Non-triviality of families of Heegner points and ranks of Selmer groups over anticyclotomic towers

Massimo Bertolini* Henri Darmon**

1 The result

Let E/\mathbb{Q} be a modular elliptic curve of conductor N, and let K be an imaginary quadratic field of discriminant prime to N. Assume that E is semistable at all the prime divisors of N which are inert in K, and that the Hasse-Weil L-function L(E/K, s) vanishes to even order at s = 1. Since the sign of the functional equation of L(E/K, s) is $-\epsilon(N)$, where ϵ is the Dirichlet character attached to K (see [GZ], p. 71), it follows that the number of primes dividing N and inert in K is odd. Fix such a prime, say p, throughout the paper.

Let K_{∞} be the anticyclotomic \mathbb{Z}_p -extension of K, and let $\Gamma \simeq \mathbb{Z}_p$ be its Galois group over K. Write Λ for the Iwasawa algebra $\mathbb{Z}_p[\![\Gamma]\!]$. The field K_{∞} is a Galois extension of \mathbb{Q} , and the generator τ of $\operatorname{Gal}(K/\mathbb{Q})$ acts on Γ by the rule $\tau\gamma\tau = \gamma^{-1}$ for all $\gamma \in \Gamma$. This property characterizes K_{∞} among the \mathbb{Z}_p -extensions of K. Denote by $\operatorname{Sel}_{p^{\infty}}(E/K_{\infty})$ the p-primary Selmer group of E over K_{∞} . It is a cofinitely generated Λ -module (i.e., its Pontryagin dual is a finitely generated Λ -module). It sits in the descent exact sequence

$$0 \to E(K_{\infty}) \otimes \mathbb{Q}_p / \mathbb{Z}_p \to \operatorname{Sel}_{p^{\infty}}(E/K_{\infty}) \to \operatorname{III}(E/K_{\infty})_{p^{\infty}} \to 0,$$

where $\operatorname{III}(E/K_{\infty})$ denotes the Shafarevich-Tate group of E over K_{∞} .

This note combines the results of [BD2] with techniques of Iwasawa theory to prove the following theorem.

Theorem 1.1

If L(E/K, 1) is non-zero, then the Λ -corank of $\operatorname{Sel}_{p^{\infty}}(E/K_{\infty})$ is equal to 1. More precisely, $E(K_{\infty}) \otimes \mathbb{Q}_p/\mathbb{Z}_p$ has Λ -corank equal to 1, and $\operatorname{III}(E/K_{\infty})_{p^{\infty}}$ is a cotorsion Λ -module.

Remark 1.2

1. If $\chi : \Gamma \to \mathbb{C}^{\times}$ is a complex character of finite order which is ramified at p, the sign of the functional equation of $L(E/K, \chi, s)$ is $-\epsilon(N/p) = -1$. One expects that $L'(E/K, \chi, s)$ is non-zero for almost all characters χ as above. Assuming this, theorem 1.1 is predicted by the Birch and Swinnerton-Dyer conjecture applied to the finite layers of the extension K_{∞} .

2. As explained in section 3, the proof of theorem 1.1 is achieved by showing along the way a non-triviality result for the family of Heegner points defined over K_{∞} . See theorem 3.2 for the precise statement. The proof of theorem 3.2 rests on one of the main results of [BD2].

^{*}Partially supported by grants from GNSAGA (CNR), MURST, and the European Community. **Partially supported by grants from FCAR, NSERC, and by an Alfred P. Sloan research award.

2 An upper bound for the corank of $\mathrm{Sel}_{p^{\infty}}(\mathrm{E}/\mathrm{K}_{\infty})$

This section is devoted to the proof of the following:

Proposition 2.1

If L(E/K, 1) is non-zero, then the Λ -corank of $\operatorname{Sel}_{p^{\infty}}(E/K_{\infty})$ is ≤ 1 .

Proposition 2.1 is a consequence of the next two propositions.

Proposition 2.2

If L(E/K, 1) is non-zero, then $\operatorname{corank}_{\mathbb{Z}_p} \operatorname{Sel}_{p^{\infty}}(E/K) = 0$.

Proof. If L(E/K, 1) is non-zero, a theorem of Kolyvagin (see [K], Theorem A) shows that E(K) and the Shafarevich-Tate group $\operatorname{III}(E/K)$ of E over K are finite. In particular, the \mathbb{Z}_p -corank of $\operatorname{Sel}_{p^{\infty}}(E/K)$ is zero.

The next proposition does not depend on the assumption that L(E/K, 1) is non-zero.

