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Introduction

The motivation (or perhaps the excuse?) for this paper is the study of the
following variants of Fermat’s equation xn + yn = zn:

xn + yn = 2zn, (1)

xn + yn = z2, (2)

xn + yn = z3. (3)

An integer solution (x, y, z) to one of the above equations is called primitive
if gcd(x, y, z) = 1. The equations (2) and (3) typically have infinitely many
non-primitive solutions. For example, if n is odd, and a and b are any two
integers with an + bn = c, then

(ac)n + (bc)n = (c
n+1

2 )2,

giving an abundant but rather uninteresting supply of solutions to equation
(2). It is natural to restrict ones attention to the primitive solutions, which
is what we will do from now on.

Equations (1), (2) and (3) also have certain obvious “trivial” solutions: a
solution is called trivial if xyz = 0 or ±1, and is called non-trivial otherwise.

The work of Hellegouarch, Frey [12], Serre [27], and Ribet [24] relating
Fermat’s Last Theorem to the Shimura-Taniyama conjecture (and the precise
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form of this conjecture given by Weil) can also be applied to other ternary
equations analogous to Fermat’s equation. (See, for example, [12], [19], or
sec. 4.3 of [27].) The idea of applying modular form techniques to equations
(1), (2) and (3) appeared in [3] for equations (2) and (3), and then in [25]
for equation (1). As a consequence of the results in [25] and [3], one has:

Let n = p > 13 be prime. Then:

1. Equation (1) has no non-trivial solution if n ≡ 1 (mod 4).

2. Equation (2) has no non-trivial primitive solution if n ≡ 1 (mod 4).

3. Assume that every elliptic curve over Q is modular. Then equation (3)
has no non-trivial primitive solution if n ≡ 1 (mod 3).

The goal of this article is to dispose of the case of general n, and, in
particular, of primes which are congruent to −1 mod 4 for equations (1) and
(2), and primes which are congruent to −1 mod 3 for equation (3). Our main
result is:

Main Theorem Let the exponent n be an arbitrary positive integer.

1. The equation xn + yn = 2zn has no non-trivial primitive solution when
n ≥ 3.

2. The equation xn + yn = z2 has no non-trivial primitive solution when
n ≥ 4.

3. Assume that every elliptic curve over Q is modular. Then xn +yn = z3

has no non-trivial primitive solution when n ≥ 3.

The work of Dénes [7] and Poonen [22] establishes the main theorem when the
exponent n is a small integer. (See the discussion below.) Hence it is enough
to deal with the case where the exponent n is a prime p ≥ 7. In essence, the
proof of the main theorem then follows the same general strategy as in the
proof of Fermat’s Last Theorem. It relies on a variant of the key idea of Frey
and Serre, together with the “lowering the level” result of Ribet which was
used to show that the Shimura-Taniyama conjecture implies Fermat’s Last
Theorem. Enough of the Shimura-Taniyama conjecture is now known, thanks
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to Wiles’ breakthrough in this direction, to make our results on equation (1)
and (2) (but not equation (3)) independent of any conjecture.

Central to the study of Fermat’s equation is Mazur’s theorem that an
elliptic curve over Q cannot have a rational point of order p if p > 7. Our
work requires an additional result (theorem 8.1) of a similar nature concern-
ing elliptic curves whose associated mod p Galois representation maps to
the normalizer of a nonsplit Cartan subgroup of GL2(Fp). This theorem,
whose statement was suggested by Serre’s problem (see [26], 4.3), may be
of some independent interest. Its proof borrows heavily from the techniques
of Mazur [17] [18]. It also exploits (in a manner similar to [20]) a finite-
ness criterion (predicted by the conjecture of Birch and Swinnerton-Dyer)
for the Mordell-Weil groups of modular jacobians due to Gross-Zagier and
Kolyvagin-Logachev.
We now collect a few miscellaneous comments on equations (1), (2), and (3).

The equation xn + yn = 2zn:
Equation (1) was studied in 1952 by Dénes [7], who conjectured part 1 of
our Main Theorem, and proved it for 2 < n < 31. He was motivated by the
problem of finding perfect powers in arithmetic progressions: for if (x, y, z) is
a solution to equation (1), then xn, zn, yn forms an arithmetic progression.
Part 1 of the main theorem implies that there can be no such three-term
arithmetic progression when n ≥ 3.

The study of equation (1) was later taken up by Ribet in [25], exploiting
the link between Fermat’s Last Theorem and the Shimura-Taniyama conjec-
ture. Ribet was able to show that equation (1) has no solutions when n is
divisible by a prime which is congruent to 1 mod 4, or when xyz is even. In
the course of proving the Main Theorem, we will retrace the steps in Ribet’s
argument.

The reader is referred to [25] for a more thorough historical discussion of
equation (1). (See also [4] for a study of the related equation x4 − y4 = zn.)

The equation xn + yn = z2

When n ≤ 3, equation (2) has infinitely many primitive solutions. For n = 2,
these solutions correspond to primitive pythagorean triples. For n = 3, an
infinite family of primitive solutions is given by the equations:

x = u(u3 − 8v3), y = 4v(u3 + v3), z = (u6 + 20u3v3 − 8v6),

3 6 |u + v, 2 6 |u, gcd(u, v) = 1.
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(For the general solution, see for example [5], sec. 7.2.)
The smallest case covered by part 2 of the Main Theorem is the case n = 4.

This was established by Fermat, in the course of proving his Last Theorem
for exponent four. Perhaps the best-known application of the method of
descent, Fermat’s proof involved the elliptic curve y2 = x3− x with complex
multiplication by Q(i).

In [22], Poonen shows that equation (2) has no non-trivial primitive solu-
tion when n = 5, 6, and 9, using classical descent arguments. Thanks to this
work, it is enough to prove part 2 of the main theorem when the exponent n
is a prime p ≥ 7.

The equation xn + yn = z3

The equation xn + yn = z3 has infinitely many primitive solutions if n = 2,
for example:

x = u3 + 3uv2, y = v3 + 3vu2, z = u2 + v2, gcd(u, v) = 1.

