪p−1

i=0Ci. Define s : P1(Qp) −→ L′∗ by
s(z) = (1, 1/z) if z ∈ C∞ and s(z) = (z, 1) else. Then both π, s are locally
ananlytic functions and they induce locally ananlytic isomorphisms:

u : L′∗ −→ Z×p ⊕ P1(Qp) and v : Z×p ⊕ P1(Qp) −→ L′∗

by: (u(x, y) = (x, π(x, y)) and v(a, z) = as(z).
Moreover we have actions of L′∗ and Z×p ⊕ P1(Qp) as follows: if α ∈

Z×p , (x, y) ∈ L′∗, (a, z) ∈ Z×p ⊕ P1(Qp) then α(x, y) = (αx, αy) and α(a, z) =
(αa, z). Then both u, v are equivariant with respect to these actions and
they induce, for each n ≥ 1 natural isomorphisms as Banach spaces

An(L′∗)
∼= An(Z×p )⊗̂An(P1(Qp)).

By duality they induce Dn(Z×p )-linear isomorphisms

Dn(L′∗) = Homcont,Qp
(An(L′∗),Qp)

∼= Homcont(An(Z×p )⊗̂An(P1(Qp)),Qp)

∼= Homcont(An(P1(Qp)), Dn(Z
×
p )).

The last term in the sequence naturally contains Dn(P1(Qp))⊗̂Dn(Z×p ) as
the subspace of completely continuous (or compact) Qp-linear maps from
An(P1(Qp)) to Dn(Z×p ). (See [Se1] section 4.) Since Dn(P1(Qp)) is a Banach

space over Qp, it is orthonormalizable and therefore Dn(P1(Qp))⊗̂Dn(Z×p ) is
an orthonormalizable Banach module over Dn(Z×p ). Now we claim that the
natural inclusions above induce isomorphisms

lim
←,n

Dn(P1(Qp))⊗̂Dn(Z×p ) −→ lim
←,n

Homcont,Qp
(An(P1(Qp)), Dn(Z

×
p )).

The map above is clearly injective. Let us show that it is surjective. Let

(fn)n ∈ lim
←,n

Homcont(An(P1(Qp)), Dn(Z
×
p )).
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We have the following commutative diagram:

An(P1(Qp))
fn
−→ Dn(Z×p )

↓ rn ↑ sn

An+1(P
1(Qp))

fn+1
−→ Dn+1(Z

×
p ),

where rn is the restriction and sn is dual to restriction. Therefore,

fn = snfn+1rn,

and because rn is the restriction induced by the inclusion

B[P1(Qp), p
−n−1] ⊂ B[P1(Qp), p

−n],

it is completely continuous. (See [Se1], Section 8.) Therefore fn is completely
continuous for all n ≥ 0. So we have an isomorphism as R-modules D ∼=
lim
→,n

Dn(P1(Qp)⊗̂Dn(Z×p ) which implies that D is an orthonormalizable R-

module. As S(N, p) ∼= Dq it is an orthonormalizable R-module as well.

Corollary 3.8. Let U be an affinoid disk contained in the weight space W.
Then DU and SU(N, p) are orthonormalizable A(U)-modules.

Theorem 3.7 can be used to define actions of Hecke operators T` for ` not
dividing Np and Up, as in Sections 6 and 8 of [Bu]. The following theorem
now follows from a standard argument.

Theorem 3.9. Let U be an affinoid disk contained in the weight space W.
The operator Up : SU(N, p) −→ SU(N, p) is a compact A(U)-linear operator.

Proof. See [St] and [Bu].

Recall the Coleman family f∞ of eigenforms on Γ1(N)∩Γ0(p) interpolat-
ing f that is given in equation (3) of the introduction. The Fourier coefficients
an(k) of f∞ correspond to elements of A(U) for some rigid analytic disk U
containing k0 and contained in the weight space W. We will be making cru-
cial use of the following “Jacquet-Langlands correspondence” applied to the
family f∞.

Theorem 3.10 (G.Chenevier, [Ch]). To the expense of possibly shrinking
U , there exists an eigenfamily Φ ∈ SU(N, p) such that

Φ|T` = a`Φ for (`, Np) = 1 and Φ|Up = apΦ.
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4 A geometric interpretation of p-adic

families of automorphic forms

In this section, we attach to any family Φ ∈ SU(N, p) a collection of locally
analytic distributions (µL)L⊂Q2

p
on W , indexed by the Zp-lattices in Q2

p.

Definition 4.1. Let us first fix a weight κ ∈ U . Let L = gL∗ be a Zp-lattice
in Q2

p, for some g ∈ GL2(Qp). The distribution µL on A(κ)(W ) is defined by

∫

W

F (z)µL(z) =

∫

L′

F (z)µL(z) :=

∫

L′
∗

(F |g)(z)Φ(g) =

∫

L′
∗

F (gz)Φ(g),

where F : W −→ Qp is any function in A(κ)(W ).

Note that if F ∈ A(κ)(W ) then (F |g) ∈ A(κ)(W ) for any g ∈ GL2(Qp)
and that µL is supported, by definition, on the compact subset L′ of W .

Here are some elementary properties of the collection {µL}.

1. The distribution µL is well defined, i.e. it does not depend on the choice
of g. Indeed, let g1, g2 ∈ GL2(Qp) be such that g1L∗ = g2L∗ = L. Then
g1 = g2u with u ∈ GL2(Zp) and we have

∫

L′
∗

(F |g1)(z)Φ(g1) =

∫

L′
∗

(F |g2u)(z)Φ(g2u) =

∫

L′
∗

(F |g2u)(z)(u
−1Φ(g2))

=

∫

L′
∗

(F |g2uu
−1)(z)Φ(g2) =

∫

L′
∗

(F |g2)(z)Φ(g2),

for all functions F ∈ A(κ)(W ).

