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1 The result
Let E/Q be a modular elliptic curve of conductor N , and let K be an imaginary
quadratic field of discriminant prime to N . Assume that E is semistable at all
the prime divisors of N which are inert in K, and that the Hasse-Weil L-function
L(E/K, s) vanishes to even order at s = 1. Since the sign of the functional equation
of L(E/K, s) is −ε(N), where ε is the Dirichlet character attached to K (see [GZ],
p. 71), it follows that the number of primes dividing N and inert in K is odd. Fix
such a prime, say p, throughout the paper.

Let K∞ be the anticyclotomic Zp-extension of K, and let Γ ' Zp be its Galois
group over K. Write Λ for the Iwasawa algebra Zp[[Γ]]. The field K∞ is a Galois
extension of Q, and the generator τ of Gal(K/Q) acts on Γ by the rule τγτ = γ−1 for
all γ ∈ Γ. This property characterizes K∞ among the Zp-extensions of K. Denote
by Selp∞(E/K∞) the p-primary Selmer group of E over K∞. It is a cofinitely
generated Λ-module (i.e., its Pontryagin dual is a finitely generated Λ-module). It
sits in the descent exact sequence

0 → E(K∞) ⊗ Qp/Zp → Selp∞(E/K∞) → X(E/K∞)p∞ → 0,

where X(E/K∞) denotes the Shafarevich-Tate group of E over K∞.
This note combines the results of [BD2] with techniques of Iwasawa theory to

prove the following theorem.

Theorem 1.1
If L(E/K, 1) is non-zero, then the Λ-corank of Selp∞(E/K∞) is equal to 1. More

precisely, E(K∞)⊗Qp/Zp has Λ-corank equal to 1, and X(E/K∞)p∞ is a cotorsion

Λ-module.

Remark 1.2
1. If χ : Γ → C× is a complex character of finite order which is ramified at p,

the sign of the functional equation of L(E/K, χ, s) is −ε(N/p) = −1. One expects
that L′(E/K, χ, s) is non-zero for almost all characters χ as above. Assuming this,
theorem 1.1 is predicted by the Birch and Swinnerton-Dyer conjecture applied to
the finite layers of the extension K∞.

2. As explained in section 3, the proof of theorem 1.1 is achieved by showing
along the way a non-triviality result for the family of Heegner points defined over
K∞. See theorem 3.2 for the precise statement. The proof of theorem 3.2 rests on
one of the main results of [BD2].
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2 An upper bound for the corank of Selp∞(E/K∞)
This section is devoted to the proof of the following:

Proposition 2.1
If L(E/K, 1) is non-zero, then the Λ-corank of Selp∞(E/K∞) is ≤ 1.

Proposition 2.1 is a consequence of the next two propositions.

Proposition 2.2
If L(E/K, 1) is non-zero, then corankZp

Selp∞(E/K) = 0.

Proof. If L(E/K, 1) is non-zero, a theorem of Kolyvagin (see [K], Theorem A)
shows that E(K) and the Shafarevich-Tate group X(E/K) of E over K are finite.
In particular, the Zp-corank of Selp∞(E/K) is zero.

The next proposition does not depend on the assumption that L(E/K, 1) is non-
zero.

Proposition 2.3

corankZp
Selp∞(E/K∞)

Γ
≤ corankZp

Selp∞(E/K) + 1.

Proof of Proposition 2.1

The structure theory of discrete Λ-modules shows that

corankΛSelp∞(E/K∞) ≤ corankZp
Selp∞(E/K∞)

Γ
.

(See [M], ch. 1, or also [L], ch. 5, sec. 3, for details.) But the propositions 2.2 and

2.3 imply that the Zp-corank of Selp∞(E/K∞)
Γ

is ≤ 1.

It remains to prove proposition 2.3. Write Kn for the subfield of K∞ having degree
pn over K, and Gn for the Galois group Gal(Kn/K). Let Kn0

, with n0 ≥ 0 be
the maximal unramified extension of K contained in K∞. Thus, Kn0

= K∞ ∩ H,
where H is the Hilbert class field of K. Note that p is inert in K, totally split in
the extension Kn0

/K and, for n > n0, all the primes of Kn0
above p are totally

ramified in Kn/Kn0
. Denote by q ∈ pZp Tate’s p-adic period of E, and by Φn the

group of connected components of E over Kn ⊗ Qp. By Tate’s theory of p-adic
uniformization, the group Φn is a Gn0

-module, isomorphic to (Z/cpp
n−n0Z)[Gn0

],
where cp := ordp(q).

Lemma 2.4
The torsion subgroup E(K∞)tors of E(K∞) is finite.

