Thaine's method for circular units and a conjecture of Gross

Henri Darmon

September 9, 2007

1 Introduction

This paper formulates a refined analogue of the usual class number formula for a real quadratic extension of \mathbf{Q} , using circular units. The statement of this conjecture is inspired by an analogous conjecture of Gross [Gr]. Strong evidence for this conjecture can be given thanks to F. Thaine's powerful method [Th] for generating relations in ideal class groups using circular units.

The first two sections briefly recall Dirichlet's analytic class number formula and Gross's refinement of it; they are there mainly to fix notations and provide motivation. Section 4 states the new conjecture. The remaining sections are devoted to proving various results that support it.

Acknowledgements: I wish to thank Massimo Bertolini and Benedict Gross for many stimulating conversations on the topics of this paper. This work was supported at different stages by a Sloan Doctoral Dissertation fellowship, an NSERC postdoctoral fellowship, and by NSF grant # DMS-8703372.A04.

Notations: If K is a number field and w is a place of K lying above a prime v of \mathbf{Q} , we denote by K_w the localization of K at w, and let $\mathbf{N}w$ be the order of its residue field. The w-adic norm $|| ||_w$ is normalized so that it is equal to $\mathbf{N}w^{-1}$ on uniformizing elements.

Given a finite abelian extension M/K, we let

$$\operatorname{rec}_w: K^*_w \longrightarrow \operatorname{Gal}(M/K)$$
 (1)

denote the reciprocity map of local class field theory. When w is unramified in M/K, it factors through the valuation map $K_w^* \longrightarrow \mathbb{Z}$ and maps uniformizing elements to Frob_w , the Frobenius element in $\operatorname{Gal}(M/K)$ characterized by

$$\operatorname{Frob}_w(x) = x^{\mathbf{N}w} \pmod{\tilde{w}},\tag{2}$$

where \tilde{w} is any place of M above w.

We write Div(K) for the free **Z**-module generated by the finite places of K, and P(K) for the submodule generated by the principal divisors. The class group C(K) is the quotient Div(K)/P(K). Given a set S of places of K, let $\langle S \rangle$ be the **Z**-span of the elements of S in Div(K), and let

$$C_S(K) = \langle S \rangle \backslash \operatorname{Div}(K) / P(K).$$
(3)

2 Dirichlet's analytic class number formula

We recall briefly the analytic class number formula of Dirichlet relating the behavior of the *L*-series of a number field at s = 0 to the arithmetic properties of that number field. The exposition follows closely the one in [Gr].

Let K be a number field, and choose a finite set S of places of K containing all of the archimedean places. Let T be a finite set of places of K disjoint from S.

There is associated to this situation the local data which describes the splitting of the primes in K. This data is conveniently encoded in the Euler product

$$L_{S,T}(K,s) = \prod_{v \notin S} (1 - \mathbf{N}v^{-s})^{-1} \prod_{v \in T} (1 - \mathbf{N}v^{1-s}).$$
(4)

Here the products are taken over the non-archimedean places of K. The Euler product defines the *L*-function $L_{S,T}(K,s)$ in some right half plane of convergence, and it is known that $L_{S,T}(K,s)$ has a meromorphic continuation to the entire complex plane.

The number field K together with the sets S and T gives rise to more subtle global invariants.

1. The group $(\mathcal{O}_S^*)_T$ of S-units which are congruent to 1 modulo the places of T. This is a finitely generated abelian group which is free when T is large enough. Let r denote the rank of this group. By Dirichlet's unit theorem, one has r = #(S) - 1.