Proposition 2.3

 $\operatorname{corank}_{\mathbb{Z}_p}\operatorname{Sel}_{p^{\infty}}(E/K_{\infty})^{\Gamma} \leq \operatorname{corank}_{\mathbb{Z}_p}\operatorname{Sel}_{p^{\infty}}(E/K) + 1.$

Proof of Proposition 2.1

The structure theory of discrete Λ -modules shows that

$$\operatorname{corank}_{\Lambda}\operatorname{Sel}_{p^{\infty}}(E/K_{\infty}) \leq \operatorname{corank}_{\mathbb{Z}_p}\operatorname{Sel}_{p^{\infty}}(E/K_{\infty})^{\Gamma}.$$

(See [M], ch. 1, or also [L], ch. 5, sec. 3, for details.) But the propositions 2.2 and 2.3 imply that the \mathbb{Z}_p -corank of $\operatorname{Sel}_{p^{\infty}}(E/K_{\infty})^{\Gamma}$ is ≤ 1 .

It remains to prove proposition 2.3. Write K_n for the subfield of K_{∞} having degree p^n over K, and G_n for the Galois group $\operatorname{Gal}(K_n/K)$. Let K_{n_0} , with $n_0 \geq 0$ be the maximal unramified extension of K contained in K_{∞} . Thus, $K_{n_0} = K_{\infty} \cap H$, where H is the Hilbert class field of K. Note that p is inert in K, totally split in the extension K_{n_0}/K and, for $n > n_0$, all the primes of K_{n_0} above p are totally ramified in K_n/K_{n_0} . Denote by $q \in p\mathbb{Z}_p$ Tate's p-adic period of E, and by Φ_n the group of connected components of E over $K_n \otimes \mathbb{Q}_p$. By Tate's theory of p-adic uniformization, the group Φ_n is a G_{n_0} -module, isomorphic to $(\mathbb{Z}/c_p p^{n-n_0}\mathbb{Z})[G_{n_0}]$, where $c_p := \operatorname{ord}_p(q)$.

Lemma 2.4

The torsion subgroup $E(K_{\infty})_{\text{tors}}$ of $E(K_{\infty})$ is finite.

Proof. Let q_1 and q_2 be primes of good reduction for E which are inert in K. Then q_1 and q_2 are totally split in K_{∞}/K , and $E(K_{\infty})_{\text{tors}}$ injects in the finite group $E(\mathbb{F}_{q_1^2}) \oplus E(\mathbb{F}_{q_2^2})$.

Proof of Proposition 2.3

The proof is an application of the inflation-restriction sequence. First, note the exact sequence

$$H^1(\Gamma, E_{p^{\infty}}(K_{\infty})) \to H^1(K, E_{p^{\infty}}) \to H^1(K_{\infty}, E_{p^{\infty}})^{\Gamma} \to H^2(\Gamma, E_{p^{\infty}}(K_{\infty})).$$

$$H^1(\Gamma, E(K_{\infty,\ell}))_{p^{\infty}} \to H^1(K_{\ell}, E)_{p^{\infty}} \to H^1(K_{\infty,\ell}, E)_{p^{\infty}}^{\Gamma},$$

where K_{ℓ} denotes $K \otimes \mathbb{Q}_{\ell}$ and $K_{\infty,\ell}$ denotes $\bigcup_n (K_n \otimes \mathbb{Q}_{\ell})$. If $\ell \neq p$, the cohomology group $H^1(\Gamma, E(K_{\infty,\ell}))$ is finite, since K_{∞} is unramified outside p. Moreover, if $\ell \nmid N$, $H^1(\Gamma, E(K_{\infty,\ell}))$ is zero, since E has good reduction at ℓ . (See [Mi], ch. 1.) The theory of p-adic uniformization can be used to prove that the group $H^1(\Gamma, E(K_{\infty,p}))_{p^{\infty}}$ has \mathbb{Z}_p -corank ≤ 1 . One starts from the exact sequence of Γ -modules

$$0 \to Q_E \to K_{\infty,p}^{\times} \to E(K_{\infty,p}) \to 0,$$

where Q_E denotes the lattice of *p*-adic periods of *E*. The action of Γ on Q_E factors through G_{n_0} , and Q_E is isomorphic to $\mathbb{Z}[G_{n_0}]$. Taking cohomology of the above sequence shows that $H^1(\Gamma, E(K_{\infty,p}))$ injects in $H^2(\Gamma, Q_E)$. Combining the exact sequence in cohomology induced by

$$0 \to Q_E \to Q_E \otimes \mathbb{Q} \to Q_E \otimes \mathbb{Q}/\mathbb{Z} \to 0$$

with an inflation-restriction argument identifies $H^2(\Gamma, Q_E)$ with the group of homomorphisms $\operatorname{Hom}(\operatorname{Gal}(K_{\infty}/K_{n_0}), (Q_E \otimes \mathbb{Q}/\mathbb{Z})^{G_{n_0}})$, which is isomorphic to $\mathbb{Q}_p/\mathbb{Z}_p$. Proposition 2.3 now follows from the snake lemma applied to the commutative diagram

where the vertical maps are restriction maps.