Proof. Let q1 and q2 be primes of good reduction for E which are inert in K. Then
q1 and q2 are totally split in K∞/K, and E(K∞)tors injects in the finite group
E(Fq2

1
) ⊕ E(Fq2

2
).

Proof of Proposition 2.3

The proof is an application of the inflation-restriction sequence. First, note the
exact sequence

H1(Γ, Ep∞(K∞)) → H1(K, Ep∞) → H1(K∞, Ep∞)Γ → H2(Γ, Ep∞(K∞)).
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The first term is finite, by lemma 2.4, and the fourth one is zero, since Γ has
cohomological dimension equal to 1. If ` is a rational prime, there are also the local
exact sequences

H1(Γ, E(K∞,`))p∞ → H1(K`, E)p∞ → H1(K∞,`, E)Γp∞,

where K` denotes K ⊗ Q` and K∞,` denotes
⋃

n(Kn ⊗ Q`). If ` 6= p, the cohomol-
ogy group H1(Γ, E(K∞,`)) is finite, since K∞ is unramified outside p. Moreover,
if ` - N , H1(Γ, E(K∞,`)) is zero, since E has good reduction at `. (See [Mi],
ch. 1.) The theory of p-adic uniformization can be used to prove that the group
H1(Γ, E(K∞,p))p∞ has Zp-corank ≤ 1. One starts from the exact sequence of
Γ-modules

0 → QE → K×

∞,p → E(K∞,p) → 0,

where QE denotes the lattice of p-adic periods of E. The action of Γ on QE factors
through Gn0

, and QE is isomorphic to Z[Gn0
]. Taking cohomology of the above

sequence shows that H1(Γ, E(K∞,p)) injects in H2(Γ, QE). Combining the exact
sequence in cohomology induced by

0 → QE → QE ⊗ Q → QE ⊗ Q/Z → 0

with an inflation-restriction argument identifies H2(Γ, QE) with the group of homo-
morphisms Hom(Gal(K∞/Kn0

), (QE ⊗ Q/Z)Gn0 ), which is isomorphic to Qp/Zp.
Proposition 2.3 now follows from the snake lemma applied to the commutative
diagram

0 −−−−→ Selp∞(E/K) −−−−→ H1(K, Ep∞) −−−−→
∏

` H1(K`, E)p∞





y





y





y

0 −−−−→ Selp∞(E/K∞)Γ −−−−→ H1(K∞, Ep∞)Γ −−−−→
∏

` H1(K∞,`, E)Γp∞,

where the vertical maps are restriction maps.

Remark 2.5
1. The Zp-corank of the group H1(Γ, E(K∞,p))p∞ considered in the proof of

proposition 2.3 is in fact equal to 1. To see this, note the exact sequence

0 → H1(Γ, E(K∞,p)) → H2(Γ, QE) → H2(Γ, K×

∞,p) → H2(Γ, E(K∞,p)) → 0.

The “Brauer group” H2(Γ, K×

∞,p) has Zp-corank equal to 1, and it was already

observed that H2(Γ, QE) has Zp-corank equal to 1. Let Ê(Kp) be the p-adic com-

pletion of E(Kp), and let ÛE(Kp) be the submodule of universal norms along the
local extension K∞,p/Kp. The Zp-corank of H2(Γ, E(K∞,p)) is equal to the Zp-

rank of Ê(Kp)/ÛE(Kp). The theory of p-adic uniformization, combined with class
field theory and the fact that the Tate period of E/Kp is a universal norm from

K×

∞,p, shows that Ê(Kp)/ÛE(Kp) has Zp-rank equal to 1. The claim follows.
2. Recall that proposition 2.2 is a special case of a theorem of Kolyvagin [K].

The condition L(E/K, 1) 6= 0 is equivalent to L(E/Q, 1) 6= 0 and L(E ′/Q, 1) 6= 0,
where E′ denotes the quadratic twist of E by K. The opening step in Kolyvagin’s
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proof consists in choosing auxiliary imaginary quadratic fields F and F ′ such that
the first derivatives L′(E/F, 1) and L′(E/F ′, 1) are both non-zero, and such that
the primes dividing the conductors of E and E ′ are split in F and F ′, respectively.
The proof is then achieved by proving the finiteness of the Selmer groups of E/Q
and E′/Q one at a time, and deducing the finiteness of the Selmer group of E/K.
A simpler approach to the proof of proposition 2.2 rests on the methods of [BD2],
which allow to bound directly the p-primary Selmer group of E/K.

3 A lower bound for the corank of Selp∞(E/K∞)
Theorem 1.1 is a consequence of the next proposition, combined with proposition
2.1.

Proposition 3.1
If L(E/K, 1) is non-zero, then the Λ-corank of E(K∞)⊗Qp/Zp is ≥ 1. In particular,

the Λ-corank of Selp∞(E/K∞) is ≥ 1.