2. Let γ be any element of Γ̃. Then

∫

(γL)′
F (z)µγL(z) =

∫

L′

(F |γ)(z)µL(z)

for all locally analytic functions F ∈ A(κ)(W ). In particular for γ =

(
p 0
0 p

)
∈

Γ̃ we have ∫

(pL)′
F (z)µpL(z) =

∫

L′

F (pz)µL(z).
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3. For any α ∈ A(U) and any lattice L ⊂ Q2
p, there is a natural multiplication

α ·µL, such that α ·µL is a locally analytic distribution on L′, and the family
(α ·µL)L⊂Q2

p
is associated to αΦ ∈ S(N, p) by the procedure described above.

The specialization map

ρk : SU (N, p) −→ Sk+2(N, p)

can be reinterpreted geometrically as a map assigning a Vk-valued cocycle on
T to a family of distributions (µL)L indexed by lattices in Q2

p and satisfying
properties 1 to 3 above. More precisely, for all P ∈ Pk, let

P̃ (x, y) := ykP (x/y)

denote the homogeneous polynomial in x and y, satisfying P̃ (z, 1) = P (z).
Let us also denote |L| := pordp(det(B)), for B any Zp-basis of L.

Lemma 4.2. For each even integer k ≥ 0, the Γ-invariant cocycle on T
attached to the specialisation ρk(Φ),

cΦ,k : E(T ) −→ Vk

is expressed in terms of the system of distributions (µL)L associated to Φ by
the rule:

cΦ,k(e)(P ) = |L|−k/2

∫

We

P̃ (x, y)µL(x, y).

where the lattice L above is any representative of the origin of e.

Proof. The proof is a direct consequence of the definitions.

Let k ≥ 0 be an even integer and let κ ∈ U . Let us recall that we have
defined the space A

(κ)
k (W ) of locally analytic functions on W , homogeneous

of degree κ for the action of Z×p and homogeneous of degree k for the action of
p on W . Let us remark that if P is a locally meromorphic function on P1(Qp)

with at worst a pole of order k at ∞ then P̃ (x, y) := ykP (x/y) ∈ A
(k)
k (W ).

In particular if P ∈ Pk then P̃ ∈ A
(k)
k (W ).

Suppose now that Φ ∈ SU(N, p) is an eigenvector for the operator Up, so
that

Φ|Up = apΦ, with ap ∈ A(U).
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Lemma 4.3. Suppose that L2 ⊂ L1 are Zp-lattices in Q2
p with [L1 : L2] = p.

Let ε = ([L1], [L2]) ∈ E(T ) be the corresponding edge. Then

∫

Wε

F (x, y)µL2(x, y) =

∫

Wε

F (x, y)(apµL1)(x, y),

for every locally analytic function F in A
(κ)
k (W ), where k ≥ 0 is an even

integer and κ ∈ U .

Proof. Let D
(κ)
k (W ) be the continuous dual of A

(κ)
k (W ). We will extend the

definition in 4.2 and will attach to Φ a D
(κ)
k (W )-valued cocycle on T as

follows: let CΦ,κ,k : E(T ) −→ D
(κ)
k (W ) be defined by

CΦ,κ,k(e)(F ) := |L|−k/2

∫

We

F (x, y)µL(x, y),

where e = [L, L′] with L, L′ lattices in Q2
p such that L′ ⊂ L has index p and

F ∈ A
(κ)
k (W ). Let us remark that due to the homogeneity of F with respect

to the action of p, the definition is independent of the choice of L, L′. Then
CΦ,κ,k enjoys the same formal properties as cΦ,k, in particular we have

CUpΦ,κ,k(e) = pk
∑

s(e′)=t(e),e′ 6=e

CΦ,κ,k(e
′),

for all e ∈ E(T ).
Let us now prove the lemma. We have

|L1|
−k/2

∫

Wε

F (x, y)(apµL)(x, y) = CUpΦ,κ,k(ε)(F ) = pk
∑

s(ε′)=t(ε),ε′ 6=ε

CΦ,κ,k(ε
′)(F ).

For every ε′ in the above sum let us choose lattices ε′ = ([L2], [Lε′]), then we
have

|L1|
−k/2

∫

Wε

F (x, y)(apµL1)(x, y) = |L1|
−k/2pk

∑

ε′

∫

Wε′

F (x, y)µL2(x, y) =

= |L1|
−k/2

∫

Wε

F (x, y)µL2(x, y). (17)
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For every Zp-lattice L ⊂ Q2
p we define a distribution π∗(µL) on P1(Qp) by

the formula
∫

P1(Qp)

P (t)π∗(µL)(t) := |L|−k0/2

∫

W

P̃ (x, y)µL(x, y),

where P is any locally meromorphic function on P1(Qp), with at worst a pole
of order k0 at ∞.

Assume now that ρk0(Φ) = φ, where φ ∈ Sk0+2(N, p) is the automorphic
form on B attached to f via Theorem 2.1. In particular, Φ is an eigenvector
for Up whose associated eigenvalue ap(k) satisfies

ap(k0) = pk0/2.

Recall the distribution µφ attached to φ that was defined in Section 2.

Proposition 4.4. For all Zp-lattices L in Q2
p,

π∗(µL) = µφ.

Proof. First note that the function (x, y) −→ P̃ (x, y) is a locally analytic
homogeneous function of degree k0 with respect to the action of Q×p on W ,

in particular P̃ ∈ A
(k0)
k0

(W ). The relationship between µpL and µL described
after Definition 4.1 implies that π∗(µL) only depends on the homothety class
of L. Moreover, let L1 and L2 be any two Zp-lattices in Q2

p. Suppose without
loss of generality that L2 is contained in L1 with index p, and that |L1| = 1,
and |L2| = p. Let e = ([L1], [L2]) be the corresponding edge. Using Lemma
4.3 we have

∫

Ue

P (t)π∗(µL2)(t) = |L2|
−k0/2

∫

We

P̃ (x, y)µL2(x, y)

= p−k0/2

∫

We

P̃ (x, y)(apµL1)(x, y)

= p−k0/2ap(k0)

∫

We

P̃ (x, y)µL1(x, y)

=

∫

Ue

P (t)π∗(µL1)(t).