The smallest case covered by part 3 of the Main Theorem is the case n = 3.
This is just Fermat’s Last Theorem with exponent 3, which was proved by
Euler by elementary methods. Euler’s descent involves the elliptic curve
x3 + y3 = 1 with complex multiplication by Q(e2πi/3).

The case n = 4 was handled by Lucas (cf. [10], p. 630) and the case n = 5
was disposed of by Poonen [22], through a descent on the jacobian of a curve
of genus 3. Hence we are also reduced to proving part 3 of the main theorem
in the case where the exponent n is a prime p ≥ 7.

In this case, our proof of part 3 of the Main Theorem still requires the
hypothesis that the elliptic curves involved in the study of the equation xn +
yn = z3 are modular. This requirement is not a consequence of the results of
Wiles, not even of the strengthenings due to Conrad, Diamond, and Taylor,
since the conductor of these elliptic curves is divisible by 27. The problem
of showing that a cube cannot be expressed as a sum of two relatively prime
nth powers (n ≥ 3) gives a Diophantine incentive for proving the entire
Shimura-Taniyama conjecture...

Acknowledgements: The authors would like to thank D. Abramovich,
I. Chen, B. Edixhoven, and K. Ribet for many useful discussions related
to this work.
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1 Frey Curves

We will assume in this section that the exponent n arising in equations (1),
(2), and (3) is a prime p ≥ 7.

Let (a, b, c) be a non-trivial primitive solution to equation (1), (2), or (3).
Following [25] and [3], we associate to the solution (a, b, c) a Frey curve E as
follows:

Equation (1):
If (a, b, c) is a primitive solution to equation (1), then a and b are odd. By
multiplying (a, b, c) by −1 if necessary, assume that a ≡ −1 (mod 4). Let E
be the elliptic curve given by the Weierstrass equation:

Y 2 = X(X − ap)(X − 2cp). (4)

Equation (2):
If ab is even, we assume without loss of generality that a is even and that
c ≡ 1 (mod 4). If ab is odd, we assume without loss of generality that a ≡ −1
(mod 4). This can always be done, by interchanging a and b and replacing c
by −c if necessary.

Let E be the elliptic curve given by the Weierstrass equation:

Y 2 + XY = X3 +
(c− 1)

4
X2 +

ap

26
X if ab is even, (5)

Y 2 = X3 + 2cX2 + apX if ab is odd. (6)

Equation (3)
Define the elliptic curve E by the following Weierstrass equation, when c =
2c0 is even:

Y 2 + bpY = X3 − 3(c3
0 + bp)c0X − c3

0(2c
3
0 − 5bp). (7)

When ab is even, assume without loss of generality that a is odd and b is
even, and define E by the equation:

Y 2 + cXY = X3 − c2X2 − 3

2
cbpX + bp(ap +

5

4
bp). (8)

Arithmetic invariants of E
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Let ∆ be the discriminant of the Weierstrass equation defining E. One finds,
for equation (1),

∆ = 26(abc)2p;

for equation (2),

∆ =
1

212
(a2b)p if 2|ab, ∆ = 26(a2b)p if 2 6 |ab;

and for equation (3),
∆ = 33(a3b)p.

If M is a positive integer, denote by rad(M) the product of the primes
which divide M .

Proposition 1.1 Let N be the arithmetic conductor of the curve E con-
structed above.

1. For equation (1), N = rad(abc) if abc is even, and N = 25rad(abc) if
abc is odd.

2. For equation (2), N = rad(ab) if ab is even, and N = 25rad(ab) if ab
is odd.

3. For equation (3), N = rad(ab) if 3 divides ab, and N = 33rad(ab) if 3
does not divide ab.

Sketch of Proof: The bad reduction types of the curve E, and the arithmetic
conductor N of E, can be computed using Tate’s algorithm [28]. (We also
used the results of [9] in the case of equations (1) to analyze the bad fiber
at 2 of E; for the case of equations (2) and (3), see also [3], lemmas 2.1 and
3.2.) Note that the condition gcd(a, b, c) = 1 directly implies that the curve
E which arises in equations (1) and (2) (resp. equation (3)) has multiplicative
reduction at all primes except possibly 2 (resp. 3).

Lemma 1.2 The curve E constructed above (from a non-trivial primitive
solution) has at least one odd prime of multiplicative reduction.

Proof: For otherwise, proposition 1.1 implies that abc (resp. ab) is a power
of 2 in the case of equation (1) (resp. (2) and (3)). For equation (1), this
implies directly that (a, b, c) is a trivial solution, contrary to our assumption.
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In the case of equation (2) or (3) one can only conclude that (a, b, c) gives
rise to a solution to the special case of Catalan’s equation: xp ± 1 = z2 or
xp ± 1 = z3 (of a very restricted sort, since x must be a power of 2!). This
equation is proved to have no non-trivial solutions aside from 8 + 1 = 9; cf.
[23], (A6.1) and (A7.3).

Extra level structures
Crucial to our proof is the fact that the curve E is equipped with some
auxiliary level structure, namely, a rational point of order 2 or 3.
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Lemma 1.3 Let E be the Frey curve constructed above.

1. In the case of equation (1), the curve E has all its points of order 2
defined over Q.

2. In the case of equation (2), the curve E has a point of order 2 defined
over Q.

3. In the case of equation (3), the curve E has a rational point (and
therefore a rational subgroup) of order 3.

Proof: Parts 1 and 2 can be seen directly. For part 3, one checks that the
point on E given by the (X, Y ) coordinates:(

3c2

4
,
ap − bp

2

)
,

(
3c2, 4ap

)
in the equations (7) and (8) respectively is of order 3. (We mention in passing
a mistake in the proof of lemma 3.1 of [3]. The point of order 3 on the curve
denoted Ea,b,c has coordinates (x, y) = (3c2, 4b), and in particular it is a
rational point.)

Modularity of E
As in the proof of Fermat’s Last Theorem, the modularity of E plays a key
role in our analysis.

