
Thaine’s method for circular units
and a conjecture of Gross

Henri Darmon

September 9, 2007

1 Introduction

This paper formulates a refined analogue of the usual class number formula
for a real quadratic extension of Q, using circular units. The statement of
this conjecture is inspired by an analogous conjecture of Gross [Gr]. Strong
evidence for this conjecture can be given thanks to F. Thaine’s powerful
method [Th] for generating relations in ideal class groups using circular units.

The first two sections briefly recall Dirichlet’s analytic class number for-
mula and Gross’s refinement of it; they are there mainly to fix notations
and provide motivation. Section 4 states the new conjecture. The remaining
sections are devoted to proving various results that support it.
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Notations: If K is a number field and w is a place of K lying above a prime
v of Q, we denote by Kw the localization of K at w, and let Nw be the order
of its residue field. The w-adic norm || ||w is normalized so that it is equal
to Nw−1 on uniformizing elements.

Given a finite abelian extension M/K, we let

recw : K∗
w −→ Gal(M/K) (1)
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denote the reciprocity map of local class field theory. When w is unramified in
M/K, it factors through the valuation map K∗

w −→ Z and maps uniformizing
elements to Frobw, the Frobenius element in Gal(M/K) characterized by

Frobw(x) = xNw (mod w̃), (2)

where w̃ is any place of M above w.
We write Div(K) for the free Z-module generated by the finite places of

K, and P (K) for the submodule generated by the principal divisors. The
class group C(K) is the quotient Div(K)/P (K). Given a set S of places of
K, let 〈S〉 be the Z-span of the elements of S in Div(K), and let

CS(K) = 〈S〉\Div(K)/P (K). (3)

2 Dirichlet’s analytic class number formula

We recall briefly the analytic class number formula of Dirichlet relating the
behavior of the L-series of a number field at s = 0 to the arithmetic properties
of that number field. The exposition follows closely the one in [Gr].

Let K be a number field, and choose a finite set S of places of K containing
all of the archimedean places. Let T be a finite set of places of K disjoint
from S.

There is associated to this situation the local data which describes the
splitting of the primes in K. This data is conveniently encoded in the Euler
product

LS,T (K, s) =
∏
v/∈S

(1−Nv−s)−1
∏
v∈T

(1−Nv1−s). (4)

Here the products are taken over the non-archimedean places of K. The
Euler product defines the L-function LS,T (K, s) in some right half plane of
convergence, and it is known that LS,T (K, s) has a meromorphic continuation
to the entire complex plane.

The number field K together with the sets S and T gives rise to more
subtle global invariants.

1. The group (O∗
S)T of S-units which are congruent to 1 modulo the places

of T . This is a finitely generated abelian group which is free when T is
large enough. Let r denote the rank of this group. By Dirichlet’s unit
theorem, one has r = #(S)− 1.
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2. The torsion subgroup [(O∗
S)T ]torsion which is cyclic of order wS,T . (Typ-

ically we will choose T so that wS,T = 1.)

3. The Picard group Pic(OS)T of invertible OS-modules together with a
trivialization at T . It is a finite extension of CS(K). Let hS,T denote
its order.

4. The S-unit regulator RS,T , defined as follows. Let X = Div0(S) be
the free abelian group generated by the formal linear combinations of
places of S of degree 0,

X = {∑v∈Snvv,
∑

nv = 0}.

The logarithmic embedding logS : O∗
S −→ R ⊗ X of the S-units is

defined by
logS(u) =

∑
v∈S

log ||u||v ⊗ v. (5)

Both (O∗
S)T and X are of rank r. Let

Λr logS : ΛrO∗
S −→ Λr(R⊗X) (6)

denote the map induced by logS on the top exterior powers, and define
the regulator RS,T by

Λr logS(γ1 ∧ · · · ∧ γr) = RS,T ⊗ (v1 ∧ · · · ∧ vr), (7)

where γ1, . . . , γr (resp. v1, . . . , vr) are integral bases for (O∗
S)T modulo

torsion (resp. X), normalized so that RS,T is positive.

The theorem of Dirichlet asserts that the above global invariants appear
in the Taylor expansion of the L-function LS,T (K, s) which was constructed
using purely local data. It is one of the simplest manifestations of a local
global principle which is pervasive in number theory.

Theorem 2.1 (Dirichlet)

1. The L-series LS,T (K, s) vanishes to order r at s = 0.

2. The Taylor expansion of LS,T (K, s) at s = 0 is given by:

LS,T (K, s) = −hS,T RS,T

wS,T

sr + O(sr+1).
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3 Gross’s refined class number formula

We now turn to the refined class number formula of Gross, following closely
the account given in [Gr].