Arguing in the same way for e = ([(1/p)L2], [L1]), one finds that
∫

Ue

P (t)π∗(µL2)(t) =

∫

Ue

P (t)π∗(µL1)(t),
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for all locally meromorphic functions P on P1(Qp) with at worst a pole of
order k0 at ∞. Because P1(Qp) = Ue ∪Ue, we conclude that the distribution
π∗(µL) is independent of the lattice L.

On the other hand, for all P as above we have

∫

Ue

P (t)µφ(t) = CΦ,k0,k0(e)(P̃ ) = |L1|
−k0/2

∫

We

P̃ (x, y)µL1(x, y)

=

∫

Ue

P (t)π∗(µL1)(t).

Similarly, it follows that

∫

Ue

P (t)µφ(t) =

∫

Ue

P (t)π∗(µL2)(t),

which allows us to conclude.

Given τ ∈ P1(Cp), let τ̄ denote the natural image of τ in P1(F̄p) obtained
by reducing τ modulo the maximal ideal of the ring of integers of Cp. Let
Hp(Q

ur
p ) denote the unramified p-adic upper half-plane, consisting of elements

in Qur
p − Qp. Finally, let

r : Hp(Q
ur
p ) −→ T0

denote the so-called reduction map which is determined by the rules

1. r(τ) = v∗ if and only if τ̄ /∈ P1(Fp);

2. r(γτ) = γr(τ) for all γ ∈ PGL2(Qp).

(See Chapter 5 of [Da2], for example, for more details.)
We will now extend the definition to a more general class of functions.

Let us fix τ ∈ Hp(Q
ur
p ), k0 ≥ 0 an integer and let U be an affinoid disk

containing k0 and contained in the weight space W. Let P ∈ A(k0)(L′∗) and
µ ∈ DU . We’d like to define

∫

L′
∗

log(x− τy)P (x, y)µ,

where the branch of log in the above formula and to the end of this article
is such that log(p) = 0.
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Let F : U(K) × L′∗ −→ Cp be defined by:

F (κ, (x, y)) = P (x, y)(x− τy)κ−k0.

By the above expression we mean the following. Suppose first that the radius
r of U is small enough and let κ be determined by the pair (ε, c) as in remark

3.1. Here ε is the character t −→ (
t

〈t〉
)k0 and c ∈ OK such that |c− k0| ≤ r.

Then by (x− τy)κ−k0 we mean (x− τy)c−k0 = exp((c− k0) log(x− τy)).
Let us remark that if t ∈ Z×p , we have F (κ, (tx, ty)) = κ(t)F (κ, (x, y)),

i.e. F (κ,−) ∈ A(κ)(L′∗).

Lemma 4.5. Let µ ∈ DU . The function U(K) −→ Cp defined by

κ −→

∫

L′
∗

F (κ, (x, y))µ(x, y),

is analytic near k0.

Proof. Let us remark that we have the following expansion

F (κ, (x, y)) = P (x, y)

∞∑

n=0

(κ− k0)
n

n!
logn(x− τy),

which converges for all (x, y) ∈ L′∗ as log(x − τy) ∈ pOQur
p

. Moreover, for
all n ≥ 0 the function (x, y) → P (x, y) logn(x− τy) is locally analytic, more
precisely P (x, y) logn(x − τy) ∈ Am(L′∗) with m depending only on τ and
P . Let us fix an orthonormal basis {µi}

∞
i=0 of Dm(L′∗), so that the m-th

component of µ in A(U)⊗̂Rm
Dm(L′∗), µ

(m) can be uniquely written

µ(m) =

∞∑

i=0

αi ⊗ µi, where αi ∈ A(U) with ||αi|| −→ 0.

We have, according to our definition
∫

L′
∗

F (κ, (x, y))µ =

∫

L′
∗

F (κ, (x, y))µ(m) =

∞∑

i=0

αi(κ)

∫

L′
∗

F (κ, (x, y))µi

=

∞∑

i=0

αi(κ)

∞∑

n=0

(κ− k0)
n

n!

∫

L′
∗

P (x, y) logn(x− τy)µi(x, y).

The lemma now follows from the fact that αi(κ) is analytic around k0 for all
i ≥ 0.
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Let notations be as above, i.e. let µ ∈ DU and P ∈ A(k0)(L′∗).

Definition 4.6. We define

∫

L′
∗

P (x, y) log(x− τy)µ(x, y) to be

(
d

dκ

∫

L′
∗

F (κ, (x, y))µ

)

κ=k0

.

Remark 4.7. Let us give an explicit formula for

∫

L′
∗

P (x, y) log(x−τy)µ(x, y).

Let us suppose that P (x, y) logn(x− τy) ∈ Am(L′∗) for some m independent
of n and let us fix an orthonormal basis {µi}

∞
i=0 as in the proof of lemma 4.5.

We write µ =

∞∑

i=0

αi ⊗ µi, with αi ∈ A(U) such that ||αi|| −→ 0. Then we

have
∫

L′
∗

P (x, y) log(x− τy)µ(x, y) =

∞∑

i=0

(
d

dκ
αi)κ=k0

∫

L′
∗

P (x, y)µi(x, y) +

+
∞∑

i=0

αi(k0)

∫

L′
∗

P (x, y) log(x− τy)µi(x, y).

Let now Φ ∈ SU(N, p) and let {µL}L⊂Q2
p

be the family of distributions

attached to it. Let as above τ ∈ Hp(Q
ur
p ), P ∈ A(k0)(W ) and define

f(x, y) := P (x, y) log(x− τy). Let L ⊂ Q2
p be a lattice and let g ∈ GL2(Qp)

be such that L = gL∗. For z = (x, y) ∈ W , (f |g)(z) can be written

(f |g)(z) = f(gz) = C(g, τ)(P |g)(x, y) + (P |g)(x, y) log(x− τ ′y),

where C(g, τ) is independent of (x, y) and τ ′ ∈ Hp(Q
ur
p ). Therefore it makes

sense to define∫

W

P (x, y) log(x− τy)µL := C(g, τ)

∫

L′
∗

(P |g)(x, y)µL∗
(x, y) +

+

∫

L′
∗

(P |g)(x, y) log(x− τ ′y)µL∗
(x, y).