Theorem 1.4 (Wiles, Taylor, Diamond) The curve E associated to a
solution of equation (1) or (2) is modular.

Proof: The curve associated to a solution of equation (1) or (2) is semistable
at 3 and 5, and its modularity follows from Diamond’s extension [8] of the
work of Wiles [30] and Taylor-Wiles [29]. (In the case of equation (1), one
does not need the full power of Diamond’s extension. Since the curve there
is of the form Y 2 = X(X −A)(X + B), its modularity follows more directly
from the results of [30] and [29], as is explained in [9]. For more details, see
the discussion in [25].)

Remark: For equation (3), even Diamond’s results are not enough, since the
curve E has additive reduction at 3: this is why the results on equation (3)
are still conditional.
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2 Galois representations

In this section, as well as in sections 3 and 4, we continue to suppose that
n = p is a prime which is ≥ 7.

We choose, once for all, an isomorphism of Fp-vector spaces between
points of order p of E(Q̄) and F2

p.
Let

ρ : Gal(Q̄/Q) −→ GL2(Fp)

be the mod p Galois representation attached to the Frey curve E constructed
in the previous section. Let N(ρ) be the conductor of ρ in the sense of [27],
i.e, with the factor at p removed.

Lemma 2.1 The conductor N(ρ) takes on the following values for each of
equations (1), (2), and (3).

1. Equation (1): N(ρ) = 2 if abc is even, and N(ρ)|32 if abc is odd.

2. Equation (2): N(ρ) = 2 if ab is even, and N(ρ)|32 if ab is odd.

3. Equation (3): N(ρ) = 3 if 3 divides ab, and N(ρ)|27 if 3 does not divide
ab.

Proof: By proposition 1.1, the curve E is semistable at all primes except
possibly r, where r = 2 in the case of equations (1) and (2), and r = 3
in the case of equation (3). Furthermore, for all primes ` 6= r, one has
ord`(∆min) ≡ 0 (mod p), where ∆min is the discriminant of the minimal
Weierstrass model for E. The result follows directly. (See, for example, [27],
4.1.12.)

Theorem 2.2 The representation ρ is absolutely irreducible.

Proof: When p ≥ 17, this is a direct consequence of corollary 4.4 of Mazur
[18], since the curve E has at least one odd prime of multiplicative reduction
(lemma 1.2). If 7 ≤ p ≤ 13 and ρ is reducible, then the curve E gives rise
(by lemma 1.3) to a rational point on one of the modular curves X0(N) with
N = 14, 22, 26, 21, 33, or 39. These rational points are known to be either
cuspidal, or CM, and cannot correspond to an elliptic curve with non-integral
j-invariant. (This follows from work of Mazur [18], Kubert [16], and Kenku
[14] for the case N = 39.)
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3 Modular forms

From theorems 2.2 and 1.4, it follows that ρ is an absolutely irreducible
modular representation in the case of equations (1) and (2), and that a similar
statement is true for equation (3) if one assumes the Shimura-Taniyama
conjecture. We now invoke the “lowering the level” theorem of [24] which
implies an important part of Serre’s ε-conjecture [27]:

Theorem 3.1 (Ribet) There is a cusp form f mod p of weight 2 and level
N(ρ) which is associated to ρ in the sense that

a`(f) = trace(ρ(Frob`))

for all ` 6 |pN(ρ).

Theorem 3.1 immediately yields the following corollary which was already
established in [25] and [3].

Corollary 3.2 Suppose that n ≥ 7 is prime.

1. There are no non-trivial primitive solutions to equation (1) with 2|abc.

2. There are no non-trivial primitive solutions to equation (2) with 2|ab.

3. Assume the Shimura-Taniyama conjecture. There are no non-trivial
primitive solutions to equation (3) with 3|ab.

Proof: A non-trivial primitive solution of equations (1), (2), or (3) satisfying
the hypothesis of corollary 3.2 would give rise, by lemma 2.1, to a modular
irreducible mod p Galois representation of conductor 2 or 3. By theorem 3.1,
this representation corresponds to a mod p eigenform of weight 2 and level 2
or 3. This is impossible since there are no weight 2 cusp forms of these levels
in characteristic p.

4 Complex multiplication

Pushing our investigation further, we now know that ρ corresponds to a mod
p eigenform of weight 2 and level 32 in the case of equations (1) and (2). In
the case of equation (3), it corresponds to an eigenform of level 27 provided
the curve E is modular.
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The curves X0(32) and X0(27) are both curves of genus 1 with a rational
point, i.e, elliptic curves, and they are given by the equations

X0(32) : Y 2 = X3 −X, X0(27) : Y 2 = X3 + 16.

(Note that these curves are also the Frey curves that are associated to the
trivial solution (1, 1, 1) of equation (1), to the trivial solution (−1, 1, 0) of
equation (2), and to the trivial solution (−1, 1, 0) of equation (3).) It follows
that ρ is isomorphic to the Galois representation given by the action on the
p-division points of the elliptic curve X0(32), in the case of equation (1) and
(2), and of the elliptic curve X0(27), in the case of equation (3). Both of
these curves have complex multiplication: X0(32) by the ring of Gaussian
integers Z[i], and X0(27) by the ring Z[ζ3] where ζ3 is a primitive cube root
of unity.

Remark: The reader will note that the curve Y 2 = X3 −X already appears
(in a much more elementary guise!) in Fermat’s study of the minimal case
n = 4 of equation (2). The curve Y 2 = X3 +16 plays a similar role in Euler’s
study of the minimal case n = 3 of equation (3).

We will now apply the theory of complex multiplication to get a precise
understanding of the Galois representation ρ, and in particular of its image.
Let G be the image of ρ in GL2(Fp).

Proposition 4.1 1. In the case of equations (1) and (2), the group G is
the normalizer of a Cartan subgroup of GL2(Fp). This Cartan subgroup
is split if p ≡ 1 (mod 4), and is non-split if p ≡ −1 (mod 4). Moreover,
the field cut out by ρ is an abelian extension of Q(i).