Let L be a finite abelian extension of K which is unramified outside the
places of S, and let G = Gal(L/K). Define a complex-valued function θ̂G on
the dual group Ĝ = hom(G,C∗) by

θ̂G(χ) = LS,T (K,χ, 0), (8)

where, for a complex character χ : G −→ C∗ and a complex number s with
<s > 1, the complex function LS,T (K, χ, s) is defined by the convergent Euler
product

LS,T (K, χ, s) =
∏
v/∈S

(1− χ(Frobv)Nv−s)−1
∏
v∈T

(1− χ(Frobv)Nv1−s).

This function has a meromorphic continuation to the entire complex plane
and is regular at s = 0. Let θG ∈ C[G] be the Fourier transform of θ̂G,

θG =
∑
χ∈Ĝ

θ̂G(χ)eχ, eχ = 1/|G|
∑
g∈G

χ(g)g−1.

Thus, θG =
∑

g∈G a(g)g interpolates values of LS,T (K, χ, 0),∑
g∈G

a(g)χ(g) = LS,T (K, χ, 0). (9)

For the rest of this section, we make the following assumption on T , which
forces wS,T = 1 so that the leading term in the class number formula is
integral.

Hypothesis 3.1 Suppose that T contains two primes of unequal residue
characteristic, or that T contains a prime whose absolute ramification in-
dex in K is strictly less that the residue field characteristic minus 1.

Under this condition, Gross [Gr] shows that the element θG belongs to the
integral group ring Z[G].

Fact 3.2 (Gross) θG belongs to Z[G].
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The order of vanishing of θG: Let I denote the augmentation ideal in the
group ring Z[G]. It is the kernel of the augmentation homomorphism ε :
Z[G] −→ Z which sends σ ∈ G to 1. The powers I ⊃ I2 ⊃ · · · define a
decreasing filtration on Z[G]. Because of the exact sequence

0 −→ I −→ Z[G]
ε−→ Z −→ 0, (10)

one has Z[G]/I = Z. The higher quotients in the filtration are torsion. For
instance, there is a natural homomorphism G −→ I/I2 which sends σ ∈ G
to σ − 1 (mod I2). In fact, this is an isomorphism. More generally, there
is a natural surjective map

Symr(G) −→ Ir/Ir+1 (11)

which sends σ1 ⊗ · · · ⊗ σr to (σ1 − 1) · · · (σr − 1) (mod Ir+1). (This map is
not necessarily an isomorphism; for a detailed study of the map Sym(G) −→
⊕rI

r/Ir+1, the reader may consult [Pa], [H1], [H2].)

The element θG which interpolates special values at s = 0 of the twisted
L-function LS,T (K, χ, s) is what plays the role of the L-function in Gross’s
refined class number formula. To say that this element vanishes to order r is
to say that it belongs to the r-th power of the augmentation ideal.

Conjecture 3.3 (Gross) The element θG belongs to Ir.

The leading coefficient θ̃G in the refined class number formula is defined to
be the projection of θG to Ir/Ir+1. It is natural to search for an interpretation
of θ̃G which is analogous to the analytic result of Dirichlet.

To do this, it suffices to change the definition of the regulator term RS,T

defined in the previous section. Consider the homomorphism

recS : O∗
S −→ (I/I2)⊗Z X (12)

defined by
recS(u) =

∑
v∈S

(recv(uv)− 1)⊗ v, (13)

where uv ∈ K∗
v is the natural image of u. Let ΛrrecS denote the induced map

on the top exterior powers:

ΛrrecS : ΛrO∗
S −→ Λr(I/I2 ⊗X) −→ (Ir/Ir+1)⊗ ΛrX,
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and define the regulator RS,T in Ir/Ir+1 by

ΛrrecS(γ1 ∧ · · · ∧ γr) = RS,T ⊗ (v1 ∧ · · · ∧ vr), (14)

where γ1, . . . , γr and v1, . . . , vr are the integral bases chosen in section 2.

Conjecture 3.4 (Gross)

θ̃G = −hS,T RS,T .

Remarks:
1. If K has a complex place v, then the Γ-factors in the functional equation
force a zero at s = 0 in the twisted L-function LS,T (K, χ, s) for all χ. Hence
θG = 0. But recv is trivial, so that RS,T = 0 as well. Therefore the conjecture
is trivially verified. It is only interesting when K is a totally real field.
2. Because of the presence of the archimedean places, one has 2RS,T = 0
in Ir/Ir+1. (Also one can show that 2θ̃G = 0.) Thus Gross’s conjecture for
number fields is really a parity statement – it was proved by Gross when
S contains only the archimedean places by using the 2-adic congruences of
Deligne-Ribet for totally real fields [DR].