- 2. The torsion subgroup $[(\mathcal{O}_S^*)_T]_{\text{torsion}}$ which is cyclic of order $w_{S,T}$. (Typically we will choose T so that $w_{S,T} = 1$.)
- 3. The Picard group $\operatorname{Pic}(\mathcal{O}_S)_T$ of invertible \mathcal{O}_S -modules together with a trivialization at T. It is a finite extension of $C_S(K)$. Let $h_{S,T}$ denote its order.
- 4. The S-unit regulator $R_{S,T}$, defined as follows. Let $X = \text{Div}^0(S)$ be the free abelian group generated by the formal linear combinations of places of S of degree 0,

$$X = \{ \sum_{v \in S} n_v v, \quad \sum n_v = 0 \}.$$

The logarithmic embedding $\log_S : \mathcal{O}_S^* \longrightarrow \mathbf{R} \otimes X$ of the *S*-units is defined by

$$\log_S(u) = \sum_{v \in S} \log ||u||_v \otimes v.$$
(5)

Both $(\mathcal{O}_S^*)_T$ and X are of rank r. Let

$$\Lambda^r \log_S : \Lambda^r \mathcal{O}_S^* \longrightarrow \Lambda^r (\mathbf{R} \otimes X)$$
(6)

denote the map induced by \log_S on the top exterior powers, and define the regulator $R_{S,T}$ by

$$\Lambda^r \log_S(\gamma_1 \wedge \dots \wedge \gamma_r) = R_{S,T} \otimes (v_1 \wedge \dots \wedge v_r), \tag{7}$$

where $\gamma_1, \ldots, \gamma_r$ (resp. v_1, \ldots, v_r) are integral bases for $(O_S^*)_T$ modulo torsion (resp. X), normalized so that $R_{S,T}$ is positive.

The theorem of Dirichlet asserts that the above global invariants appear in the Taylor expansion of the *L*-function $L_{S,T}(K,s)$ which was constructed using purely local data. It is one of the simplest manifestations of a local global principle which is pervasive in number theory.

Theorem 2.1 (Dirichlet)

- 1. The L-series $L_{S,T}(K,s)$ vanishes to order r at s = 0.
- 2. The Taylor expansion of $L_{S,T}(K,s)$ at s = 0 is given by:

$$L_{S,T}(K,s) = -\frac{h_{S,T}R_{S,T}}{w_{S,T}}s^r + O(s^{r+1}).$$

3 Gross's refined class number formula

We now turn to the refined class number formula of Gross, following closely the account given in [Gr].

Let L be a finite abelian extension of K which is unramified outside the places of S, and let G = Gal(L/K). Define a complex-valued function $\hat{\theta}_G$ on the dual group $\hat{G} = \text{hom}(G, \mathbb{C}^*)$ by

$$\hat{\theta}_G(\chi) = L_{S,T}(K,\chi,0), \tag{8}$$

where, for a complex character $\chi : G \longrightarrow \mathbb{C}^*$ and a complex number s with $\Re s > 1$, the complex function $L_{S,T}(K, \chi, s)$ is defined by the convergent Euler product

$$L_{S,T}(K,\chi,s) = \prod_{v \notin S} (1 - \chi(\operatorname{Frob}_v) \mathbf{N} v^{-s})^{-1} \prod_{v \in T} (1 - \chi(\operatorname{Frob}_v) \mathbf{N} v^{1-s}).$$

This function has a meromorphic continuation to the entire complex plane and is regular at s = 0. Let $\theta_G \in \mathbf{C}[G]$ be the Fourier transform of $\hat{\theta}_G$,

$$\theta_G = \sum_{\chi \in \hat{G}} \hat{\theta}_G(\chi) e_{\chi}, \qquad e_{\chi} = 1/|G| \sum_{g \in G} \chi(g) g^{-1}$$

Thus, $\theta_G = \sum_{g \in G} a(g)g$ interpolates values of $L_{S,T}(K,\chi,0)$,

$$\sum_{g \in G} a(g)\chi(g) = L_{S,T}(K,\chi,0).$$
(9)

For the rest of this section, we make the following assumption on T, which forces $w_{S,T} = 1$ so that the leading term in the class number formula is integral.

Hypothesis 3.1 Suppose that T contains two primes of unequal residue characteristic, or that T contains a prime whose absolute ramification index in K is strictly less that the residue field characteristic minus 1.

Under this condition, Gross [Gr] shows that the element θ_G belongs to the integral group ring $\mathbf{Z}[G]$.

Fact 3.2 (Gross) θ_G belongs to $\mathbf{Z}[G]$.