We are now ready to define the main object of this section. Given τ ∈
Hp(Q

ur
p ), let vτ = r(τ) ∈ T0 and let Lτ be any Zp-lattice in the homothety

class of vτ . Recall the rigid analytic modular form ψ defined in equation (12)
of Section 2.
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Definition 4.8. For all P ∈ Pk0 , the indefinite integral attached to τ and ψ
is defined by the formula

∫ τ

ψ(z)P (z)dz := |Lτ |
−k0/2

∫

W

log(x− τy)P̃ (x, y)µLτ
(x, y), (18)

where the branch of the p-adic log used above is the one satisfying log(p) = 0.

Note that because

log(px− pτy)P̃ (px, py) = pk0 log(x− τy)P̃ (x, y),

formula (18) only depends on the homothety class of Lτ , so that the indefinite
integral is well-defined.

The main properties of the indefinite integral of Definition 4.8 are sum-
marized in the following two propositions.

Proposition 4.9. For all γ ∈ Γ and P ∈ Pk0,
∫ γτ

ψ(z)P (z)dz =

∫ τ

ψ(z)(Pγ)(z)dz.

Proof. Let

γ =

(
a b
c d

)
∈ Γ.

Then
∫ γτ

ψ(z)P (z)dz = |γLτ |
−k0/2

∫

W

log(x− (γτ)y)P̃ (x, y)µγLτ
(x, y).

Performing the change of variables
(
u
v

)
= γ−1

(
x
y

)
=

(
dx− by
−cx + ay

)
,

we obtain
∫ γτ

ψ(z)P (z)dz = |Lτ |
−k0/2

∫

W

log

(
u− τv

cτ + d

)
(P̃ γ)(u, v)µLτ

(u, v)

=

∫ τ

ψ(z)(Pγ)(z)dz

− log(cτ + d)|Lτ |
−k0/2

∫

W

(P̃ γ)(u, v)µLτ
(u, v).
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On the other hand by proposition 4.4 we have

|Lτ |
−k0/2

∫

W

(P̃ γ)(u, v)µLτ
(u, v) =

∫

P1(Qp)

(Pγ)(t)µφ(t) = 0.

Proposition 4.9 follows.

The next proposition relates the indefinite integral to the p-adic line in-
tegral of equation (13).

Proposition 4.10. Let τ1, τ2 ∈ Hp(Q
ur
p ) and let vi = r(τi) = [Li] ∈ T0 be the

corresponding vertices. For all P ∈ Pk0 ,

∫ τ2

ψ(z)P (z)dz −

∫ τ1

ψ(z)P (z)dz

=

∫ τ2

τ1

ψ(z)P (z)dz + 2p−k0/2a′p(k0)
∑

e:v1→v2

cφ(e)(P ).

Proof. Suppose without loss of generality that L2 ⊂ L1 and [L1 : L2] = p.
Let e = ([L1], [L2]) ∈ E(T ). Then

∫ τ2

ψ(z)P (z)dz −

∫ τ1

ψ(z)P (z)dz (19)

= |L2|
−k0/2

∫

W

log(x− τ2y)P̃ (x, y)µL2(x, y) (20)

− |L1|
−k0/2

∫

W

log(x− τ1y)P̃ (x, y)µL1(x, y) (21)

= |L2|
−k0/2

∫

W

log

(
x− τ2y

x− τ1y

)
P̃ (x, y)µL2(x, y) (22)

+

∫

W

log(x− τ1y)P̃ (x, y)
(
|L2|

−k0/2µL2 − |L1|
−k0/2µL1

)
. (23)

By proposition 4.4, the first integral (22) appearing in the last expression is
equal to ∫

P1(Qp)

log

(
t− τ2
t− τ1

)
P (t)µφ(t) =

∫ τ2

τ1

ψ(z)P (z)dz.

In order to calculate the second integral (23), we will need the following
describing the distribution α · µL for α ∈ A(U).
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Lemma 4.11. Let α be an element of A(U). For all e ∈ E(T ), τ ∈ Hp, and
P ∈ Pk0 ,

∫

We

log(x− τy)P̃ (x, y)(αµL)(x, y) = α′(k0)|L|
k0/2cφ(e)(P )

+α(k0)

∫

We

log(x− τy)P̃ (x, y)µL(x, y).

Proof of Lemma 4.11: This proof is a consequence of the following calcula-
tion:
∫

We

log(x− τy)P̃ (x, y)(αµL)(x, y)

=
d

dκ

(
(α(κ)(

∫

We

P̃ (x, y)(x− τy)κ−k0µL(x, y)

)

κ=k0

= α′(k0)

∫

We

P̃ (x, y)µL(x, y)

+α(k0)

∫

We

log(x− τy)P̃ (x, y)µL(x, y)

= α′(k0)|L|
k0/2

∫

Ue

P (z)µφ(z) + α(k0)

∫

We

log(x− τy)P̃ (x, y)µL(x, y).

This proves the lemma.

End of proof of Proposition 4.10: We return to the evaluation of the integral

J :=

∫

W

log(x− τ1y)P̃ (x, y)
(
|L2|

−k0/2µL2 − |L1|
−k0/2µL1

)

appearing in (23). It is useful to express J as a sum of two contributions Je

and Jē obtained by integrating over the disjoint subsets We and Wē of W
associated to the ordered edge e = ([L1], [L2]) of T . By Lemma 4.3,

Je =

∫

We

log(x− τ1y)P̃ (x, y)
(
|L2|

−k0/2ap − |L1|
−k0/2

)
µL1(x, y)

= |L1|
−k0/2

∫

We

log(x− τ1y)P̃ (x, y)
(
(p−k0/2ap − 1)µL1

)
(x, y).

Now applying Lemma 4.11 with α = p−k0/2ap−1, and noting that α(k0) = 0,
we find

Je = p−k0/2a′p(k0)cφ(e)(P ). (24)
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On the other hand, e = ([(1/p)L2], [L1]) and [(1/p)L2 : L1] = p so we have
µL1|We

= apµ(1/p)L2
|We

and the same computation gives:

Je :=

∫

We

log(x− τ1y)P̃ (x, y)
(
|L2|

−k0/2µL2 − |L1|
−k0/2µL1

)

= −p−k0/2a′p(k0)cφ(e)(P ) = p−k0/2a′p(k0)cφ(e)(P ).