4 A refined conjecture for circular units

Let ω be an even primitive Dirichlet character of conductor N . In order to
simplify the exposition, we assume that ω is quadratic, and let K denote the
corresponding real quadratic field. Choose an auxiliary real abelian extension
M of Q with conductor prime to N , and let G denote its Galois group. For
all χ in Ĝ, the Dirichlet L-series

LS(s, ωχ) =
∞∑

(n,S)=1

ωχ(n)n−s =
∏
p6|S

(1− ωχ(p)p−s)−1 (15)

vanishes at s = 0, because of the pole in the factor Γ(1
2
s) in the functional

equation. One might be tempted to define a function θ̂
′
G on Ĝ by θ̂

′
G(χ) =

L
′
S(0, ωχ), and letting θ

′
G ∈ C[G] be its Fourier transform as in section 3.

However, the coefficients of θ
′
G are not integral, or even algebraic. This leads

to the problem of finding an appropriate substitute for θ
′
G, and formulating

a conjecture analagous to conjectures 3.3 and 3.4 for it.
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Fix a choice of primitive nth roots of unity ζn ∈ Q̄ for each n, satisfying
the compatibilities

ζm
nm = ζn. (16)

This choice determines a complex embedding Ψ of Qab, sending ζn to e2πi/n.
Let S be a square-free integer which is relatively prime to the conductor

of ω. Let KS = K(µS). The circular unit αS in KS is defined by

αS =
∏

σ∈Gal(Q(µSN )/Q(µS))

σ(ζNS − 1)ω(σ). (17)

Let ΓS = Gal(KS/K), and let I denote the augmentation ideal in the group
ring Z[ΓS]. The theta-element θ

′
(ω, S) is given by the formula

θ
′
(ω, S) =

∑
σ∈ΓS

σαS ⊗ σ ∈ K∗
S ⊗ Z[ΓS]. (18)

Relation between θ
′
(ω, S) and L

′
S(0, ωχ): Let log : K∗

S −→ C be a principal
branch of the logarithm map induced by the complex embedding Ψ of KS.
Extending a character χ ∈ Γ̂S by linearity to the group ring Z[ΓS], one
combines the maps log and χ to give a linear map

log⊗χ : K∗
S ⊗ Z[ΓS] −→ C.

We call a character χ of ΓS primitive if it does not factor through the natural
homomorphism ΓS −→ ΓT for any proper divisor T of S. The following
theorem which describes the interpolation property of the circular units is
due to Kummer.

Theorem 4.1 Assume that χ is primitive. Then

log⊗χ(θ
′
(ω, S)) =

∑
σ∈ΓS

χ(σ) log |σαS| = −2L
′

S(0, ωχ).

Thus θ
′
(ω, S) can be viewed as an analogue of L

′
S(s, ω).

Let

Ssplit = {l|S, ω(l) = 1}
Sinert = {l|S, ω(l) = −1}.
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Let X− be the group of divisors of K of degree 0 lying above S or ∞ on
which the generator of Gal(K/Q) acts by −1. It is a free Z-module of rank
r, where

r = #(Ssplit) + 1. (19)

Let v∞ = λ∞ − λ̄∞ be the difference of the two conjugate real places of K,
and let vi = λi − λ̄i, where λi, λ̄i denote conjugate primes of K lying above
li ∈ Ssplit. Then {v∞, v1, . . . , vr−1} forms a basis for X−.

Let (O∗
S)− be the group of S-units of K on which the generator of

Gal(K/Q) acts by −1. This is also a free Z-module of rank r. Choose
a basis ω1, . . . , ωr for (O∗

S)− in such a way that the regulator RS for the
logarithmic embedding

(O∗
S)− −→ X− ⊗R (20)

relative to the bases {ω1, . . . , ωr} and {v∞, v1, . . . , vr−1} is positive.
From the non-vanishing of the classical Dirichlet L-series at s = 1 com-

bined with the functional equation for these L-series, one knows that

ords=0L
′

S(s, ω) = r − 1, (21)

and that
lim
s→0

L
′

S(s, ω)/(sr−1) = −2#Sinert+1rhSRS. (22)

In the next section, we will show that a similar statement is true for the
element θ

′
(ω, S):

Theorem 4.2 (Order of vanishing) The element θ
′
(ω, S) belongs to the

group K∗
S ⊗ Ir−1.

The leading coefficient θ̃
′
(ω, S) is defined to be the natural projection of

θ
′
(ω, S) to the group K∗

S ⊗ (Ir−1/Ir). One can interpret θ
′
(ω, S) by means

of a kind of S-unit regulator belonging to O∗
S ⊗ (Ir−1/Ir).