The order of vanishing of θ_G : Let I denote the augmentation ideal in the group ring $\mathbf{Z}[G]$. It is the kernel of the augmentation homomorphism ϵ : $\mathbf{Z}[G] \longrightarrow \mathbf{Z}$ which sends $\sigma \in G$ to 1. The powers $I \supset I^2 \supset \cdots$ define a decreasing filtration on $\mathbf{Z}[G]$. Because of the exact sequence

$$0 \longrightarrow I \longrightarrow \mathbf{Z}[G] \stackrel{\epsilon}{\longrightarrow} \mathbf{Z} \longrightarrow 0, \tag{10}$$

one has $\mathbf{Z}[G]/I = \mathbf{Z}$. The higher quotients in the filtration are torsion. For instance, there is a natural homomorphism $G \longrightarrow I/I^2$ which sends $\sigma \in G$ to $\sigma - 1 \pmod{I^2}$. In fact, this is an isomorphism. More generally, there is a natural surjective map

$$\operatorname{Sym}^{r}(G) \longrightarrow I^{r}/I^{r+1}$$
 (11)

which sends $\sigma_1 \otimes \cdots \otimes \sigma_r$ to $(\sigma_1 - 1) \cdots (\sigma_r - 1) \pmod{I^{r+1}}$. (This map is not necessarily an isomorphism; for a detailed study of the map $\operatorname{Sym}(G) \longrightarrow \bigoplus_r I^r / I^{r+1}$, the reader may consult [Pa], [H1], [H2].)

The element θ_G which interpolates special values at s = 0 of the twisted *L*-function $L_{S,T}(K, \chi, s)$ is what plays the role of the *L*-function in Gross's refined class number formula. To say that this element vanishes to order r is to say that it belongs to the r-th power of the augmentation ideal.

Conjecture 3.3 (Gross) The element θ_G belongs to I^r .

The leading coefficient $\tilde{\theta}_G$ in the refined class number formula is defined to be the projection of θ_G to I^r/I^{r+1} . It is natural to search for an interpretation of $\tilde{\theta}_G$ which is analogous to the analytic result of Dirichlet.

To do this, it suffices to change the definition of the regulator term $R_{S,T}$ defined in the previous section. Consider the homomorphism

$$\operatorname{rec}_{S}: \mathcal{O}_{S}^{*} \longrightarrow (I/I^{2}) \otimes_{\mathbf{Z}} X$$
 (12)

defined by

$$\operatorname{rec}_{S}(u) = \sum_{v \in S} (\operatorname{rec}_{v}(u_{v}) - 1) \otimes v, \qquad (13)$$

where $u_v \in K_v^*$ is the natural image of u. Let $\Lambda^r \operatorname{rec}_S$ denote the induced map on the top exterior powers:

$$\Lambda^{r} \operatorname{rec}_{S} : \Lambda^{r} \mathcal{O}_{S}^{*} \longrightarrow \Lambda^{r} (I/I^{2} \otimes X) \longrightarrow (I^{r}/I^{r+1}) \otimes \Lambda^{r} X,$$

and define the regulator $R_{S,T}$ in I^r/I^{r+1} by

$$\Lambda^{r} \operatorname{rec}_{S}(\gamma_{1} \wedge \dots \wedge \gamma_{r}) = R_{S,T} \otimes (v_{1} \wedge \dots \wedge v_{r}), \qquad (14)$$

where $\gamma_1, \ldots, \gamma_r$ and v_1, \ldots, v_r are the integral bases chosen in section 2.

Conjecture 3.4 (Gross)

$$\theta_G = -h_{S,T} R_{S,T}.$$

Remarks:

1. If K has a complex place v, then the Γ -factors in the functional equation force a zero at s = 0 in the twisted L-function $L_{S,T}(K, \chi, s)$ for all χ . Hence $\theta_G = 0$. But rec_v is trivial, so that $R_{S,T} = 0$ as well. Therefore the conjecture is trivially verified. It is only interesting when K is a totally real field.

