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1 Introduction

Let K be a totally real field embedded in a fixed algebraic closure K, and
write GK := Gal(K/K) for its absolute Galois group. Fix a prime ` 6= 2,
and consider an odd two-dimensional Galois representation

ρ : GK −→ GL2(E),

where E is either a finite field of characteristic ` or a finite extension of Q`.
Assume that the restrictions of ρ to the inertia groups at the primes of K
above ` are potentially semistable in the sense of [FM].

The representation ρ is called modular if it is associated to a Hilbert
modular form on GL2(K), as is explained, for example, in [W1] and [W2].
Fontaine and Mazur [FM] conjectured that this is always the case. Significant
progress on this conjecture was achieved [W3] by proving particular instances
of the following “lifting conjecture”:

Conjecture 1.1 Suppose that ` is odd and that the residual representation
ρ̄ attached to ρ is modular. Then ρ itself is modular.

Conjecture 1.1 is proved in [W3] and [TW] when K = Q and the restriction
of ρ to the decomposition groups at the primes above ` are semistable in
the sense of [DDT], sec. 2.4. This is enough (using the primes ` = 3 and 5)
to establish the Shimura-Taniyama conjecture for semistable elliptic curves,
thanks to a key result of Langlands and Tunnell. Progressively stronger cases
of conjecture 1.1 were subsequently proved by [Di], [CDT], [Fu], and [SW];
in [SW], Skinner and Wiles obtain quite general results in the context where
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K is any totally real field, the principal assumption being that ρ is ordinary
at the primes above `.

In this note we consider Galois representations which occur in “rigid fam-
ilies”, and establish their modularity under conjecture 1.1. This implies the
modularity (over suitable real abelian extensions) of the Galois representa-
tions occuring in the cohomology of the curves

yn = xa(x− 1)b(x− t)c, t ∈ Q,

whose periods as a function of the parameter t are values of classical hyper-
geometric functions.

To state the main result precisely, denote by K(t) the field of rational
functions in the indeterminate t, and let

% : GK(t) −→ GL2(E)

be a two-dimensional Galois representation. For x ∈ P1(K̄), viewed as a
place of K(t), let Dx ⊂ GK(t) be a decomposition group at x, and write

Ix = Ẑ(1) for its inertia subgroup. One says that % is unramified at x if its
restriction to Ix is trivial. If in addition x belongs to P1(K), the restriction of
% to Dx factors through Dx/Ix = GK , giving rise to a Galois representation

%[x] : GK −→ GL2(E),

which can be thought of as the specialization of % at t = x.
Let %geom be the restriction of % to the subgroup

Ggeom := Gal(K(t)/K(t)) ⊂ GK(t).

The representation % is said to be rigid if %geom is unramified outside 0, 1,
and ∞. (The reason for this terminology will be made clear in the next
section, cf. prop. 2.4.) Choose a topological generator of Ẑ(1) corresponding
to a compatible system (ζn) of primitive n-th roots of unity. For j = 0, 1,∞,
let γj be the corresponding generator of Ij, and let σj = %(γj) ∈ GL2(E).
The monodromy matrices σj depend on the choice of decomposition groups
Dj but their conjugacy classes in GL2(E) are well-defined. We will show
(lemma 2.2) that the semisimplification of σj has finite order nj. One can
then prove (prop. 2.4) that the “field of definition” K of % necessarily contains
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the real subfield Knj
:= Q(ζnj

)+ of the cyclotomic field of nj-th roots of unity.
Conversely, % has a twist which extends to a representation of GKn(t), where
n = n(%) is the least common multiple of the nj. Replace % by such a twist,
and K by Kn. Our main result is then:

Theorem 1.2 Let % be a rigid representation, and assume that one of the
σj is unipotent, and that 8 does not divide n = n(%).

If conjecture 1.1 is true, then %[x] arises from a Hilbert modular form
over Kn, for all x ∈ P1(Q)− {0, 1,∞}.