The regulator: Let Y − denote the group of divisors of K of degree 0 lying
above S on which Gal(Q̄/Q) acts via the character ω. This is a free module
of rank r − 1 with basis {v1, . . . , vr−1}. One defines the map

recS : (O∗
S)− −→ IS ⊗ Y − (23)

using the reciprocity law of local class field theory as in section 3. Define the
partial regulators Ri ∈ Ir−1

S /Ir
S by the formula

recS(γ1 ∧ · · · ∧ γi−1 ∧ γi+1 ∧ · · · ∧ γr) = Ri ⊗ (v1 ∧ · · · ∧ vr−1). (24)
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The regulator RS ∈ O∗
S ⊗ (Ir−1/Ir) is given by

RS =
r∑

i=1

(−1)i+1γi ⊗Ri. (25)

Conjecture 4.3
θ̃
′
(ω, S) = −2#(Sinert)+1hSRS.

We now give some evidence for conjecture 4.3. Let θ̃
′
(ω, S)2 denote the

projection of θ̃
′
(ω, S) in the group K∗

S ⊗ (Ir−1
2 /Ir

2), where I2 denotes the
augmentation ideal in the group ring Z[1

2
][ΓS]. The tensoring with the ring

Z[1
2
] has been made to avoid some technical complications associated with

the prime 2: observe that (Ir−1
2 /Ir

2) = (Ir−1/Ir) ⊗ Z[1
2
] is a finite abelian

group of odd order, when r > 1.

Fact 4.4 The natural map K∗⊗(Ir−1
2 /Ir

2) −→ K∗
S⊗(Ir−1

2 /Ir
2) is an injection.

The proof for this standard fact will be given in section 9.

Let n(S) be the greatest odd divisor of gcdl|S(l−1). The following theorem
gives some evidence for conjecture 4.3:

Theorem 4.5 .

1. Conjecture 4.3 is true when r = 1.

2. θ̃
′
(ω, S)2 belongs to K∗ ⊗ Ir−1

2 /Ir
2 .

3. If gcd(hS(K), n(T )) = 1 for all T |S, then θ̃
′
(ω, S)2 belongs to O∗

s ⊗
(Ir−1

2 /Ir
2).

4. hS(K) divides θ̃
′
(ω, S)2.

5. Suppose that ΓS = Γl is cyclic, and that l is split in K/Q so that
r = 2. Let λ be a prime of K above l, and let kλ ' Fl denote the
residue field at λ. If the fundamental unit of K/Q is a generator for
k∗λ, and gcd(h(K), n(l)) = 1, then

θ̃
′
(ω, l)2 = ±2hlRl (mod I2

2 ).

The proof of this theorem, which uses the methods of Thaine [Th] in an
essential way, will be given in section 9
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5 The Euler system of circular units

Let S be the set of square-free integers prime to the conductor of K. For all
S ∈ S we are given the following data:

1. An abelian extension KS = K(µS) of K with Galois group ΓS =
(Z/SZ)∗.

2. The circular unit α(S) in KS, given by the formula

α(S) =
∏

σ∈Gal(Q(ζSN )/Q(ζS))

σ(ζSN − 1)ω(σ). (26)

Writing S = l1 · · · ls, the extension KS is a compositum of the fields Kli

which are linearly disjoint over K. Hence there is a canonical direct product
decomposition

ΓS = Γl1 × · · · × Γls (27)

which gives inclusions ΓT ⊂ ΓS for all divisors T of S. We will implicitly
identify elements of ΓT with their images in ΓS. For any T dividing S, the
partial norm operator NT in the group ring Z[ΓS] is defined by

NT =
∑

σ∈ΓT

σ. (28)

These operators act on the field KS in the natural way. Given T ∈ S and l a
prime in S which is prime to T , let σl,T ∈ Gal(KT /Q) be the automorphism
sending the roots of unity to their lth powers.

Proposition 5.1
Nl(α(T l)) = (1− σ−1

l,T )α(T ).

Proof: We can write
ζT l = ζa

T ζb
l , (29)

where al + bT = 1. Hence

Nl(1− ζT l) = (1− ζal
T )/(1− ζa

T ) = (1− σ−1
l,T )(1− ζT ),

and the proposition follows from the definition of the circular units α(T ) and
α(T l).
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Proposition 5.2 α(T l) ≡ σ−1
l,T α(T ) (mod λ), where λ is any prime of KT l

above l.

Proof: This follows from equation (29) together with the fact that a is an
inverse for l in (Z/TZ)∗ and that ζl ≡ 1 (mod λ).

Propositions 5.1 and 5.2 make up the axioms of an Euler system in the
sense of Kolyvagin [Ko].

6 Divisibility properties of the circular units

In addition to the norm operator Nl defined in the previous section, the
following derivative operators in the group ring Z[ΓS] are a key ingredient in
Kolyvagin and Thaine’s method. For each prime l in S, choose a generator
γl for Γl and let

Dl =
l−2∑
i=1

iγi
l , DT =

∏
l|T

Dl, (30)

the product being taken in the group ring Z[ΓT ].

Lemma 6.1 (γl − 1)Dl = (l − 1)−Nl.

Proof: A direct computation.