Therefore
J = Je + Je = 2p−k0/2a′p(k0)cφ(e)(P ).

This concludes the proof of Proposition 4.10.

We are now able to prove Theorem 3 of the introduction:

Theorem 4.12. Let LT (f) denote Teitelbaum’s L-invariant attached to f .
Then

−2p−k0/2a′p(k0) = LT (f).

Proof. Let Φ be the family of automorphic forms associated to f∞ by The-
orem 3.10. Fix τ ∈ Hp(Q

ur
p ) and let vτ = [Lτ ] ∈ T0 be the corresponding

vertex. Let hτ ∈ Vk0 ⊗ Cp be the map sending P ∈ Pk0 to

hτ (P ) :=

∫ τ

ψ(z)P (z)dz.

For all γ ∈ Γ and P ∈ Pk0 , Proposition 4.10 gives

hγτ (P ) − hτ (P ) =

∫ γτ

τ

ψ(z)P (z)dz + 2p−k0/2a′p(k0)
∑

e:vτ→γ(vτ )

cφ(e)(P ).

In the notations of Section 2 this formula can be rewritten as

hγτ − hτ = κlog
φ (γ) + 2p−k0/2a′p(k0)κ

ord
φ (γ).

On the other hand, Proposition 4.9 implies that

hγτ − hτ = γhτ − hτ

is a Vk0 ⊗ Cp-valued coboundary for Γ. It follows that

[κlog
φ ] = −2p−k0/2a′p(k0)[κ

ord
φ ].

Theorem 4.12 now follows from Definition 2.3 of LT (f).
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5 Orton’s L-invariant

This section recalls the definition of Orton’s L-invariant, which involves the
theory of modular symbols. The reader is referred to [Or] for more details.

Write ∆ for the group Div0(P1(Q)) of degree zero divisors supported
on the rational cusps of the Poincaré upper half plane. For any unitary
commutative ring A of C, let Pk(A) denote the A-algebra of polynomials of
degree ≤ k with coefficients in A, and let Vk(A) be the A-dual of Pk(A).
When A is a subfield of C, the group GL2(Q) acts on the right on Pk(A) by
the rule

(Pγ)(z) = (cz + d)kP (γz), γ =

(
a b
c d

)
.

This induces a right action of GL2(Q) on Vk(A) by setting

(φγ)(P ) = φ(Pγ−1).

A modular symbol with values in a GL2(Q)-module V is a homomorphism
from ∆ to V. The space of all such modular symbols is denoted

MS(V) := hom(∆,V).

It is equipped with a right GL2(Q)-action by the rule

(mγ)(δ) = m(γδ)γ,

for m ∈ MS(V), δ ∈ ∆, and γ ∈ GL2(Q). If the divisor δ is of the form
(s) − (r), write m{r → s} for m(δ).

A modular eigenform g of weight k+2 on Γ0(Np) gives rise to a Γ0(Np)-
invariant Vk(C)-valued modular symbol

Ψg : ∆ −→ Vk(C)

by the rule

Ψg(δ)(P ) = 2πi

∫

δ

g(z)P (z)dz,

with δ ∈ ∆ and P ∈ Pk(C). Write Ψ±g for the projection of Ψg to the
±-eigenspace of Hom(∆, Vk(C)) for the action of the involution

c =

(
−1 0
0 1

)
.
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Let Kg be the extension of Q generated by the Hecke eigenvalues of g. By a
result of Shimura, there exist complex periods Ω±g such that

Φ±g = Ψ±g /Ω
±
g

takes values in Vk(Kg). Note that the modular symbols Ψg and Φ±g are all
Γ0(Np)-invariant.

Let f be the newform on Γ0(Np) considered in the introduction. Fix a
choice of sign w∞ ∈ {−1, 1} and let

Φf =

{
Φ+

f if w∞ = 1;

Φ−f if w∞ = −1.

be the modular symbol in MS(Vk0(Kf)) attached to f . Define

Γ̃ =
{
γ =

(
a b
c d

)
∈M2(Z[1/p]) : N | c and det(γ) = p2h, for h ∈ Z

}
.

Write Γ for the group of elements in Γ̃ having determinant one. For (s)−(r) ∈
∆, define a harmonic cocycle

cf{r → s} : E(T ) −→ Vk0(Q̄p)

by the rule
cf{r → s}(e)(P ) = Φf((γs) − (γr))(Pγ−1),

where γ ∈ Γ is such that γe = e∞. This definition is independent of the
choice of γ such that γe = e∞: for if γ′ is another such element, the element
γ′γ−1 belongs to Γ0(Np), the stabiliser of e∞. The claim then follows from
the Γ0(Np)-invariance of Φf .

The cocycle cf{r → s} gives rise to a locally analytic distribution on
P1(Qp), denoted µf{r → s}, and determined by setting

∫

Ue

P (t)µf{r → s}(t) = cf{r → s}(e)(P )

for all e ∈ E(T ) and P ∈ Pk0(Q̄p), and extending to functions on P1(Qp)
which are locally analytic on Qp and have a pole of order at most k0 at
infinity. Note the analogy between this definition and the definition of the
locally analytic distribution µφ in equation (11) of Section 2.

The following definition is modelled on the description of the Coleman
line integral given in equation (13) of Section 2.
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Definition 5.1. For τ1, τ2 ∈ Hp and r, s ∈ P1(Q), the definite double integral
is defined by

∫ τ2

τ1

∫ s

r

ωfP =

∫

P1(Qp)

log
( t− τ2
t− τ1

)
P (t)µf{r → s}(t).

The notation ωf in Definition 5.1 is meant to suggest that the definite double
integral should be thought of as the integration of a form of parallel weight
(k0 + 2, k0 + 2) on Hp × H associated to f . This point of view is explained
in detail in [Da2], Chapter 9 and [Or], Chapter 2.

Set Pk = Pk(Q̄p), Vk = Vk(Q̄p) and write

Mk := MS(Vk) = Hom(∆, Vk).