Remark 2.5

1. The \mathbb{Z}_p -corank of the group $H^1(\Gamma, E(K_{\infty,p}))_{p^{\infty}}$ considered in the proof of proposition 2.3 is in fact equal to 1. To see this, note the exact sequence

$$0 \to H^1(\Gamma, E(K_{\infty, p})) \to H^2(\Gamma, Q_E) \to H^2(\Gamma, K_{\infty, p}^{\times}) \to H^2(\Gamma, E(K_{\infty, p})) \to 0.$$

The "Brauer group" $H^2(\Gamma, K_{\infty,p}^{\times})$ has \mathbb{Z}_p -corank equal to 1, and it was already observed that $H^2(\Gamma, Q_E)$ has \mathbb{Z}_p -corank equal to 1. Let $\hat{E}(K_p)$ be the *p*-adic completion of $E(K_p)$, and let $\hat{U}E(K_p)$ be the submodule of universal norms along the local extension $K_{\infty,p}/K_p$. The \mathbb{Z}_p -corank of $H^2(\Gamma, E(K_{\infty,p}))$ is equal to the \mathbb{Z}_p rank of $\hat{E}(K_p)/\hat{U}E(K_p)$. The theory of *p*-adic uniformization, combined with class field theory and the fact that the Tate period of E/K_p is a universal norm from $K_{\infty,p}^{\times}$, shows that $\hat{E}(K_p)/\hat{U}E(K_p)$ has \mathbb{Z}_p -rank equal to 1. The claim follows.

2. Recall that proposition 2.2 is a special case of a theorem of Kolyvagin [K]. The condition $L(E/K, 1) \neq 0$ is equivalent to $L(E/\mathbb{Q}, 1) \neq 0$ and $L(E'/\mathbb{Q}, 1) \neq 0$, where E' denotes the quadratic twist of E by K. The opening step in Kolyvagin's

proof consists in choosing auxiliary imaginary quadratic fields F and F' such that the first derivatives L'(E/F, 1) and L'(E/F', 1) are both non-zero, and such that the primes dividing the conductors of E and E' are split in F and F', respectively. The proof is then achieved by proving the finiteness of the Selmer groups of E/\mathbb{Q} and E'/\mathbb{Q} one at a time, and deducing the finiteness of the Selmer group of E/K. A simpler approach to the proof of proposition 2.2 rests on the methods of [BD2], which allow to bound directly the *p*-primary Selmer group of E/K.

3 A lower bound for the corank of $Sel_{p^{\infty}}(E/K_{\infty})$

Theorem 1.1 is a consequence of the next proposition, combined with proposition 2.1.

Proposition 3.1

If L(E/K, 1) is non-zero, then the Λ -corank of $E(K_{\infty}) \otimes \mathbb{Q}_p/\mathbb{Z}_p$ is ≥ 1 . In particular, the Λ -corank of $\operatorname{Sel}_{p^{\infty}}(E/K_{\infty})$ is ≥ 1 .

Some preliminary results are needed. Recall the integer n_0 defined in the previous section. The field K_{∞} is contained in the union of all the ring class fields of K of p-power conductor. More precisely, for $n > n_0$ let H_n be the ring class field of conductor p^{n+1-n_0} . Thus, H_n is an extension of the Hilbert class field H of degree $e_n := p^{n-n_0}(p+1)/u$, where u is one half the order of the group of units of K. The field H_n is the smallest ring class field containing K_n .

For $n > n_0$, a Heegner point construction (which is described in [BD1], sec. 2.5) defines a collection of points $\beta_n \in E(H_n)$, satisfying the compatibility relations

 $\operatorname{Trace}_{H_{n+1}/H_n}\beta_{n+1} = \beta_n, \quad \operatorname{Trace}_{H_n/H}\beta_n = 0.$

Set $\alpha_n := \operatorname{Trace}_{H_n/K_n} \beta_n \in E(K_n)$. Thus,

$$\operatorname{Trace}_{K_{n+1}/K_n} \alpha_{n+1} = \alpha_n, \quad \operatorname{Trace}_{K_n/K_{n_0}} \alpha_n = 0.$$

Theorem 3.2

If L(E/K, 1) is non-zero, then there is an integer $n_1 > n_0$ such that α_n has infinite order for all $n \ge n_1$.