The group ring Z[ΓT ] operates on the group K∗
T in a natural way. Let

β(T ) = DT α(T ) ∈ K∗
T , (31)

and let n(T ) be the largest odd divisor of gcdl|T (l − 1).

From now on, we will assume that T is a product of primes which are
split in K/Q. Although β(T ), unlike NT α(T ), need not be invariant under
the action of ΓT , it is invariant modulo n(T )-th powers.

Lemma 6.2 β(T ) belongs to (K∗
T /K

∗n(T )
T )ΓT .

Proof: By induction on the number of primes dividing T . Assume the lemma
for all proper divisors of T , and write T = lQ. Modulo n(T ), one has:

(γl − 1)DT α(T ) = (l − 1−Nl)DQα(T ) (lemma 6.1)

= (σ−1
l,Q − 1)DQα(Q) (prop. 5.1)

= 0 by the induction hypothesis.
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In the last step we use the fact that σl,Q = 1 in Gal(K/Q), so that σl,Q

belongs to ΓQ.

Lemma 6.3 The natural map K∗/K∗n(T ) −→ (K∗
T /K

∗n(T )
T )ΓT is an isomor-

phism.

Proof: The group of n(T )-th roots of unity in KT is trivial. Hence the
sequence

1 −→ K∗
T

n(T )−→ K∗
T −→ K∗

T /K∗nT
T −→ 1 (32)

is exact. Taking ΓT -invariants gives rise to the cohomology exact sequence

1 −→ K∗/K∗n(T ) −→ (K∗
T /K

∗n(T )
T )ΓT −→ H1(ΓT , K∗

T )n(T ) −→ 1, (33)

and the lemma follows from Hilbert’s theorem 90 (H1(ΓT , K∗
T ) = 0).

Let κ(T ) denote the preimage of β(T ) by this isomorphism. For each
prime l in S, choose a place λ of K above it. Write

vλ : K∗ −→ Z (34)

for the valuation map at λ, and ṽλ for the induced map on K∗/K∗n(T ), making
the following diagram commute:

K∗ vλ−→ Z
↓ ↓

K∗/K∗n(T ) ṽλ−→ Z/n(t)Z

Let ul denote the image of γl by the isomorphism Γl −→ (Z/lZ)∗. Given
κ in K∗, let redλ(κ) ∈ k∗λ be the reduction of κ mod λ, in the residue field
kλ = Z/lZ. Finally, let

logul
: k∗λ −→ Z/(l − 1)Z (35)

be the logarithm map to the base ul. The following proposition contains the
information that we will need on the ideal factorization of the κ(T ).

Proposition 6.4 .

1. If l does not divide T , then ṽλ(κ(T )) = 0.

12



2. If l is split in KT /Q, then

ṽλ(κ(T l)) = − logul
(redλ(κ(T ))) (mod n(T l)).

Proof:
1. If l does not divide T , then λ is unramified in KT /K, and hence the valua-

tion map ṽλ extends from K∗/K∗n(T ) to K∗
T /K

∗n(T )
T . But clearly ṽλ(β(T )) =

0, since β(T ) is a unit in K∗
T .

2. Let λ
′
be a prime of KT above λ, and let λ

′′
be the prime of KT l above

λ
′
. Let vλ′ (resp. vλ′′ ) be the valuations on KT (resp KT l) normalized to be

1 on uniformizing elements, so that

vλ′ (κ) =
1

l − 1
vλ′′ (κ), κ ∈ K∗

T . (36)

Writing
κ(T l) = β(T l)ρ−n(T l), ρ ∈ KT l, (37)

and using the fact that β(T l) is a unit, one finds

vλ(κ(T l)) = −n(T l)

l − 1
vλ′′ (ρ). (38)

By definition of ul, one has

vλ′′ (ρ) = logul
(redλ′′ ((γl − 1)ρ)) (mod l − 1). (39)

But

(γl − 1)ρ =
1

n(T l)
[(γl − 1)β(T l)]

=
1

n(T l)
[(l − 1)DT α(T l) + (1− σ−1

l,T )DT α(T )]

=
l − 1

n(T l)
DT α(T l), since σl,T = 1.

Hence by prop. 5.2,

redλ′′ ((γl − 1)ρ) = redλ′

(
l − 1

n(T l)
DT α(T )

)
, (40)
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and hence

logul
redλ′′ ((γl − 1)ρ) ≡ logul

redλ′

(
l − 1)

n(T l)
β(T )

)
(mod l − 1). (41)

Combining equations (38), (39) and (41), one obtains

ṽλ(κ(T l)) ≡ − logul
(redλκ(T )) (mod n(T l)) (42)

as desired.