The following definitions are motivated by the definition of the 1-cocycles
κord

φ and κlog
φ given in equations (14) and (15) respectively.

Definition 5.2.

1. The 1-cocycle κord
f ∈ Z1(Γ,Mk0) is defined by choosing v ∈ T0 and

setting

κord
f (γ){r → s}(P ) =

∑

e:v→γv

cf{r → s}(P )(e).

2. The 1-cocycle κlog
f ∈ Z1(Γ,Mk0) is defined by choosing τ ∈ Hp and

setting

κlog
f (γ){r → s}(P ) =

∫ γτ

τ

∫ s

r

ωfP.

Lemma 5.3.

1. The image [κord
f ] of κord

f in H1(Γ,Mk0) is independent of the choice of
base vertex v.

2. The image [κlog
f ] of κlog

f in H1(Γ,Mk0) is independent of the choice of
base point τ ∈ Hp.

Proof. See [Or], Lemma 5.1 and 5.2. Note that the one-cocycles κord
f and κlog

f

are denoted õcf,v and l̃cf,τ respectively in [Or].

Proposition 5.4. The class [κord
f ] is non-zero.
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Proof. Proposition 13 of Section II.2.8 of [Se2], applied to the case M = Mk0

and G = Γ acting on T , yields a linear transformation

θ : H0(Γ0(Np),Mk0)
θ

−→ H1(Γ,Mk0)

whose kernel is identified with the p-old subspace of the space of modular
symbols on Γ0(Np). The map θ is described explicitly in Section 3.1 of [Da1],
where it is shown that θ(Φf) = [κord

f ]. (Although [Da1] assumes k0 = 0, the
treatment of the general case is no different.) Proposition 5.4 follows from
the fact that the form f is new at p.

Let
H1(Γ,Mk0)

f , H1(Γ,Mk0)
f,w∞ ⊂ H1(Γ,Mk0)

denote, respectively, the f -isotypic subspace and its w∞-eigenspace for the
action of the involution c defined at the beginning of this section. The classes
[κord

f ] and [κlog
f ] both belong to H1(Γ,Mk0)

f,w∞. In [Or], Proposition 7.1, it is
shown that this space is one-dimensional over Cp. This makes it possible to
define Orton’s L-invariant LO(f) in a way which parallels closely Definition
2.3 of Teitelbaum’s L-invariant.

Definition 5.5. The Orton L-invariant attached to f is the unique scalar
LO(f) ∈ Cp such that

[κlog
f ] = LO(f)[κord

f ].

Remark 5.6. Note that LO(f) depends a priori on the choice of sign w∞
which determines whether Φf is taken to be the even or odd modular symbol
attached to f . Hence there are two a priori distinct Orton L-invariants
attached to f , which could be denoted L+

O(f) and L−O(f). A by-product of
our study of LO(f) is a direct proof that these two invariants are in fact
equal. (Cf. Theorem 6.8.)

Recall the Shimura period Ωf (depending on the choice of sign w∞) that
was used to define the modular symbol attached to f . Let Lp(f, χ, s) denote
the Mazur-Tate-Teitelbaum p-adic L-function attached to f and χ, which is
constructed in terms of the modular symbol of f and hence depends on the
choice of Ωf . Set w = 1 if f is split multiplicative at p, and w = −1 if f is
non-split multiplicative at p. The following theorem of Orton is crucial for
the proof of Theorem 2 of the Introduction.
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Theorem 5.7 (Orton). For all Dirichlet characters χ satisfying χ(p) = w
and χ(−1) = w∞,

L′p(f, χ, 1 + k0/2) = LO(f)L∗(f, χ, 1 + k0/2).

It is worth noting that it is at this stage, and this stage only, that a
connection is made between the cohomologically-defined L-invariants and
special values of L-series.

Let us briefly recall some of the ideas that go in Orton’s proof of Theorem
5.7. Fix a positive integer c prime to Np. For any positive integer ν prime
to c, define an embedding Ψν : Q × Q →M2(Q) by setting

Ψν(a, a) =

(
a 0
0 a

)
, Ψν(c, 0) =

(
c ν
0 0

)
.

When ν varies in a full set of representatives for (Z/cZ)×, Ψν describes the
set of all Γ-conjugacy classes of oriented optimal embeddings of conductor c:
see [Da1], Section 2. Set

rΨν
= ∞, sΨν

= −ν/c, γΨν
= Ψν(p

u, p−u) =

(
pu (pu − p−u)ν/c
0 p−u

)
,

where u denotes the order of p2 in (Z/cZ)×. The element γΨν
is a generator

for the image of Ψ(Q× × Q×) ∩ Γ in PGL2(Q). Moreover, rΨν
, resp., sΨν

is
the repulsive, resp., attractive fixed point for the action of Ψ(γΨν

) on P1(Q).
Define the polynomial

PΨν
(z) = (cz + ν)k0/2 ∈ Pk0 .

Note that PΨν
is invariant under the weight k0 + 2 action of γΨν

.
The one-cocycles κord

f and κlog
f can be used to associate to the embedding

Ψν the following numerical invariants:

Jord
Ψν

= κord
f (γΨν

){rΨν
→ sΨν

}(PΨν
) =

∑

e:v→γΨν v

cf{rΨν
→ sΨν

}(PΨν
)(e); (25)

J log
Ψν

= κlog
f (γΨν

){rΨν
→ sΨν

}(PΨν
) =

∫ γτΨν

τΨν

∫ sΨν

rΨν

ωfPΨν
.

(26)
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Remark 5.8. Note that

b(γΨν
){rΨν

→ sΨν
}(PΨν

) = 0

for any coboundary b ∈ B1(Γ,Mk0). This implies that the quantities Jord
Ψν

and J log
Ψν

do not depend on the choice of cocycles representing the cohomology

classes [κord
f ] and [κlog

f ] respectively, and hence, by the definitiono f LO(f),
that

J log
Ψν

= LO(f)Jord
Ψν
. (27)

Let χ be a Dirichlet character of conductor c, such that χ(p) = w and
χ(−1) = w∞. The following formula of Orton relates the numerical invari-
ants Jord

Ψν
and J log

Ψν
defined in (25) and (26) to special values of L-series, and

derivatives of the corresponding p-adic L-functions, respectively:

∑

ν∈(Z/cZ)×

χ(ν)Jord
Ψν

= (2u)L∗(f, χ, 1 + k0/2); (28)

∑

ν∈(Z/cZ)×

χ(ν)J log
Ψν

= (2u)L′p(f, χ, 1 + k0/2). (29)

The first formula is Corollary 6.1 of [Or], while the second formula is Corollary
6.2 of [Or].