2. Assume the Shimura-Taniyama conjecture. In the case of equation (3),
the group G is the normalizer of a Cartan subgroup of GL2(Fp). This
Cartan subgroup is split if p ≡ 1 (mod 3), and is non-split if p ≡ −1
(mod 3). Moreover, the field cut out by ρ is an abelian extension of
Q(ζ3).

The reader will note that a proof of the following proposition already appears,
for the most part, in [3] and [25], where it is assumed that the exponent p is
≥ 17. We repeat the entire proof here for the sake of completeness, and also
to indicate how to handle the small primes p = 7 and 13.
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Proposition 4.2 Let n = p ≥ 7 be prime.

1. Equation (1) has no non-trivial proper solution if p ≡ 1 (mod 4).

2. Equation (2) has no non-trivial proper solution if p ≡ 1 (mod 4).

3. Equation (3) has no non-trivial proper solution if p ≡ 1 (mod 3), as-
suming the Shimura-Taniyama conjecture.

Proof: If p satisfies the congruences in proposition 4.2, then proposition 4.1
shows that the curve E has a pair of subgroups of order p which are defined
over Q(i) or Q(ζ3), and are interchanged by Gal(Q̄/Q), so that the set of
these two subgroups is defined over Q. Hence E gives rise to a rational point
on the curve denoted by Xsplit(p) in [21] (and Xs(p) below). Suppose first
that p ≥ 17. Then by prop. 3.1. of [21], E has potentially good reduction at
all primes ` 6= 2, contradicting lemma 1.2.

To complete the proof of parts 1 and 2, it remains to dispose of the
case n = 13 of equations (1) and (2). One can proceed in various ad hoc
ways. For example, one can note that the curve E gives rise to a point on
X0(26) which is defined over Q(i). The Jacobian J0(26) is a two-dimensional
abelian variety which is isogenous to the product of two elliptic curves of rank
0, denoted 26A and 26B in Cremona’s tables [2]. Their twists over Q(i) are
curves of conductor 208 = 2413, denoted 208A and 208D. One checks again
from Cremona’s tables that the curve 208A has rank 0. Hence J0(26) has a
non-trivial quotient, isogenous to 26A, which is of rank 0 over Q(i). Now,
corollary 4.3. of [18] implies that abc = ±1 in the case of equation (1), and
that ab = ±1, in the case of equation (2) (where we have also used corollary
3.2).

To finish the proof of part 3, one makes a similar argument to handle the
exponents n = 7 and n = 13: the key points that need to be checked are that
the modular Jacobians J0(21) and J0(39) have quotients of rank 0 over the
field Q(

√
−3). For example, the Jacobian J0(21) is isogenous to the elliptic

curve denoted 21A in Cremona’s tables, which has rank 0 and whose twist
over Q(

√
−3) (the curve 63A) also has rank 0. In the case of the variety

J0(39), the quotient which is of rank 0 over Q(
√
−3) is of dimension two and

hence is not listed in the tables of Cremona. But its existence follows, for
example, from proposition 2.1 of [13].
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Thanks to proposition 4.2, it now remains to prove the main theorem in
the case where the exponent p ≥ 7 is in addition ≡ −1 (mod 4) in the case
of equations (1) and (2), and is ≡ −1 (mod 3) in the case of equation (3).
We shall assume that p satisfies these congruences for the rest of section 4.

Recall that G denotes the image of Gal(Q̄/Q) in GL2(Fp) under ρ. Let
Dp be a decomposition group at p, and let Gp be its image under ρ.

Proposition 4.3 Gp = G, and in particular Gp is the normalizer of a non-
split Cartan subgroup of GL2(Fp).

Proof: This follows directly from the theory of complex multiplication: the
field cut out by ρ is an abelian extension of the quadratic imaginary field
K = Q(i) or Q(ζ3) of degree (p − 1)(p + 1) which is totally ramified at the
unique prime of K above p.

Corollary 4.4 The prime p does not divide abc in the case of equation (1),
and does not divide ab in the case of equations (2) and (3).

Proof: Otherwise, E would have multiplicative reduction at p. The group
Gp would be contained in a Borel subgroup of GL2(Fp) by Tate’s analytic
theory, contradicting proposition 4.3.

5 The modular curve Xns
0 (r, p)

Let Kns be the normalizer of a nonsplit Cartan subgroup of GL2(Fp). Let
X(p) be the modular curve classifying elliptic curves with full level p structure
equipped with its action of the group GL2(Fp). Let Xns(p) = X(p)/Kns, and
define (for r = 2 or 3)

Xns(r, p) := Xns(p)×X(1) X(r), Xns
0 (r, p) := Xns(p)×X(1) X0(r).

By combining the “mod p” information given by proposition 4.1 with the
“mod r” information (r = 2 or 3) of lemma 1.3, we find that the Frey curve
E constructed in section 1 corresponds to a rational point on the following
modular curve:

Equation (1): X = Xns(2, p).
Equation (2): X = Xns

0 (2, p).
Equation (3): X = Xns

0 (3, p).
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Let x ∈ X(Q) be the rational point associated to the curve E, and let
x be its natural image in the curve X = X(2), X0(2), or X0(3) obtained by
“forgetting the level p structure”.

The curve X
The curve X(2) has canonical smooth proper model over Spec(Z[1/2]),

and is identified with the classical λ-line of Legendre. It has three cusps
which correspond to the values λ = 0, 1, and ∞. These cusps are permuted
transitively by the Galois group Gal(X(2)/X(1)) ' S3, and are denoted 0, 1
and ∞.

The curve X0(r) has a smooth proper model over Spec(Z[1/r]) which
is isomorphic to the projective line when r = 2 or 3. The curve X0(r)
(with r any prime) has two cusps, which are denoted 0 and ∞ because they
correspond to the images of τ = 0 and τ = ∞ on the upper half plane.

The curve X(2) has three distinct projections π0, π1, and π∞ to X0(2)
given by “forgetting” various parts of the level 2 structure. The map πj is
characterized by the fact that πj(j) = ∞.