Proof. Let Ψ_n denote the group of connected components of E over $H_n \otimes \mathbb{Q}_p$. The group Ψ_n is a $\operatorname{Gal}(H/K)$ -module, isomorphic to $(\mathbb{Z}/c_p e_n)[\operatorname{Gal}(H/K)]$. Write $\bar{\beta}_n$, resp. $\bar{\alpha}_n$ for the natural image of β_n in Ψ_n , resp. of α_n in Φ_n . Moreover, set

$$\bar{\beta}_n^{\mathbf{1}} := \operatorname{Trace}_{H/K} \bar{\beta}_n, \qquad \bar{\alpha}_n^{\mathbf{1}} := \operatorname{Trace}_{K_{n_0}/K} \bar{\alpha}_n$$

The operator $\operatorname{Trace}_{H_n/K_n}$ induces a surjective map $t_{H_n/K_n}: \Psi_n \to \Phi_n$. Note that

$$t_{H_n/K_n}\bar{\beta}_n^1 = \bar{\alpha}_n^1.$$

Theorem A of [BD2] relates the elements $\bar{\beta}_n^1$ to the special value L(E/K, 1). In particular, since L(E/K, 1) is non-zero, it implies that the order of $\bar{\beta}_n^1$ tends to infinity with n. The same property holds for the order of $\bar{\alpha}_n^1$, since the kernel of

 t_{H_n/K_n} is bounded independently of n. This shows that either the points α_n have infinite order for n sufficiently large, or the α_n are a collection of torsion points of unbounded order. But the second possibility is ruled out by lemma 2.4.

Corollary 3.3

The Mordell-Weil group $E(K_{\infty})$ has infinite rank over \mathbb{Z} .

Proof. Suppose instead that $E(K_{\infty})$ has finite rank. Since $E(K_{\infty})_{\text{tors}}$ is finite by lemma 2.4, it follows that $E(K_{\infty})$ is finitely generated. Thus, there is a positive integer n_2 such that $E(K_{\infty}) = E(K_{n_2})$, and such that the Heegner point α_n has infinite order for all $n \ge n_2$. By the compatibility of the Heegner points under traces, one obtains that $\alpha_{n_2} = p^{n-n_2}\alpha_n$ for all $n \ge n_2$. But the point α_{n_2} has infinite order, and therefore it cannot be infinitely divisible in $E(K_{n_2})$.

Proof of Proposition 3.1

By corollary 3.3, $E(K_{\infty}) \otimes \mathbb{Q}_p/\mathbb{Z}_p$ has infinite \mathbb{Z}_p -corank. On the other hand, a cotorsion Λ -module has finite \mathbb{Z}_p -corank, by the structure theory of discrete Λ -modules ([M], ch. 1). This completes the proof of proposition 3.1, and of theorem 1.1.

The next result gives information on the growth of the Mordell-Weil groups $E(K_n)$.

Proposition 3.4

If L(E/K, 1) is non-zero, then there is a sequence of integers ι_n having absolute value bounded independently of n such that

$$\operatorname{rank}_{\mathbb{Z}} E(K_n) = p^n + \iota_n.$$

Proposition 3.4 follows from theorem 1.1 and theorem 3.2. More precisely, theorem 1.1 implies that $\operatorname{rank}_{\mathbb{Z}} E(K_n) \leq p^n + \iota_n$, for a bounded sequence of integers ι_n . By theorem 3.2, the Heegner points α_n yield a norm-compatible sequence of points of infinite order. The opposite inequality follows from the structure of the modules of universal norms over the layers of K_{∞} . See [B], ch. 2 and 3. The details of the proof are omitted.

Remark 3.5

1. With the other assumptions on E, K and p as in the rest of the paper, now assume that L(E/K, s) vanishes to even order at s = 1 and that L(E/K, 1) = 0. The first part of remark 1.2 suggests that in this setting $\operatorname{Sel}_{p^{\infty}}(E/K_{\infty})$ still has Λ -corank equal to 1. Moreover, the Heegner point construction carries over, and for $n > n_0$ provides a norm-compatible collection of points $\alpha_n \in E(K_n)$. A natural generalization (not yet proved) of the Gross-Zagier formula [GZ] to the derivatives $L'(E/K, \chi, 1)$ for ramified characters χ of Γ leads one to expect that again the point α_n has infinite order for n sufficiently large. (However, this cannot be shown by mapping α_n to the group of connected components Φ_n as in the proof of theorem 3.2, since L(E/K, 1) is zero.) In the remainder of this remark, assume that α_n has infinite order for n large enough. The proofs of proposition 3.1 and of corollary 3.3 show that the Λ -corank of $\operatorname{Sel}_{p^{\infty}}(E/K_{\infty})$ is ≥ 1 . In order to show the opposite