Acknowledgements. The author thanks Nick Katz for helpful conversa-
tions and the ETH in Zürich for its hospitality while this article was written.
This research was funded by grants from NSERC and by an Alfred P. Sloan
research fellowship.

2 Rigid representations

Fix a rigid representation %, and keep the notations of the introduction.
While the monodromy matrices σj are only defined up to conjugation, the
decomposition groups Dj can be chosen so that the relation

σ0σ1σ∞ = 1 (1)

is satisfied (cf. for example [Se1], th. 6.3.2.) Fix such a choice from now on.
A 2× 2 matrix is called a reflection if its eigenvalues are 1 and −1.

Lemma 2.1 The matrix σj is either a reflection or an element of SL2(E).

Proof: The conjugacy classes of σj are rational over the real field K in the
sense of [Se1], sec. 7.1. In particular, σj is conjugate to σ−1

j ; the result follows.
If one of the σj is a reflection, then exactly two are, because of the relation

det(σ0σ1σ∞) = 1 which follows from (1). In that case the image of %geom is
a dihedral group. We exclude this case from consideration from now on,
and assume that each σj belongs to SL2(E). The matrix σj is said to be
quasi-unipotent if its minimal polynomial has a double root.

Lemma 2.2 The σj are either quasi-unipotent or of finite order.
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Proof: Let Kcyc := K(ζ∞) be the maximal cyclotomic extension of K, and let
Ω be its Galois group, identified with a subgroup of Ẑ×. Since the conjugacy
class of σj is rational over K, the matrix σj is conjugate to σα

j for all α ∈ Ω.

But Ω has finite index in Ẑ×, and hence the eigenvalues of σj are roots of
unity.

Definition 2.3 An admissible triple in SL2(E)) is a triple (σ0, σ1, σ∞) of
elements in SL2(E), taken modulo conjugation in GL2(E), and satisfying
(a) The semisimplification of σj has finite order nj;
(b) The group generated by σ0, σ1, and σ∞ is an irreducible subgroup of
SL2(E).
(c) σ0σ1σ∞ = 1.

Let n = n(%) = lcm(n0, n1, n∞), as before. The following “rigidity” property
justifies the terminology of the introduction.

Proposition 2.4 Let (σ0, σ1, σ∞) be an admissible triple in SL2(E) with σ1

unipotent. Then there exists a rigid representation

% : GKn(t) −→ GL2(E)

whose monodromy matrix at t = j is equal to σj. Furthermore, if %′ is any
irreducible rigid representation whose monodromy matrices are conjugate to
those of %, then %′ is conjugate to %⊗χ, where χ : GKn −→ E× is a constant
central character.

This follows from theorems 1 and 2 of [Be]. (See also the discussion in section
1 of [Da2].)

3 Hypergeometric abelian varieties

For the following definition, let K be any real abelian field, and OK its ring of
integers. (We will also write On := Z[ζn + ζ−1

n ] to denote the ring of integers
of Kn.)

Definition 3.1 A hypergeometric abelian variety with multiplications by K
is an abelian scheme A over (P1−{0, 1,∞})/Q of dimension [K : Q] equipped
with an inclusion

ι : OK ↪→ EndK(t)(A)
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which is compatible with the natural action of Gal(K/Q) on both sides, and
whose associated monodromy representation is irreducible.

Define an admissible triple (σ0, σ1, σ∞) in SL2(OK) in the obvious way (re-
placing E by OK in definition 2.3). Given a hypergeometric abelian va-
riety A with multiplications by K, one can associate to it an admissible
triple (σ0, σ1, σ∞) in SL2(OK) by letting σj be the image of γj acting on the
DeRham cohomology H1

Dr(A) (viewed as a two-dimensional K-vector space).
Conversely, given an admissible triple (σ0, σ1, σ∞) in SL2(OK), let nj be the
order of the semisimplification of σj and set n = lcm(n0, n1, n∞). One sees
that K must contain the fields Knj

generated by the traces of the σj. Assume
that K = Kn.