Given a rational prime ` which is not equal to r, and two sections P and
Q of X(2) or of X0(r) over Spec(Z[1/r]), we let (P · Q)` denote the usual
arithmetic intersection number. Note that the intersection number (x · ξ)`

is strictly positive, for some cusp ξ of X, if and only if the curve E has
multiplicative reduction at `, i.e., if and only if ` divides abc in the case of
equation (1) or ab in the case of equations (2) and (3).

The curve X:
The genus of the curve X (= Xns(2, p), Xns

0 (2, p) or Xns
0 (3, p)) is indicated

below. (Here, χ2 and χ3 are the primitive Dirichlet characters associated to
Q(i) and Q(ζ3) respectively.)

Xns(2, p) : g =
p2 − 4p + 7

4
;

Xns
0 (2, p) : g =

p2 − 6p + 11 + 2χ2(p)

8
;

Xns
0 (3, p) : g =

p2 − 4p + 8 + χ3(p)

6
.

Note that each of these curves has non-zero genus when p > 3.
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We now give a description of the cusps of X. The map of modular curves
X −→ X is a (non-Galois) covering of degree d = p(p − 1)/2. There are
exactly m = (p − 1)/2 = d/p cusps above each cusp of X. Each of these
maps to X with ramification index equal to p. These m cusps are all defined
over the totally real subfield Q(µp)

+ of Q(µp) and are permuted transitively
by the absolute Galois group of Q. In particular, X has no rational cusps.
We denote the cusps above ξ by ξ1, . . . , ξm.

Specifically, the curve Xns(2, p) has 3m cusps, denoted

01, . . . , 0m, 11, . . . , 1m, ∞1, . . . ,∞m.

The curve Xns
0 (r, p) has 2m cusps, denoted

01, . . . , 0m, ∞1, . . . ,∞m.

6 Connection with the curve X0(rp
2)/wp

Assume for now that p is any odd prime, and that r be an integer which
is not divisible by p. (In all our applications, we will have either r = 2 or
r = 3.) Let J be the Jacobian of X. We write also J = Jns(2, p), Jns

0 (2, p),
and Jns

0 (3, p) to denote the Jacobians of Xns(2, p), Xns
0 (2, p), and Xns

0 (3, p)
in the case of equations (1), (2), and (3) respectively.

The following basic result of Imin Chen [1] relates J to the Jacobians of
the form J0(N). Chen’s original proof, based on the trace formula, was indi-
rect and did not exhibit an explicit isogeny. Theorem 6.1 follows from work
of Edixhoven [11]. (Note that Edixhoven does not explicitly state theorem
6.1, but the “functorial” nature of his proof provides it as an application of
Theorem 1.3 of [11], using the fact that J0(r) is trivial for r = 2 or 3.) Recall
that the curve X0(rp

2) is equipped with two involutions denoted wp and wr.
Let J ′0(rp

2) be the p-new quotient of the jacobian J0(rp
2), and let J ′0(rp

2)/wp

be its quotient by the Atkin-Lehner involution wp. Note that J0(rp
2)/wp is

isogenous to the Jacobian of the curve X0(rp
2)/wp.

Theorem 6.1 (Chen-Edixhoven) There is an isogeny between Jns
0 (r, p)

and J ′0(rp
2)/wp when r = 1, 2 or 3 which is compatible with the action of

the Hecke operators Tn (n positive integer prime to p).
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Remark: When r = 1, the L-functions attached to the weight 2 cusp forms
on J ′0(p

2)/wp have sign −1 in their functional equation, and hence vanish at
s = 1. As a result, theorem 6.1 combined with the Birch and Swinnerton-
Dyer conjecture leads one to expect that every non-zero quotient of Jns(p)
has infinite Mordell-Weil group. This is why the curve Xns(p) has proved
stubbornly resistant to Mazur’s methods. The auxiliary level r structure
(r = 2 or 3) plays a providential role in our argument, by allowing us to work
with the curve Xns

0 (r, p), whose Jacobian does have a non-trivial quotient of
rank 0, as will be shown in section 7.

We define below an explicit correspondence αr between modular curves.
From this correspondence one deduces an homomorphism of abelian varieties
between the jacobian of the curves. We expect (but do not need to prove)
this homomorphism to be an explicit description of Chen’s isogeny of theorem
6.1.

We begin with the case r = 1. Let Ks be the group consisting of diagonal
or antidiagonal matrices of GL2(Fp); it is the normalizer of a split Cartan
subgroup of GL2(Fp). Define the curve Xs(p) to be X(p)/Ks. Both the
curves Xns(p) and Xs(p) are quotients of the curve X ′(p) = X(p)/(Ks∩Kns).
The morphism

X ′(p) −→ Xs(p)×Xns(p)

(given by the obvious pair of degeneracy maps) defines a correspondence π
from Xs(p) to Xns(p). This correspondence is of degree (p− 1)/2 (the index
of Ks ∩Kns in Ks) and is defined over Q.

The modular curve Xs(p) is isomorphic to X0(p
2)/wp. The isomorphism

u from Xs(p) to X0(p
2)/wp is deduced from the multiplication by 1/p in the

upper half-plane. In particular it sends the cusp ∞ of Xs(p) to the cusp ∞
of X0(p

2)/wp.
Let α be the correspondence from X0(p

2)/wp to Xns(p) obtained by
composing π with u. We say that a divisor of X0(p

2)/wp (resp. Xns(p))
is p-old if it is in the image of the correspondence X0(p) −→ X0(p

2)/wp

(resp. X0(1) −→ Xns(p)) deduced from any of the two degeneracy maps
X0(p

2) −→ X0(p) (resp. from the degeneracy map Xns(p) −→ X0(1)). We
will need two properties of the correspondence α.

Lemma 6.2 a) The image by α of a p-old divisor of X0(p
2)/wp is a p-old

divisor of Xns(p).
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b) The image by α of the cusp ∞ of X0(p
2)/wp is equal to the sum of the

cusps of Xns(p).