Theorem 5.7 now follows directly from these formulae and equation (27).

6 Distribution-valued modular symbols

Recall from the introduction the p-adic family of eigenforms

f∞ =
∞∑

n=1

anq
n, with an ∈ A(U)

interpolating the given newform f =
∑∞

n=1 anq
n of weight k0 + 2 on Γ0(Np).

This means that

fk =
∞∑

n=1

a(k)qn

is a normalised eigenform of weight k+2 on Γ1(N)∩Γ0(p), for all k ∈ U∩Z≥0,
and that fk0 = f . Let Φfk

be the modular symbol in MS(Vk) defined in
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section 5, associated to the choice of sign w∞. Note that Φfk
also depends

on a choice of complex period Ωfk
, and thus is only really well-defined up

to multiplication by a non-zero scalar. Two modular symbols m1 and m2 in
MS(Vk) are said to be equivalent if there exists a non-zero scalar λ ∈ C×p
such that m1 = λm2; one then writes m1 ∼ m2.

Assume throughout this section that f = fk0 is split multiplicative at p,
so that

w = +1, ap(k0) = pk0/2.

As in section 3, let D be the space of locally analytic distributions on L′∗,
with L∗ = Z2

p. Recall that the Qp-algebra R of locally analytic distributions
on Z×p acts on D. The space MSΓ0(N)(D) of Γ0(N)-invariant D-valued mod-
ular symbols is equipped with a natural action of the Hecke operators Tn

with p 6 |n, as well as an action of R arising from the R-module structure on
D. Let us fix as in the previous sections an affinoid disk U , defined over K,
containing k0 and contained in the weight space W and let DU := D⊗̂RA(U).

Proposition 6.1. There exists a distribution-valued modular symbol Φf∞ ∈
MS(DU) satisfying the following properties:

1. (Γ1(N)-invariance) Φf∞ is Γ0(N)-invariant, that is,

Φf∞(γδ) · γ = Φf∞(δ)

for all γ ∈ Γ1(N).

2. (Weight specialisation) Following the notations of Definition 3.4, for
k ∈ U(K) ∩ Z≥0 and P ∈ Pk, define a Vk-valued modular symbol

ρk(Φf∞) : ∆ −→ Vk

by the rule

ρk(Φf∞)(δ)(P ) =

∫

W∞

P̃ (x, y)Φf∞(δ)(x, y).

Then,
ρk(Φf∞) ∼ Φfk

, and ρk0(Φf∞) = Φf .

Proof. When f has weight 2 (i.e., k0 = 0), the existence of a modular symbol
with values in the module of bounded distributions on L∗ is proved in [GS].
In general, it follows from results of Stevens in [St].
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For a divisor δ = (s) − (r) in ∆, write µL∗
{r → s} for the locally analytic

distribution Φf∞(δ). It will be viewed as a distribution on W , supported on
L′∗.

Definition 6.2. For any lattice L in Q2
p, the locally analytic distribution

µL{r → s} on W is defined by the rule
∫

W

F (x, y)µL{r → s}(x, y) =

∫

L′
∗

F (g−1~xy)µL∗
{gr → gs}(x, y),

where F : W −→ Qp is any locally analytic function, and g ∈ Γ̃ is any
element such that gL = L∗.

Note that the above definition does not depend on the choice of g ∈ Γ̃ such
that gL = L∗: if g′ is another element of Γ̃ such that g′L = L∗, it follows
that g′g−1 belongs to the stabiliser of L∗ in Γ̃, which is the group Γ0(N).
The claim then follows from the Γ0(N)-invariance of Φf∞, stated in part 1 of
Proposition 6.1.

The system of distributions µL{r → s} satisfies similar properties to
those of the system µL introduced in section 4. Since the proofs of these new
properties are analogous to those presented in section 4, details are usually
omitted.

Lemma 6.3. Let κ ∈ U(K), L2 ⊂ L1 be Zp-lattices in Q2
p with [L1 : L2] = p,

and let e = ([L1], [L2]) ∈ E(T ) be the corresponding edge. Then

µL2{r → s}|We
= apµL1{r → s}|We

,

so that
∫

We

F (x, y)µL2{r → s}(x, y) =

∫

We

F (x, y)(apµL1{r → s})(x, y),

for every locally analytic function F ∈ A(κ)(W ).

Proof. The proof is identical to that of lemma 4.3.

Let π be as before the projection of W onto P1(Qp). For every Zp-lattice
L ⊂ Q2

p, define a locally analytic distribution π∗(µL{r → s}) on P1(Qp) by
the formula
∫

P1(Qp)

P (t)π∗(µL{r → s})(t) = |L|−k0/2

∫

W

ηk0P (x/y)µL{r → s}(x, y),
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where P is any locally meromorphic function on P1(Qp) with a pole of order
at most k0 at ∞.

Proposition 6.4. For all Zp-lattices L in Q2
p,

π∗(µL{r → s}) = µf{r → s},

where µf is the locally analytic distribution on P1(Qp) defined in section 5.

Proof. The proof is similar to that of Proposition 4.4. It uses lemma 6.3
instead of lemma 4.3, and part 3 of Proposition 6.1, which guarantees that
the specialisation at k0 of Φf∞ is the modular symbol attached to f .