2. Because of the presence of the archimedean places, one has $2R_{S,T} = 0$ in I^r/I^{r+1} . (Also one can show that $2\tilde{\theta}_G = 0$.) Thus Gross's conjecture for number fields is really a parity statement – it was proved by Gross when S contains only the archimedean places by using the 2-adic congruences of Deligne-Ribet for totally real fields [DR].

4 A refined conjecture for circular units

Let ω be an even primitive Dirichlet character of conductor N. In order to simplify the exposition, we assume that ω is quadratic, and let K denote the corresponding real quadratic field. Choose an auxiliary real abelian extension M of \mathbf{Q} with conductor prime to N, and let G denote its Galois group. For all χ in \hat{G} , the Dirichlet *L*-series

$$L_{S}(s,\omega\chi) = \sum_{(n,S)=1}^{\infty} \omega\chi(n)n^{-s} = \prod_{p|S} (1 - \omega\chi(p)p^{-s})^{-1}$$
(15)

vanishes at s = 0, because of the pole in the factor $\Gamma(\frac{1}{2}s)$ in the functional equation. One might be tempted to define a function $\hat{\theta}'_G$ on \hat{G} by $\hat{\theta}'_G(\chi) = L'_S(0, \omega\chi)$, and letting $\theta'_G \in \mathbf{C}[G]$ be its Fourier transform as in section 3. However, the coefficients of θ'_G are not integral, or even algebraic. This leads to the problem of finding an appropriate substitute for θ'_G , and formulating a conjecture analogous to conjectures 3.3 and 3.4 for it. Fix a choice of primitive *n*th roots of unity $\zeta_n \in \mathbf{Q}$ for each *n*, satisfying the compatibilities

$$\zeta_{nm}^m = \zeta_n. \tag{16}$$

This choice determines a complex embedding Ψ of \mathbf{Q}^{ab} , sending ζ_n to $e^{2\pi i/n}$.

Let S be a square-free integer which is relatively prime to the conductor of ω . Let $K_S = K(\mu_S)$. The circular unit α_S in K_S is defined by

$$\alpha_S = \prod_{\sigma \in \text{Gal}(\mathbf{Q}(\mu_{SN})/\mathbf{Q}(\mu_S))} \sigma(\zeta_{NS} - 1)^{\omega(\sigma)}.$$
 (17)

Let $\Gamma_S = \text{Gal}(K_S/K)$, and let *I* denote the augmentation ideal in the group ring $\mathbf{Z}[\Gamma_S]$. The theta-element $\theta'(\omega, S)$ is given by the formula

$$\theta'(\omega, S) = \sum_{\sigma \in \Gamma_S} \sigma \alpha_S \otimes \sigma \quad \in K_S^* \otimes \mathbf{Z}[\Gamma_S].$$
(18)

Relation between $\theta'(\omega, S)$ and $L'_S(0, \omega\chi)$: Let $\log : K^*_S \longrightarrow \mathbf{C}$ be a principal branch of the logarithm map induced by the complex embedding Ψ of K_S . Extending a character $\chi \in \hat{\Gamma}_S$ by linearity to the group ring $\mathbf{Z}[\Gamma_S]$, one combines the maps log and χ to give a linear map

$$\log \otimes \chi : K_S^* \otimes \mathbf{Z}[\Gamma_S] \longrightarrow \mathbf{C}.$$

We call a character χ of Γ_S primitive if it does not factor through the natural homomorphism $\Gamma_S \longrightarrow \Gamma_T$ for any proper divisor T of S. The following theorem which describes the interpolation property of the circular units is due to Kummer.