Some preliminary results are needed. Recall the integer n0 defined in the previous
section. The field K∞ is contained in the union of all the ring class fields of K
of p-power conductor. More precisely, for n > n0 let Hn be the ring class field of
conductor pn+1−n0 . Thus, Hn is an extension of the Hilbert class field H of degree
en := pn−n0(p+1)/u, where u is one half the order of the group of units of K. The
field Hn is the smallest ring class field containing Kn.

For n > n0, a Heegner point construction (which is described in [BD1], sec. 2.5)
defines a collection of points βn ∈ E(Hn), satisfying the compatibility relations

TraceHn+1/Hn
βn+1 = βn, TraceHn/Hβn = 0.

Set αn := TraceHn/Kn
βn ∈ E(Kn). Thus,

TraceKn+1/Kn
αn+1 = αn, TraceKn/Kn0

αn = 0.

Theorem 3.2
If L(E/K, 1) is non-zero, then there is an integer n1 > n0 such that αn has infinite

order for all n ≥ n1.

Proof. Let Ψn denote the group of connected components of E over Hn ⊗Qp. The
group Ψn is a Gal(H/K)-module, isomorphic to (Z/cpen)[Gal(H/K)]. Write β̄n,
resp. ᾱn for the natural image of βn in Ψn, resp. of αn in Φn. Moreover, set

β̄1

n := TraceH/K β̄n, ᾱ1

n := TraceKn0
/K ᾱn.

The operator TraceHn/Kn
induces a surjective map tHn/Kn

: Ψn → Φn. Note that

tHn/Kn
β̄1

n = ᾱ1

n.

Theorem A of [BD2] relates the elements β̄1

n to the special value L(E/K, 1). In
particular, since L(E/K, 1) is non-zero, it implies that the order of β̄1

n tends to
infinity with n. The same property holds for the order of ᾱ1

n, since the kernel of
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tHn/Kn
is bounded independently of n. This shows that either the points αn have

infinite order for n sufficiently large, or the αn are a collection of torsion points of
unbounded order. But the second possibility is ruled out by lemma 2.4.

Corollary 3.3
The Mordell-Weil group E(K∞) has infinite rank over Z.

Proof. Suppose instead that E(K∞) has finite rank. Since E(K∞)tors is finite by
lemma 2.4, it follows that E(K∞) is finitely generated. Thus, there is a positive
integer n2 such that E(K∞) = E(Kn2

), and such that the Heegner point αn has
infinite order for all n ≥ n2. By the compatibility of the Heegner points under
traces, one obtains that αn2

= pn−n2αn for all n ≥ n2. But the point αn2
has

infinite order, and therefore it cannot be infinitely divisible in E(Kn2
).

Proof of Proposition 3.1

By corollary 3.3, E(K∞) ⊗ Qp/Zp has infinite Zp-corank. On the other hand, a
cotorsion Λ-module has finite Zp-corank, by the structure theory of discrete Λ-
modules ([M], ch. 1). This completes the proof of proposition 3.1, and of theorem
1.1.

The next result gives information on the growth of the Mordell-Weil groups E(Kn).

Proposition 3.4
If L(E/K, 1) is non-zero, then there is a sequence of integers ιn having absolute

value bounded independently of n such that

rankZE(Kn) = pn + ιn.

Proposition 3.4 follows from theorem 1.1 and theorem 3.2. More precisely, theorem
1.1 implies that rankZE(Kn) ≤ pn + ιn, for a bounded sequence of integers ιn. By
theorem 3.2, the Heegner points αn yield a norm-compatible sequence of points of
infinite order. The opposite inequality follows from the structure of the modules
of universal norms over the layers of K∞. See [B], ch. 2 and 3. The details of the
proof are omitted.

Remark 3.5
1. With the other assumptions on E, K and p as in the rest of the paper, now

assume that L(E/K, s) vanishes to even order at s = 1 and that L(E/K, 1) = 0.
The first part of remark 1.2 suggests that in this setting Selp∞(E/K∞) still has
Λ-corank equal to 1. Moreover, the Heegner point construction carries over, and
for n > n0 provides a norm-compatible collection of points αn ∈ E(Kn). A natural
generalization (not yet proved) of the Gross-Zagier formula [GZ] to the derivatives
L′(E/K, χ, 1) for ramified characters χ of Γ leads one to expect that again the point
αn has infinite order for n sufficiently large. (However, this cannot be shown by
mapping αn to the group of connected components Φn as in the proof of theorem
3.2, since L(E/K, 1) is zero.) In the remainder of this remark, assume that αn has
infinite order for n large enough. The proofs of proposition 3.1 and of corollary
3.3 show that the Λ-corank of Selp∞(E/K∞) is ≥ 1. In order to show the opposite