Proof: The property a) can be seen more clearly by considering the curve
Xs(p) instead of the curve X0(p

2)/wp. In this context a p-old divisor of Xs(p)
has an inverse image in X(p) which is the sum of a B+ and of a B−-invariant
divisor, where B+ and B− are the upper and lower triangular Borel subgroups
of GL2(Fp). The image in Xns(p) of such a divisor is GL2(Fp)-invariant since
KnsB = GL2(Fp) (B = B+ or B−).

We see the property b) from the fact that α(∞) is necessarily a divisor of
degree (p− 1)/2 defined over Q. The sum of the cusps of Xns(p) is the only
cuspidal divisor with this property.

By working over the base X0(r) we deduce a correspondence αr from
X0(rp

2)/wp to Xns
0 (r, p). This correspondence defines functorially a Q-linear

homomorphism of groups

αr∗ : H1(X0(rp
2)/wp,Q) −→ H1(X

ns
0 (r, p),Q),

and a homomorphism of abelian varieties from the jacobian of X0(rp
2)/wp

to Jns
0 (r, p).

Corollary 6.3 The p-old part of H1(X0(rp
2)/wp,Q) is in the kernel of αr∗.

Proof: Lemma 6.2 part a) adapted to our situation with an extra Γ0(r)-
structure implies that the p-old part of H1(X0(rp

2)/wp,Q) is sent by αr∗ into
the image of the group homomorphism H1(X0(r),Q) −→ H1(X

ns
0 (r, p),Q)

deduced functorially from the natural map Xns
0 (r, p) −→ X0(r). Since X0(r)

has genus 0 this image is 0.

Recall the notation introduced in section 5 for the cusps of Xns
0 (r, p). Let

D be the cuspidal divisor of degree 0 defined by

D = (01) + · · ·+ (0m)− (∞1)− · · · − (∞m).

Corollary 6.4 The image by αr of the divisor (0) − (∞) of X0(rp
2)/wp is

D.

Proof: This is just the version over the base X0(r) of part b) of lemma 6.2.
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Proposition 6.5 The class of D in Jns
0 (r, p)(Q) has order p. In particular,

it is non-trivial.

Proof: Since X0(r) has genus zero, we may choose an identification of X0(r)
with P1 which send the cusps 0 and ∞ to 0 and ∞. Let φ : Xns

0 (r, p) −→
X0(r) ' P1 be the natural projection. The divisor Div(φ) is equal to pD, so
that the order of D divides p. To see that D has order p, suppose otherwise.
Then we would have φ = αp, for some rational function α on Xns

0 (r, p). Let X ′

be an irreducible component of the modular curve classifying elliptic curves
with a subgroup of order r and full level p structure. It is a Galois covering
of X0(r) with Galois group PSL2(Fp). Consider the sequence of coverings of
complex curves:

X ′ π−→ Xns
0 (r, p)

α−→ P1 ν−→ X0(r) = P1,

where π is the natural quotient map, and ν is the cyclic covering of degree
p which sends a suitable parameter t of P1 to tp. Both the coverings ναπ
and ν are Galois, with Galois groups isomorphic to PSL2(Fp) and Z/pZ
respectively. This is a contradiction: there are no surjective homomorphisms
from PSL2(Fp) to Z/pZ when p ≥ 5. (The reader will note that when p = 3,
the curve Xns

0 (2, 3) has genus 0, so that the divisor D is principal. Indeed,
the group PSL2(F3) ' A4 does have a cyclic quotient of order 3 in this case.)

Remark: One could also invoke the classical theorem of Galois (“Lorsque
p > 11 le degré de l’équation modulaire ne s’abaisse pas à p”) stating that
the group PSL2(Fp) has no subgroup of index p when p > 11.

Examples:
1. The curve Xns

0 (2, 5) is a curve of genus one. By theorem 6.1, it is isoge-
nous to the elliptic curve J0(50)/w5. (The modular forms of level 50 are
automatically new at 5, since X0(2) and X0(10) are of genus 0.) This is the
curve denoted 50B in the tables of Cremona [2], with equation

y2 + xy + y = x3 + x2 − 3x + 1.

The Mordell-Weil group of this curve is a finite group of order 5, generated
by D by proposition 6.5.
2. The curve Xns

0 (3, 5) is a curve of genus 2, and its Jacobian is isogenous to
a product of two elliptic curves of conductor 75, which are denoted 75B and
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75C in [2]. Both of these curves have a finite Mordell-Weil group, and the
factor 75C has a rational point of order 5.
3. The curve Xns

0 (2, 7) has genus 2, and Jns
0 (2, 7) is an irreducible two-

dimensional quotient of J0(98). The Hecke ring acting on this quotient is
isomorphic to an order in Z[

√
2], and the following table lists the values of

the good Hecke operators T` for the first few primes ` 6 |14 (the authors are
grateful to Jordi Quer for assisting them with this calculation):

` 3 5 11 13 17 23 29 31 37 41 43

T`

√
2 −2

√
2 −2 0

√
2 −4 2 −6

√
2 10 7

√
2 2

The reader will note that the values of ` + 1− T` computed from this table
are always divisible by the prime ideal (7, 4−

√
2) of Z[

√
2] which lies above

7.

7 Winding quotients

We will construct, as in [20], a “winding quotient” of J . Recall that a quotient
abelian variety A of an abelian variety B is optimal if the kernel of the map
B −→ A is connected.

Let us point out that in the proof of the following proposition we make
a crucial use of a theorem of Kolyvagin and Logachev [15] (supplemented by
work of Gross-Zagier, Bump-Friedberg-Hoffstein and Murty-Murty) in the
direction of the conjecture of Birch and Swinnerton-Dyer.

Proposition 7.1 The abelian variety J possesses a nonzero optimal quotient
Je such that:

1) Je(Q) is finite.
2) The kernel of the projection J −→ Je is stable under the action of the

Hecke operators T` (` 6= p). In particular, Je inherits a natural Hecke action
from J .