Proposition 3.2 Assume that σ1 is unipotent. There exists a hypergeo-
metric abelian variety A with multiplications by Kn whose associated mon-
odromies are (σ0, σ1, σ∞). The isogeny class of this abelian variety depends
only on the triple (σ0, σ1, σ∞) (modulo conjugation by GL2(E)).

Proof: See [Ka], sec. 5.4, or [CW], sec. 3.3. The hypergeometric abelian
varieties are constructed as appropriate quotients of the Jacobians of the
curves

yn = xa(x− 1)b(x− t)c.

From hypergeometric abelian varieties to rigid representations:
If A is a hypergeometric abelian variety with multiplications by K, the `-adic
Tate module

T`(A) := lim
←

A[`k]

is a free module of rank two over OK ⊗ Z`. The natural action of GQ(t) on
this Tate module is semilinear, in the sense that

α(s · v) = sα · α(v), for α ∈ GQ(t), s ∈ OK ⊗ Z`, v ∈ T`(A).

In particular, if ϕ is a homomorphism from OK to E, then T`(A) ⊗ϕ E is
a two-dimensional E-vector space on which GK(t) acts linearly. It gives rise
to a rigid two-dimensional Galois representation % of GK(t), and thus to a
family of representations %[x] of GK for all x ∈ K − {0, 1}.
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Definition 3.3 The hypergeometric abelian variety A is said to be modular
at x if %[x] is associated to a Hilbert modular form over K with coefficients
in E, for all choices of (ϕ, E). We say that A is modular if it is modular at
x, for all x ∈ Q.

Remark: The representations %[x] attached to A, as `, E, and ϕ vary, form a
compatible system of `-adic representations of GK , and hence to prove that A
is modular at x, it suffices to prove that %[x] is modular for a single E ⊂ Q̄`.

Examples:
1. If σ0, σ1, and σ∞ ∈ SL2(Z) are quasi-unipotent with eigenvalues 1, 1, −1,
then A is isogenous to the Legendre family of elliptic curves

y2 = x(x− 1)(x− t).

The modularity of A is thus a special case of the Shimura-Taniyama conjec-
ture which was completely established by Wiles [W3].

2. If σ0 and σ∞ are of order 4 and 3 respectively, and σ1 is unipotent, then
A/Q(t) is isogenous to (a twist of) the universal family of elliptic curves of
invariant j = 1728/(t − 1). The modularity of A in this case is merely a
re-formulation of the Shimura-Taniyama conjecture.

3. If σ0 and σ1 are unipotent and σ∞ is of order r with r an odd prime, the
corresponding hypergeometric abelian variety is the Jacobian of the hyper-
elliptic curve with real multiplications by Q(ζr)

+ given by the equation

y2 = (x + 2)(f(x) + 2− 4t),

where f(x) = xg(x2− 2) and g(x) is the characteristic polynomial of −(ζr +
ζ−1
r ). This curve had already been considered in [TTV], and used in [Da2] to

study the generalized Fermat equation xp+yp = zr. In the language of [Da2],
the mod p representations attached to A are the “even Frey representations”
associated to the generalized Fermat equation xp + yp = zr.

4. If σ0 and σ1 are unipotent and σ∞ has order 2r with r an odd prime,
then A is the Jacobian of the hyperelliptic curve (also used in the study of
xp + yp = zr)

y2 = f(x) + 2− 4t.

From rigid representations to hypergeometric abelian varieties:
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Let % be a rigid representation of GKn(t) with unipotent monodromy at
t = 1, associated to an admissible triple (σ0, σ1, σ∞) in SL2(E). This triple
can be lifted to an admissible triple (σ̃0, σ̃1, σ̃∞) in SL2(On), i.e., there is a
homomorphism ϕ : On −→ E such that ϕ(σ̃j) = σj, and σ̃1 is unipotent.
Let A be the hypergeometric abelian variety with multiplications by Kn

associated to (σ̃0, σ̃1, σ̃∞) by proposition 3.2. Then we have:

Proposition 3.4 The representation % is equivalent to (a twist of) the Ga-
lois representation obtained from the action of GK(t) on T`(A)⊗ϕ E.