Theorem 4.1 Assume that χ is primitive. Then

$$\log \otimes \chi(\theta'(\omega, S)) = \sum_{\sigma \in \Gamma_S} \chi(\sigma) \log |\sigma \alpha_S| = -2L'_S(0, \omega\chi).$$

Thus $\theta'(\omega, S)$ can be viewed as an analogue of $L'_S(s, \omega)$. Let

$$S_{\text{split}} = \{l|S, \quad \omega(l) = 1\}$$

$$S_{\text{inert}} = \{l|S, \quad \omega(l) = -1\}.$$

Let X^- be the group of divisors of K of degree 0 lying above S or ∞ on which the generator of $\text{Gal}(K/\mathbf{Q})$ acts by -1. It is a free **Z**-module of rank r, where

$$r = \#(S_{\text{split}}) + 1.$$
 (19)

Let $v_{\infty} = \lambda_{\infty} - \bar{\lambda}_{\infty}$ be the difference of the two conjugate real places of K, and let $v_i = \lambda_i - \bar{\lambda}_i$, where $\lambda_i, \bar{\lambda}_i$ denote conjugate primes of K lying above $l_i \in S_{\text{split}}$. Then $\{v_{\infty}, v_1, \ldots, v_{r-1}\}$ forms a basis for X^- .

Let $(\mathcal{O}_S^*)^-$ be the group of *S*-units of *K* on which the generator of $\operatorname{Gal}(K/\mathbf{Q})$ acts by -1. This is also a free **Z**-module of rank *r*. Choose a basis $\omega_1, \ldots, \omega_r$ for $(\mathcal{O}_S^*)^-$ in such a way that the regulator R_S for the logarithmic embedding

$$(\mathcal{O}_S^*)^- \longrightarrow X^- \otimes \mathbf{R} \tag{20}$$

relative to the bases $\{\omega_1, \ldots, \omega_r\}$ and $\{v_{\infty}, v_1, \ldots, v_{r-1}\}$ is positive.

From the non-vanishing of the classical Dirichlet L-series at s = 1 combined with the functional equation for these L-series, one knows that

$$\operatorname{ord}_{s=0} L'_{S}(s,\omega) = r - 1,$$
 (21)

and that

$$\lim_{s \to 0} L'_S(s,\omega)/(s^{r-1}) = -2^{\#S_{\text{inert}}+1} rh_S R_S.$$
(22)

In the next section, we will show that a similar statement is true for the element $\theta'(\omega, S)$:

Theorem 4.2 (Order of vanishing) The element $\theta'(\omega, S)$ belongs to the group $K_S^* \otimes I^{r-1}$.

The leading coefficient $\tilde{\theta}'(\omega, S)$ is defined to be the natural projection of $\theta'(\omega, S)$ to the group $K_S^* \otimes (I^{r-1}/I^r)$. One can interpret $\theta'(\omega, S)$ by means of a kind of S-unit regulator belonging to $\mathcal{O}_S^* \otimes (I^{r-1}/I^r)$.

The regulator: Let Y^- denote the group of divisors of K of degree 0 lying above S on which $\operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$ acts via the character ω . This is a free module of rank r-1 with basis $\{v_1, \ldots, v_{r-1}\}$. One defines the map

$$\operatorname{rec}_S : (\mathcal{O}_S^*)^- \longrightarrow I_S \otimes Y^-$$
 (23)

using the reciprocity law of local class field theory as in section 3. Define the partial regulators $R_i \in I_S^{r-1}/I_S^r$ by the formula

$$\operatorname{rec}_{S}(\gamma_{1} \wedge \dots \wedge \gamma_{i-1} \wedge \gamma_{i+1} \wedge \dots \wedge \gamma_{r}) = R_{i} \otimes (v_{1} \wedge \dots \wedge v_{r-1}).$$
(24)

The regulator $R_S \in \mathcal{O}_S^* \otimes (I^{r-1}/I^r)$ is given by

$$R_{S} = \sum_{i=1}^{r} (-1)^{i+1} \gamma_{i} \otimes R_{i}.$$
 (25)

Conjecture 4.3

$$\tilde{\theta}'(\omega, S) = -2^{\#(S_{\text{inert}})+1} h_S R_S.$$

We now give some evidence for conjecture 4.3. Let $\tilde{\theta}'(\omega, S)_2$ denote the projection of $\tilde{\theta}'(\omega, S)$ in the group $K_S^* \otimes (I_2^{r-1}/I_2^r)$, where I_2 denotes the augmentation ideal in the group ring $\mathbf{Z}[\frac{1}{2}][\Gamma_S]$. The tensoring with the ring $\mathbf{Z}[\frac{1}{2}]$ has been made to avoid some technical complications associated with the prime 2: observe that $(I_2^{r-1}/I_2^r) = (I^{r-1}/I^r) \otimes \mathbf{Z}[\frac{1}{2}]$ is a finite abelian group of odd order, when r > 1.