If M is a Z-module and m belongs to M , we say that n ∈ Z divides m if
there exists m

′ ∈ M with n ·m′
= m. Given a rational prime p, one defines

ordp(m) to be the integer M such that pM divides m, but pM+1 does not.
(If this integer does not exist one sets ordp(m) = ∞.) Recall that CS(K)
is defined to be the quotient of the ideal class group of K by the subgroup
generated by the prime ideals lying above S, and that hS(K) denotes its
order. The main result of Thaine and Kolyvagin gives a bound on the order
of CS(K) in terms of the divisibilty of the elements κ(S).

Theorem 6.5 (Thaine, Kolyvagin) The greatest common divisor of n(S)
and hS(K) divides κ(S).

Proof: We prove this by induction on hS(K). If hS(K) = 1, then the theorem
is trivially true. Otherwise, choose a prime p dividing hS(K). Suppose that
ordp(κ(S)) = M0 < ∞, and let M = M0 + 1. We must whow that pM

does not divide gcd(n(S), hS(K)). If pM does not divide n(S), we are done.
Hence, suppose that pM divides n(S). (So that in particular, p is odd). Now,
choose a prime l in S not dividing S, such that

1. l splits in K/Q; let λ denote a prime of K lying above it.

2. l ≡ 1 (mod PM) (i.e., l splits in Q(µpM )/Q).

3. ordp(redλ(κ(S))) = M0.

4. The image of λ in CS(K)⊗ Zp is non trivial, and the exact sequence

0 −→ 〈λ〉 −→ CS(K)⊗ Zp −→ CSl(K)⊗ Zp −→ 0

is split (and hence in particular ordp(λ) = 0).
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Let F = K(µpM , κ(S)1/pM
). Conditions 2 and 3 are equivalent to the condi-

tion that Frobλ in Gal(F/K) belongs to the subgroup Gal(F/K(µpM )) and is
non-trivial. Condition 4 is equivalent to a condition on Frobλ in Gal(HS/K)
where HS is a non-trivial subfield of the Hilbert class field H of K. Since
F and H are linearly disjoint over K (as can be seen for example by ramifi-
cation considerations), it follows from the Chebotarev density theorem that
conditions 1-4 can be imposed simultaneously.

Let m = ordp(κ(Sl)). By combining proposition 6.4 with condition 3
satisfied by l, one has

ordp(ṽλ(κ(Sl))) = M0, (43)

and hence a fortiori m ≤ M0. Moreover, since pM divides l − 1, it also
divides n(Sl). Let ρ be the natural projection of κ(Sl) to K∗/K∗pM

, and
let κ

′
(Sl) = ρ1/pm

which is well defined in K∗/K∗pM−m
. By equation 43 and

condition 3, one has
ṽλ(κ

′
(Sl)) = u · pM0−m, (44)

where u is a unit in Z/pM−mZ. Hence pM0−m annihilates the class of λ in
C(S)⊗ Z/pM−mZ. Because of condition 4, we have

#〈λ〉 ≤ pM0−m. (45)

In particular, m < M0, and by the induction hypothesis,

#CSl(K)⊗ Zp ≤ pm. (46)

Combining the inequalities (45) and (46) gives

#CS(K)⊗ Zp ≤ pM0 , (47)

so that pM does not divide hS(K), as was to be shown.

7 Formal properties of θ
′
(ω, S)

We now turn to the study of the element θ
′
(ω, S) defined by

θ
′
(ω, S) =

∑
σ∈ΓS

σα(S)⊗ σ ∈ K∗
S ⊗ Z[ΓS]. (48)

15



Given
γ ∈ Gal(KS/Q) = ΓS ×Gal(K/Q),

let γ(T ) denote its natural projection in ΓT .
The group Gal(KS/Q) acts on the left of K∗

S⊗Z[ΓS] by the Galois action,
and ΓS acts on the right by multiplication in the group ring.

Lemma 7.1 γθ
′
(ω, S) = ω(γ) · θ′(ω, S) · γ(S)−1.

Proof: A change of variable argument.

Given a divisor T of S, let PS,T : K∗
S ⊗Z[ΓS] −→ K∗

S ⊗Z[ΓS] be the map
induced by the projection ΓS −→ ΓT ⊂ ΓS.

Lemma 7.2

PS,T (θ
′
(ω, S)) = θ

′
(ω, T ) ·

∏
l|S/T

(1− ω(l) · σl,T ).

Proof: One has

PS,T (θ
′
(ω, S)) =

∑
σ∈ΓT

(
NS/T · σαS ⊗ σ

)
. (49)

Hence by proposition 5.1

PS,T (θ
′
(ω, S)) =

 ∏
l|S/T

(1− σ−1
l,T )

 θ
′
(ω, T ), (50)

which is equal to θ
′
(ω, T ) ·∏(1− ω(l)σl,T ) by lemma 7.1.