Let τ ∈ Hp(Q
ur
p ) and let vτ = [Lτ ] ∈ T0 be the vertex corresponding to

τ under the reduction map. The following definition is modelled on that of
the indefinite integral of Definition 4.8:

Definition 6.5. For all P ∈ Pk0, the indefinite integral attached to τ ∈ Hp,
to r, s ∈ P1(Q), and to f is defined by the formula

∫ τ∫ s

r

ωfP = |Lτ |
−k0/2

∫

W

log(x− τy)P̃ (x, y)µLτ
{r → s}(x, y). (30)

Since
log(px− pτy)P̃ (px, py) = pk0 log(x− τy)P̃ (x, y),

formula (30) depends only on the homothety class of Lτ , and hence only on
τ . The main properties of the indefinite double integral of Definition 6.5 are
summarized in the following two propositions.

Proposition 6.6. For all γ ∈ Γ and P ∈ Pk0,
∫ γτ∫ γs

γr

ωfP =

∫ τ∫ s

r

ωfP γ.

Proof. It is identical to the proof of Proposition 4.9.

Proposition 6.7. Let τ1, τ2 ∈ Hp(Q
ur
p ), and let v1 = [L1], v2 = [L2] ∈ T0 be

the corresponding vertices under the reduction map. For all P ∈ Pk0 ,
∫ τ2
∫ s

r

ωfP −

∫ τ1
∫ s

r

ωfP

=

∫ τ2

τ1

∫ s

r

ωfP + 2p−k0/2a′p(k0)
∑

e:v1→v2

cf{r → s}(e)(P ).
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Proof. Assume without loss of generality that L2 ⊂ L1 and [L1 : L2] = p.
Set e = ([L1], [L2]) ∈ E(T ). Then
∫ τ2
∫ s

r

ωfP −

∫ τ1
∫ s

r

ωfP

= |L2|
−k0/2

∫

W

log(x− τ2y)P̃ (x, y)µL2{r → s}(x, y)

− |L1|
−k0/2

∫

W

log(x− τ1y)P̃ (x, y)µL1{r → s}(x, y)

= Ilog + Iord,

where

Ilog = |L2|
−k0/2

∫

W

log

(
x− τ2y

x− τ1y

)
P̃ (x, y)µL2{r → s}(x, y),

and

Iord =

∫

W

log(x− τ1y)P̃ (x, y)
(
|L2|

−k0/2µL2{r → s} − |L1|
−k0/2µL1{r → s}

)
.

Using Proposition 6.4, and the fact that the function involved in the integral
defining Ilog is constant along the fibers of π, one finds that

Ilog =

∫

P1(Qp)

log

(
t− τ2
t− τ1

)
P (t)µf{r → s}(t) =

∫ τ2

τ1

∫ s

r

ωfP.

Now, write the integral defining Iord as the sum of two contributions Je and
Jē, obtained by integrating over the disjoint subsets We and Wē. By Lemma
6.3,

Je =

∫

We

log(x− τ1y)P̃ (x, y)
(
|L2|

−k0/2µL2 − |L1|
−k0/2µL1

)
{r → s}(x, y)

=

∫

We

log(x− τ1y)P̃ (x, y)
(
|L2|

−k0/2ap − |L1|
−k0/2

)
µL1{r → s}(x, y)

= |L1|
−k0/2

∫

We

log(x− τ1y)P̃ (x, y)
(
(p−k0/2ap − 1)µL1{r → s}

)
(x, y).

The formula
∫

We

log(x− τy)P̃ (x, y)(αµL{r → s})(x, y) = (31)
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α′(k0)|L|
k0/2cf{r → s}(e)(P ) + α(k0)

∫

We

log(x− τy)P̃ (x, y)µL{r → s}(x, y)

(e ∈ E(T ), α ∈ A(U), τ ∈ Hp, and P ∈ Pk0) is obtained by adapting the
approach that is followed in the proof of lemma 4.11. By applying (31) with
α = p−k0/2ap − 1, the above expression for Je becomes

Je = p−k0/2a′p(k0)cf{r → s}(e)(P ).

Moreover, a similar argument proves that

Jē = −p−k0/2a′p(k0)cf{r → s}(ē)(P ) = p−k0/2a′p(k0)cf{r → s}(e)(P ).

Hence,
Jord = Je + Jē = 2p−k0/2a′p(k0)cf{r → s}(e)(P ),

as was to be shown.

We are now ready to prove the main result of this section.

Theorem 6.8. The equality

−2p−k0/2a′p(k0) = LO(f)

holds. In particular, Orton’s L-invariant LO(f) is independent of the choice
of sign w∞ that was made in defining it.

Proof. Let τ be a point in Hp(Q
ur
p ), and let vτ = [Lτ ] ∈ T0 be the corre-

sponding vertex. Fix a divisor (s) − (r) in ∆. Given τ ∈ Hp, one defines an
P∨k0

-valued modular symbol hτ by the rule

hτ{r → s}(P ) =

∫ τ∫ s

r

ωfP.

Proposition 6.7 gives

hτ{γ
−1r → γ−1s}(γ−1P )−hτ{r → s}(P ) = hγτ{r → s}(P )−hτ{r → s}(P )

=

∫ γτ

τ

∫ s

r

ωfP + 2p−k0/2a′p(k0)
∑

e:vτ→γ(vτ )

cf{r → s}(e)(P ), (32)

for all γ ∈ Γ. In the notations of Definition 5.2 of Section 5, this relation can
be rewritten as

hτ{γ
−1r → γ−1s}(γ−1P ) − hτ{r → s}(P ) (33)
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= κlog
f (γ){r → s} + 2p−k0/2a′p(k0)κ

ord
f (γ){r → s}.

Since the expression on the left of (33) is a Mk0-valued one-coboundary, it
follows upon projecting this equation to H1(Γ,Mk0) that

[κlog
f ] = −2p−k0/2a′p(k0)[κ

ord
f ].

Theorem 6.8 is now a direct consequence of Definition 5.5 of LO(f).

Corollary 6.9.

1. The equality LT (f) = L0(f) holds.

2. For all Dirichlet characters χ satisfying χ(p) = 1,

L′p(f, χ, 1 + k0/2) = LT (f)L∗(f, χ, 1 + k0/2).

Proof. Part 1 follows by combining theorem 6.8 with theorem 4.12. Part 2
follows by combining part 1 of this corollary with theorem 5.7.
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