Proof: Chen’s isogeny (cf. theorem 6.1) provides an isogeny J ′0(rp
2)/wp −→ J

which is compatible with the action of Hecke operators of index prime to p.
By a result due to Ribet (cf. [18], proposition 2.1), any optimal quotient
of the new quotient of J0(N) (where N is any integer) inherits an action of
Hecke operators compatible with the action on J0(N). Therefore it is enough
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to show that the new quotient A of the jacobian of X0(rp
2)/wp has a nonzero

optimal quotient Ae with finitely many rational points.
The Hecke operators T` (` a prime number not dividing pr) operate on

A in a manner compatible with their action on J0(rp
2). They generate a

commutative semi-simple Q-algebra T contained in the algebra End(A)⊗Q.
Let S be the space of cusp forms of weight 2 for Γ0(rp

2) which are new,
are invariant under wp and have rational q-expansion at ∞. The space S is
endowed with a natural action of T, and is free of rank one over T by the
Atkin-Lehner theory of newforms. Given f ∈ S, let ωf be the differential
form over C on X0(rp

2)/wp deduced from the differential form 2πif(τ)dτ on
the upper half-plane.

In what follows, the homology groups of modular curves will always be
understood as the singular homology of the underlying Riemann surfaces.
Let H = H1(A(C),Q)+ be the subspace of H1(A(C),Q) which is invariant
under complex conjugation. It is naturally a quotient of H1(X0(rp

2)/wp,Q)+,
and is endowed with a natural action of T. Given γ ∈ H, let γ̃ be any lift of
γ to H1(X0(rp

2)/wp,Q).
The formula

〈f, γ〉 :=
∫

γ̃
ωf

defines a nondegenerate C-valued pairing between S and H. The Hecke
operators T` which act on S and on H are self-adjoint with respect to this
pairing. As a result, H is also a free T-module of rank one.

Let e be the unique element of H1(X0(rp
2)/wp,Q)+ such that the integral

of any differential form ω on X0(rp
2)/wp of a cycle of class e is equal to the

integral of a the pullback in the upper half plane of ω over the geodesic path
from 0 to i∞ in the upper half plane. (It is rational by the Drinfeld-Manin
theorem and it is fixed by complex conjugation.) Let eA be the image of e
in H. Let Ie ⊂ T be the annihilator of eA, and let I ′e be the intersection of
Ie with the subring of End(A) generated by the Hecke operators T` (` 6 |pr).
Define Ae := A/I ′eA.

We claim that Ae(Q) is finite. In view of a theorem of Kolyvagin and
Logachev [15], it is enough to show that the L-function L(Ae, s) is non-zero
at s = 1.

Let SC be the complex vector space of cusp forms generated by S, and let
SIe be the subspace of SC which is annihilated by Ie. A theorem of Eichler,
Shimura, Igusa and Carayol asserts that L(Ae, s) is the product of the L-
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functions associated to the normalized eigenforms in SIe . (In its classical
formulation the theorem is concerned only with the case where Ie is a prime
ideal, but it extends directly to any ideal of T.) If f is any eigenform in SC,
then

L(f, 1) = 2πi
∫ i∞

0
f(τ)dτ = 〈f, eA〉.

But if f belongs to SIe , it is orthogonal to IeH, and hence cannot be or-
thogonal to eA, since H = IeH ⊕TeA and the pairing 〈 , 〉 is nondegenerate.
Therefore L(f, 1) 6= 0.

This proves that L(Ae, 1) 6= 0 and therefore that Ae(Q) is finite. It
remains to show that Ae is non-zero, i.e. that Ie is not the full algebra T.
This is a consequence of the following key proposition.

Proposition 7.2 The homology class e of H1(X0(rp
2)/wp,Q) associated to

the geodesic path from 0 to i∞ in the upper half-plane does not belong to the
old part of H1(X0(rp

2)/wp,Q).

Proof: The Q-vector space H1(X
ns
0 (r, p),Q) is the sum of its new part, its

p-old part and its r-old part. It is also the direct sum of its r-old and r-new
parts, where the r-new part is the intersection of the kernels of the group
homomorphisms on the homologies deduced from the two degeneracy maps
X0(rp

2)/wp −→ X0(p
2)/wp.

Let us prove first that e is r-new. Note first that wre = −e, since the
image in X0(rp

2)(C) of the geodesic path from 0 to i∞ in the upper half
plane is reversed by the action of the involution wrwp on X0(rp

2). Therefore
if e is killed by one of the two degeneracy maps from level rp2 to level p2, it is
killed by the other, since these two maps are exchanged by wr. The image of
e in the homology of X0(p

2)/wp by the group homomorphism deduced from
morphism X0(rp

2)/wp −→ X0(p
2)/wp which forgets the Γ0(r)-structure is

trivial, since the image in X0(p
2)(C) of the geodesic path from 0 to i∞ in

the upper half-plane is reversed by application of the involution wp.
It remains to prove that e is not p-old. Suppose it is. Then its image

under αr∗ would be 0 by corollary 6.3. Now note that the boundary of the
path from 0 to∞ in the upper half-plane is equal to the divisor (∞)−(0). By
Abel’s description of the set of complex points of the jacobian of a curve X as
H1(X,R)/H1(X,Z), the denominator of αr∗(e) (i.e. the order of the image
of αr∗(e) in H1(X,R)/H1(X,Z) for X = Xns

0 (r, p)) is equal to the order of
the class in Jns

0 (r, p) of the degree 0 divisor αr((∞)− (0)). By corollary 6.4,
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this divisor is the divisor D of proposition 6.5. By proposition 6.5, its class
in Jns

0 (r, p) is nonzero. Therefore αr∗(e) is nonzero.

8 Galois properties of torsion points of ellip-

tic curves

The purpose of this section is to prove the following theorem which might
be viewed as a small advance in the direction of a positive answer to Serre’s
problem ([26], section 4.3). We reproduce here a series of arguments invented
by Mazur [18].

We keep the notations of the previous section. In particular, p is an odd
prime, E is an elliptic curve over Q and

ρ : Gal(Q̄/Q) −→ GL2(Fp)

denotes the mod p Galois representation associated to E.