8 The order of vanishing of θ
′
(ω, S)

Let us write S as S = PQ, where P = l1 · · · ls is a product of split primes in
K/Q, and Q is a product of inert primes. When σ runs over ΓS, write

σ = σ1 · · ·σsτ, (51)

for its unique decomposition as a product with σi ∈ Γli , and τ ∈ ΓQ.
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Lemma 8.1

θ
′
(ω, S) =

∑
σ∈ΓS

σαS(σ1 − 1) · · · (σs − 1)τ

−
∑

T |P,T 6=P

µ(P/T ) · θ′(ω, TQ) ·
∏

l|P/T

(1− σl,TQ)

 .

Proof: By direct computation,∑
σ∈ΓS

σαS(σ1−1) · · · (σs−1)τ = θ
′
(ω, S)+

∑
T |,T 6=P

µ(P/T )PS,TQ(θ
′
(ω, S)). (52)

The formula now follows from lemma 7.2.

We are now ready to prove theorem 4.2.

Theorem 4.2 (Order of vanishing) The element θ
′
(ω, S) belongs to K∗

S⊗
Is = K∗

S ⊗ Ir−1.
Proof: By induction on s, using lemma 8.1 for the induction step.

9 The leading coefficient

We now turn to the study of the element θ̃
′
(ω, S) defined by projecting

θ
′
(ω, S) to the value group K∗

S ⊗ (Ir−1
2 /Ir

2).

Lemma 9.1 The leading coefficient θ̃
′
(ω, S)2 belongs to the subgroup of ele-

ments in (K∗
S ⊗ (Ir−1

2 /Ir
2))

ΓS fixed by the left (Galois) action of ΓS.

Proof: Given σ in ΓS, by lemma 7.1 we have

(σ − 1)θ̃
′
(ω, S)2 = θ̃

′
(ω, S)2(σ

−1 − 1), (53)

and lemma 9.1 follows.

Lemma 9.2 Let Γ be a finite abelian group of odd order, and let ΓS act on
the module K∗

S ⊗ Γ by the Galois action. Then the natural map

K∗ ⊗ Γ −→ (K∗
S ⊗ Γ)ΓS

is an isomorphism.
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Proof: By decomposing Γ as a direct product of cyclic groups, one reduces
the proof of lemma 9.2 to the case where Γ is cyclic of odd order n. If KS

contains no n-th roots of unity, then we are in the situation of lemma 6.3. In
general, one uses the fact that the restriction map

H1(K, µn) −→ H1(KS, µn)ΓS (54)

is an isomorphism.

Lemma 9.3 n(S)(γl1 − 1) · · · (γls − 1) = 0 (mod Ir
2).

Proof: We can write (γl1 − 1) · · · (γls − 1) as a sum of terms of the form

(γ
(p)
l1
− 1) · · · (γ(p)

ls
− 1) (mod Ir

2), where the γ
(p)
li

are of order a power of p (p

an odd prime) and at least one of the γ
(p)
lj

is of order exactly q = pordp(n(S)).
Hence it suffices to show the theorem when n(S) = q is a power of a prime.
In that case, one has

0 = γq
lj
− 1 =

q∑
i=1

(
q

i

)
(γlj − 1)i,

so that q(γlj − 1) ∈ I2
2 . The result follows.

The following proposition gives an inductive formula for the leading co-
efficient θ̃

′
(ω, S)2.

Proposition 9.4 .

θ̃
′
(ω, S)2 = 2#(l|Q)κ(P )⊗ (γl1 − 1) · · · (γls − 1)

−
∑

T |P,T 6=P

µ(P/T ) · θ̃′(ω, T ) ·
∏

(1− σl,T ).

Proof: This follows from lemma 8.1 together with the fact that∑
σ∈ΓS

σαS ⊗ (σ1 − 1) · · · (σs − 1)τ = 2#(l|Q)β(P )⊗ (γl1 − 1) · · · (γls − 1) (55)

in K∗
S ⊗ (Ir−1/Ir). Because (γl1 − 1) · · · (γls − 1) is killed by n(P ) in Ir−1

2 /Ir
2

(lemma 9.3), one can replace β(P ) by κ(P ) in the formula.
In the remainder of this section we will prove theorem 4.5 which we first

recall:
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Theorem 4.5

1. Conjecture 4.3 is true when r = 1.

2. θ̃
′
(ω, S)2 belongs to K∗ ⊗ Ir−1

2 /Ir
2 .

3. If gcd(hS(K), n(T )) = 1 for all T |S, then θ̃
′
(ω, S)2 belongs to O∗

s ⊗
(Ir−1

2 /Ir
2).

4. hS(K) divides θ̃
′
(ω, S)2.