Fact 4.4 The natural map $K^* \otimes (I_2^{r-1}/I_2^r) \longrightarrow K_S^* \otimes (I_2^{r-1}/I_2^r)$ is an injection.

The proof for this standard fact will be given in section 9.

Let n(S) be the greatest odd divisor of $gcd_{l|S}(l-1)$. The following theorem gives some evidence for conjecture 4.3:

Theorem 4.5 .

- 1. Conjecture 4.3 is true when r = 1.
- 2. $\tilde{\theta}'(\omega, S)_2$ belongs to $K^* \otimes I_2^{r-1}/I_2^r$.
- 3. If $gcd(h_S(K), n(T)) = 1$ for all T|S, then $\tilde{\theta}'(\omega, S)_2$ belongs to $\mathcal{O}_s^* \otimes (I_2^{r-1}/I_2^r)$.
- 4. $h_S(K)$ divides $\tilde{\theta}'(\omega, S)_2$.
- 5. Suppose that $\Gamma_S = \Gamma_l$ is cyclic, and that l is split in K/\mathbf{Q} so that r = 2. Let λ be a prime of K above l, and let $k_{\lambda} \simeq \mathbf{F}_l$ denote the residue field at λ . If the fundamental unit of K/\mathbf{Q} is a generator for k_{λ}^* , and gcd(h(K), n(l)) = 1, then

$$\hat{\theta}'(\omega, l)_2 = \pm 2h_l R_l \pmod{I_2^2}.$$

The proof of this theorem, which uses the methods of Thaine [Th] in an essential way, will be given in section 9

5 The Euler system of circular units

Let S be the set of square-free integers prime to the conductor of K. For all $S \in S$ we are given the following data:

- 1. An abelian extension $K_S = K(\mu_S)$ of K with Galois group $\Gamma_S = (\mathbf{Z}/S\mathbf{Z})^*$.
- 2. The circular unit $\alpha(S)$ in K_S , given by the formula

$$\alpha(S) = \prod_{\sigma \in \text{Gal}(\mathbf{Q}(\zeta_{SN})/\mathbf{Q}(\zeta_S))} \sigma(\zeta_{SN} - 1)^{\omega(\sigma)}.$$
 (26)

Writing $S = l_1 \cdots l_s$, the extension K_S is a compositum of the fields K_{l_i} which are linearly disjoint over K. Hence there is a canonical direct product decomposition

$$\Gamma_S = \Gamma_{l_1} \times \dots \times \Gamma_{l_s} \tag{27}$$

which gives inclusions $\Gamma_T \subset \Gamma_S$ for all divisors T of S. We will implicitly identify elements of Γ_T with their images in Γ_S . For any T dividing S, the partial norm operator \mathbf{N}_T in the group ring $\mathbf{Z}[\Gamma_S]$ is defined by

$$\mathbf{N}_T = \sum_{\sigma \in \Gamma_T} \sigma.$$
(28)

These operators act on the field K_S in the natural way. Given $T \in S$ and l a prime in S which is prime to T, let $\sigma_{l,T} \in \text{Gal}(K_T/\mathbf{Q})$ be the automorphism sending the roots of unity to their *l*th powers.

Proposition 5.1

$$N_l(\alpha(Tl)) = (1 - \sigma_{l,T}^{-1})\alpha(T).$$

Proof: We can write

 $\zeta_{Tl} = \zeta_T^a \zeta_l^b, \tag{29}$

where al + bT = 1. Hence

$$N_l(1-\zeta_{Tl}) = (1-\zeta_T^{al})/(1-\zeta_T^a) = (1-\sigma_{l,T}^{-1})(1-\zeta_T),$$

and the proposition follows from the definition of the circular units $\alpha(T)$ and $\alpha(Tl)$.