Proof: This is a direct consequence of the uniqueness statement of proposition
2.4, since the representation associated to T`(A)⊗ϕE is a rigid representation
associated to the triple (σ0, σ1, σ∞).

Thanks to proposition 3.4, it is enough to show that all hypergeometric
abelian varieties with unipotent monodromy at t = 1 are modular in order
to prove theorem 1.2.

4 Congruences

Let A be a hypergeometric abelian variety with multiplication by K = Kn,
and let (σ0, σ1, σ∞) be the associated admissible triple in SL2(OK). As-
sume that σ1 is unipotent, and let ` be an odd prime which divides n =
lcm(n0, n1, n∞). For j = 0, 1, ∞, let n′j be the prime-to-` part of nj, let n′

be the prime-to-` part of n, and let K ′ = Q(ζn′)+. Choose a prime λ of
K above `, and let λ′ be the unique prime of K ′ below it. The prime λ′ is
totally ramified in K/K ′, so that the residue fields of K and K ′ at λ and λ′

respectively are canonically isomorphic. Let F be this common residue field.
It is equipped with maps ϕ : OK −→ F and ϕ′ : OK′ −→ F. Let (σ′0, σ

′
1, σ

′
∞)

be a lift of (ϕ(σ0), ϕ(σ1), ϕ(σ∞)) to an admissible triple in SL2(OK′), and let
A′ be the abelian variety associated to it by proposition 3.2.

Because GQ(t) acts semi-linearly on A[`] ⊗ϕ F and because λ is totally
ramified in K/K ′, the action of GK(t) on this F-vector space extends to a
linear action of GK′(t).

Theorem 4.1 The GK′(t) representation A[`]⊗ϕ F is isomorphic to (a twist
of) the representation A′[`]⊗ϕ′ F.

Proof: A direct consequence of proposition 3.4.
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5 Proof of the main result

Theorem 5.1 Let A be a hypergeometric abelian variety with multiplications
by Kn, and let (σ0, σ1, σ∞) be the associated admissible triple. Assume that
σ1 is unipotent, and that 8 does not divide n. If conjecture 1.1 is true, then
A is modular.

Proof: The proof is by induction on d = [Kn : Q]. If d = 1, then A is an
elliptic curve over Q(t) and the modularity of A follows from the Shimura-
Taniyama conjecture, which itself follows from conjecture 1.1. If d > 1, then
n is divisible by an odd prime `, by the assumption that 8 does not divide
n. Adopting the notation of section 4, we begin by showing (for a fixed
t = x ∈ Q) that A[`] ⊗ϕ F is associated to a Hilbert modular form f` over
K. If A[`] ⊗ϕ F is a reducible representation of GK , then one may express
f` in terms of Eisenstein series. Assume that A[`]⊗ϕ F is irreducible. Since
n′ < n and d′ = [K ′ : Q] < d, the induction hypothesis implies that A′

is modular. Hence so is the rigid representation A′[`] ⊗ϕ′ F; let f ′` be the
associated Hilbert modular form mod ` on GL2(K

′). By theorem 4.1, the
GK′ module A[`]⊗ϕ F is isomorphic to A′[`]⊗ϕ′ F, and so corresponds to the
same f ′`. Letting f` be the cyclic base change lift (from K ′ to K) of f ′`, it
follows that the representation A[`]⊗ϕ F is modular over K. The λ-adic Tate
module T`(A)⊗Kλ is a potentially semistable Galois representation, since it
arises from the torsion points of an abelian variety. Hence it is modular, by
conjecture 1.1.

Remark: The proof that A is modular involves repeated applications of the
lifting conjecture 1.1, once with each odd prime ` dividing n. In light of the
results in [SW], it might be feasible to prove unconditionally the modularity
of A at t = x , when x is such that A is ordinary at all these primes. There
are infinitely many values of x with this property: for example, all the x for
which n divides the numerator of x− 1.
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