5. Suppose that ΓS = Γl is cyclic, and that l is split in K/Q so that
r = 2. Let λ be a prime of K above l, and let kλ ' Fl denote the
residue field at λ. If the fundamental unit of K/Q is a generator for
k∗λ, and gcd(h(K), n(l)) = 1, then

θ̃
′
(ω, l)2 = ±2hlRl (mod I2

2 ).

Proof:

1. When r = 1, we have θ̃
′
(ω, S) = PS,1(θ

′
(ω, S)), where PS,1 : Z[ΓS] −→

Z is the augmentation map. By lemma 7.2,

PS,1(θ
′
(ω, S)) = α(1)

∏
l|S

(1− ω(l)) = 2#(l|S)α(1), (56)

since all the l dividing S are inert in K/Q. We know from Dirichlet’s
analytic class number formula that α(1) = 2h1R1, and hence the result
follows.

2. Combine lemmas 9.1 and 9.2.

3. By prop 6.4, we have vλ(κ(T )) = 0 (mod n(T )) for all places λ which
do not lie above S. Let (K∗/K∗n(T ))(S) denote the subgroup of ele-
ments in K∗/K∗n(T ) satisfying this property. There is a natural exact
sequence

0 −→ O∗
S/O∗n(T )

S −→ (K∗/K∗n(T ))(S) −→ CS(K)⊗ Z/n(T )Z. (57)

The assumption that (hS(K), n(T )) = 1 for all T |S implies that the

natural map from O∗
S/O∗n(T )

S to (K∗/K∗n(T ))(S) is an isomorphism, so
that the κ(T ) are S-units modulo n(T )-th powers. The result follows
from prop. 9.4.
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4. This is a direct consequence of theorem 6.5 combined with prop. 9.4.

5. The fact that gcd(hl(K), n(l)) = 1 implies, by the previous fact, that
κ(l) is an l-unit of K modulo n(l)th powers, and hence θ̃

′
(ω, l) belongs

to O∗
l ⊗ (I2/I

2
2 ). We want to prove the equality of two objects in

O∗
l ⊗ (I/I2). For this, we use two maps:

φ1 : O∗
l ⊗ (I2/I

2
2 ) −→ I2/I

2
2 , φ2 : O∗

l ⊗ (I2/I
2
2 ) −→ I2

2/I
3
2 . (58)

The first is induced from the map vλ : O∗
l −→ Z, and the second from

the map recλ : O∗
l −→ Γl −→ I2/I

2
2 given by the reciprocity law of local

class field theory. Because gcd(h(K), n(l)) = 1, the kernel of the map
φ1 is just O∗

K ⊗ (I2/I
2
2 ). The assumption that the fundamental unit

for K is a generator of k∗λ means that φ2 is injective on O∗
K ⊗ (I2/I

2
2 ).

Hence, if two elements in O∗
l ⊗ (I2/I

2
2 ) have the same image by φ1 and

φ2, then they are equal.

Recall that ul ∈ k∗λ denotes the element which corresponds to the chosen
generator γl of Γl by the reciprocity law of local class field theory. By
prop. 9.4, we have

θ̃
′
(ω, l)2 = κ(l)⊗ (γl − 1). (59)

Hence, by prop. 6.4,

φ1(θ̃
′
(ω, l)2) = vλ(κ(l))⊗ (γl − 1) = logul

(κ(1))(γl − 1). (60)

Let u be a fundamental unit for K. By Dirichlet’s class number formula,
we can write

κ(1) = u±2h, (61)

so that logul
(κ(1)) = ±2h logul

(u). It follows that

φ1(θ̃
′
(ω, l)2) = ±2h logul

(u)(γl − 1) = ±2h(rec(u)− 1). (62)

Since κ(l) = β(l)xn(l), where x belongs to K∗
l , and since

normKl/K(β(l)) = 1

by prop. 5.1, we have by taking norms:

κ(l)l−1 = normKl/Kxn(l). (63)
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Hence κ(l)(l−1)/n(l) = ±normKl/Kx, so that κ(l)2a
is a norm for some

a ≥ 0. Since norms lie in the kernel of the local reciprocity map, we
find that

φ2(θ̃
′
(ω, l)2) = 0. (64)

We choose a Z-basis for O∗
l , given by a fundamental unit u and an

l-unit u(l). This can be done in such a way that

vλ(u(l)) = h/hl, (65)

since this number is the order of the class of λ in the ideal class group
of K. The regulator Rl can be written explicitly as

Rl = ± (u⊗ (rec(u(l))− 1)− u(l)⊗ (rec(u)− 1)) . (66)

Hence,

φ1(2hlRl) = ±2hlvλ(u(l))⊗ (rec(u)− 1) = ±2h(rec(u)− 1). (67)

It is immediate from the definition of Rl that

φ2(4hlRl) = 0. (68)

Combining equations (62), (64), (67), and (68) we find that

θ̃
′
(ω, l)2 = ±2hlRl (mod I2

2 ),

as claimed.
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