Proposition 5.2 $\alpha(Tl) \equiv \sigma_{l,T}^{-1}\alpha(T) \pmod{\lambda}$, where λ is any prime of K_{Tl} above *l*.

Proof: This follows from equation (29) together with the fact that a is an inverse for l in $(\mathbf{Z}/T\mathbf{Z})^*$ and that $\zeta_l \equiv 1 \pmod{\lambda}$.

Propositions 5.1 and 5.2 make up the axioms of an Euler system in the sense of Kolyvagin [Ko].

6 Divisibility properties of the circular units

In addition to the norm operator \mathbf{N}_l defined in the previous section, the following derivative operators in the group ring $\mathbf{Z}[\Gamma_S]$ are a key ingredient in Kolyvagin and Thaine's method. For each prime l in \mathcal{S} , choose a generator γ_l for Γ_l and let

$$\mathbf{D}_l = \sum_{i=1}^{l-2} i \gamma_l^i, \quad \mathbf{D}_T = \prod_{l|T} \mathbf{D}_l, \tag{30}$$

the product being taken in the group ring $\mathbf{Z}[\Gamma_T]$.

Lemma 6.1 $(\gamma_l - 1)D_l = (l - 1) - \mathbf{N}_l$.

Proof: A direct computation.

The group ring $\mathbf{Z}[\Gamma_T]$ operates on the group K_T^* in a natural way. Let

$$\beta(T) = \mathcal{D}_T \alpha(T) \in K_T^*, \tag{31}$$

and let n(T) be the largest odd divisor of $gcd_{l|T}(l-1)$.

From now on, we will assume that T is a product of primes which are split in K/\mathbf{Q} . Although $\beta(T)$, unlike $\mathbf{N}_T \alpha(T)$, need not be invariant under the action of Γ_T , it is invariant modulo n(T)-th powers.

Lemma 6.2 $\beta(T)$ belongs to $(K_T^*/K_T^{*n(T)})^{\Gamma_T}$.

Proof: By induction on the number of primes dividing T. Assume the lemma for all proper divisors of T, and write T = lQ. Modulo n(T), one has:

$$(\gamma_l - 1) \mathbf{D}_T \alpha(T) = (l - 1 - \mathbf{N}_l) \mathbf{D}_Q \alpha(T) \quad \text{(lemma 6.1)} \\ = (\sigma_{l,Q}^{-1} - 1) \mathbf{D}_Q \alpha(Q) \quad \text{(prop. 5.1)} \\ = 0 \quad \text{by the induction hypothesis.}$$

In the last step we use the fact that $\sigma_{l,Q} = 1$ in $\operatorname{Gal}(K/Q)$, so that $\sigma_{l,Q}$ belongs to Γ_Q .

Lemma 6.3 The natural map $K^*/K^{*n(T)} \longrightarrow (K_T^*/K_T^{*n(T)})^{\Gamma_T}$ is an isomorphism.

Proof: The group of n(T)-th roots of unity in K_T is trivial. Hence the sequence

$$1 \longrightarrow K_T^* \xrightarrow{n(T)} K_T^* \longrightarrow K_T^* / K_T^{*n_T} \longrightarrow 1$$
(32)

is exact. Taking Γ_T -invariants gives rise to the cohomology exact sequence

$$1 \longrightarrow K^*/K^{*n(T)} \longrightarrow (K_T^*/K_T^{*n(T)})^{\Gamma_T} \longrightarrow H^1(\Gamma_T, K_T^*)_{n(T)} \longrightarrow 1,$$
(33)

and the lemma follows from Hilbert's theorem 90 $(H^1(\Gamma_T, K_T^*) = 0)$.