Theorem 8.1 Suppose that
1) E has a Q-rational subgroup of order r, with r = 2 or 3.
2) p ≥ 5, and the image of ρ in GL2(Fp) is isomorphic to the normalizer

of a nonsplit Cartan subgroup.
Then j(E) belongs to Z[1

p
].

Remark: We would have liked to conclude that j(E) belongs to Z, but we
are prevented from doing so by problems arising from the bad reduction of
the abelian variety J at the prime p.

Proof of theorem 8.1: Suppose that j(E) /∈ Z[1
p
], and let ` 6= p be a prime

dividing the denominator of j(E). The curve E with its given level structure
gives rise to a Q-rational point P on the modular curve X = Xns

0 (r, p) which
meets a cusp of X at a prime above `. Since the cusps of X are defined over
Q(µp)

+, ` must be split completely in Q(µp)
+, i.e., it must be congruent to

±1 modulo p. Since p ≥ 5 we may suppose that ` is not 2 or 3. After a
suitable choice of our nonsplit Cartan subgroup (there are (p− 1)/2 of them
naturally indexed by the cusps of Xns(p)) and possibly an application of the
involution wr, we may suppose that the cusp is ∞, i.e. the point defined
over R = Z[1

p
, µp]

+ corresponding to i∞ in the upper half-plane.
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Let A be a nonzero optimal quotient of J on which the Hecke operators
Tn (n an integer prime to p) operate in a manner compatible with their action
on J . Let A be the Néron model of A. The morphism obtained by composing
the map X −→ J (normalized by the fact that it sends the cusp ∞ to 0)
with the canonical map J −→ A is defined over Q(µp)

+ since the cusp ∞
is defined over that field. It extends by the universal property of the Néron
model to a morphism φ defined over R

φ : X smooth
/R −→ A/R

from the smooth part of the canonical model X of X over R to A.

Lemma 8.2 The map φ is a formal immersion in characteristic ` at the
point ∞.

Proof: We still follow closely the method of Mazur (what follows is modelled
on [18], proposition 3.1). We have to show that the map deduced from φ on
the cotangent spaces at ∞ is surjective. Observe that since ` is congruent
to ±1 modulo p, we are actually working over F`. Since the Jacobian J
is a semistable abelian variety, by a theorem of Mazur and Raynaud ([18],
Corollary 1.1) the map J −→ A gives rise functorially to a direct injection
from the cotangent space of A to the cotangent space of the Néron model J
of J away from characteristics 2 and p. The cotangent space of J/F`

can be
identified with the space H0(X/F`

, Ω1) of differential forms on X/F`
, which in

turn can be identified with the space of cusp forms of weight 2 on Xns
0 (r, p)

in characteristic `.
The Tate curve equipped with its p-torsion points defined over R[[q1/p]]

provides simultaneously a q-expansion for any such cusp form f of the type∑∞
n=1 an(f)qn/p and a basis (given by dq

1
p /q

1
p ) over F` of Cotg∞(X/F`

) ' Fl

(see [6], VII. 2.). With the identifications considered above, the image by φ∗

in Cotg∞(X/F`
) ' Fl of the element of Cotg0(J/F`

) associated to f is a1(f).
Let ω be a non-zero element in Cotg0(A/F`

) whose associated modu-
lar form f (in characteristic `) has q-expansion

∑
n>0 an(f)qn/p. Since A is

nonzero such an element exists. The Hecke operators Tn (n prime to p) op-
erate on A and therefore on its cotangent space. The first Fourier coefficient
of the modular form associated to Tnω is an(f). Therefore the image of Tnω
in Cotg∞(X/F`

) ' F` is an(f). Suppose that φ is not a formal immersion in
characteristic `. Then we would have an(f) = 0 whenever n is prime to p.
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That would imply that f is modular for Γ0(r) and therefore zero since there
are no cusp forms of weight 2 for Γ0(2) and Γ0(3) in characteristic ` > 3.
This contradiction finishes the proof of lemma 8.2.

Let us return to the proof of theorem 8.1. Using proposition 7.1 we will
apply our study to A = Je.

Lemma 8.3 The point φ(P ) is torsion in Je(Q(µp)
+).

Proof: If σ ∈ Gal(Q(µp)
+/Q), then

(σ − 1)((P )− (∞)) = (∞i)− (∞j),

for some 1 ≤ i, j ≤ m. It a cuspidal divisor and hence is torsion by the
Drinfeld-Manin theorem. Hence there exists an integer n such that n((P )−
(∞)) belongs to J(Q). In particular, nφ(P ) belongs to Je(Q). Since Je(Q)
is torsion by proposition 7.1, the lemma follows.

We can now finish the proof of theorem 8.1. Since A has good reduction
at ` and since the prime ` is unramified in R, the torsion in A over Q(µp)

+

injects into A(R/`′), for all primes `′ above `. Since φ(P ) reduces to 0
modulo such a prime, and since φ(P ) is torsion by lemma 8.3, it follows that
φ(P ) = 0 = φ(∞). (See [18] 1.c.) The fact that the point P specializes to ∞
modulo a prime above ` contradicts the fact that φ is a formal immersion in
characteristic ` ([18], 4.b).

9 Proof of the Main Theorem for large expo-

nents

Corollary 9.1 Suppose that the exponent n is a prime p ≥ 7, and let (a, b, c)
be a primitive solution to equation (1), (2), or (3) with abc 6= 0.

1. In the case of equation (1), we have abc = ±1.

2. In the case of equation (2), we have ab = ±1.

3. Assume the Shimura-Taniyama conjecture. In the case of equation (3)
we have ab = ±1.
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Proof: Assuming that it is modular, the curve E constructed from a non-
trivial solution (a, b, c) to equation (1), (2) or (3) satisfies the assumptions
of theorem 8.1, by propositions 4.2 and 4.1. Hence j(E) belongs to Z[1

p
]. It

follows that abc (in the case of equation (1)) or ab (in the case of equations
(2) and (3)) is equal to a power of p. But by corollary 4.4, the prime p does
not divide abc (in the case of equation (1)) or ab (in the case of equation
(2) and (3)). Corollary 9.1 follows. This completes our proof of the main
theorem.
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