Let $\kappa(T)$ denote the preimage of $\beta(T)$ by this isomorphism. For each prime l in \mathcal{S} , choose a place λ of K above it. Write

$$v_{\lambda}: K^* \longrightarrow \mathbf{Z} \tag{34}$$

for the valuation map at λ , and \tilde{v}_{λ} for the induced map on $K^*/K^{*n(T)}$, making the following diagram commute:

$$\begin{array}{cccc} K^* & \stackrel{v_{\lambda}}{\longrightarrow} & \mathbf{Z} \\ \downarrow & & \downarrow \\ K^*/K^{*n(T)} & \stackrel{\tilde{v}_{\lambda}}{\longrightarrow} & \mathbf{Z}/n(t)\mathbf{Z} \end{array}$$

Let u_l denote the image of γ_l by the isomorphism $\Gamma_l \longrightarrow (\mathbf{Z}/l\mathbf{Z})^*$. Given κ in K^* , let $\operatorname{red}_{\lambda}(\kappa) \in k_{\lambda}^*$ be the reduction of $\kappa \mod \lambda$, in the residue field $k_{\lambda} = \mathbf{Z}/l\mathbf{Z}$. Finally, let

$$\log_{u_l} : k_{\lambda}^* \longrightarrow \mathbf{Z}/(l-1)\mathbf{Z}$$
(35)

be the logarithm map to the base u_l . The following proposition contains the information that we will need on the ideal factorization of the $\kappa(T)$.

Proposition 6.4 .

1. If l does not divide T, then $\tilde{v}_{\lambda}(\kappa(T)) = 0$.

2. If l is split in K_T/\mathbf{Q} , then

$$\tilde{v}_{\lambda}(\kappa(Tl)) = -\log_{u_l}(\operatorname{red}_{\lambda}(\kappa(T))) \pmod{n(Tl)}.$$

Proof:

1. If l does not divide T, then λ is unramified in K_T/K , and hence the valuation map \tilde{v}_{λ} extends from $K^*/K^{*n(T)}$ to $K^*_T/K^{*n(T)}_T$. But clearly $\tilde{v}_{\lambda}(\beta(T)) = 0$, since $\beta(T)$ is a unit in K^*_T .

2. Let λ' be a prime of K_T above λ , and let λ'' be the prime of K_{Tl} above λ' . Let $v_{\lambda'}$ (resp. $v_{\lambda''}$) be the valuations on K_T (resp K_{Tl}) normalized to be 1 on uniformizing elements, so that

$$v_{\lambda'}(\kappa) = \frac{1}{l-1} v_{\lambda''}(\kappa), \quad \kappa \in K_T^*.$$
(36)

Writing

$$\kappa(Tl) = \beta(Tl)\rho^{-n(Tl)}, \quad \rho \in K_{Tl}, \tag{37}$$

and using the fact that $\beta(Tl)$ is a unit, one finds

$$v_{\lambda}(\kappa(Tl)) = -\frac{n(Tl)}{l-1} v_{\lambda''}(\rho).$$
(38)

By definition of u_l , one has

$$v_{\lambda''}(\rho) = \log_{u_l}(\operatorname{red}_{\lambda''}((\gamma_l - 1)\rho)) \pmod{l-1}.$$
(39)

But

$$(\gamma_l - 1)\rho = \frac{1}{n(Tl)} [(\gamma_l - 1)\beta(Tl)]$$

=
$$\frac{1}{n(Tl)} [(l - 1)D_T\alpha(Tl) + (1 - \sigma_{l,T}^{-1})D_T\alpha(T)]$$

=
$$\frac{l - 1}{n(Tl)} D_T\alpha(Tl), \text{ since } \sigma_{l,T} = 1.$$

Hence by prop. 5.2,

$$\operatorname{red}_{\lambda''}((\gamma_l - 1)\rho) = \operatorname{red}_{\lambda'}\left(\frac{l-1}{n(Tl)} \mathcal{D}_T \alpha(T)\right),\tag{40}$$

and hence

$$\log_{u_l} \operatorname{red}_{\lambda''}((\gamma_l - 1)\rho) \equiv \log_{u_l} \operatorname{red}_{\lambda'}\left(\frac{l-1}{n(Tl)}\beta(T)\right) \pmod{l-1}.$$
 (41)

Combining equations (38), (39) and (41), one obtains

$$\tilde{v}_{\lambda}(\kappa(Tl)) \equiv -\log_{u_l}(\operatorname{red}_{\lambda}\kappa(T)) \pmod{n(Tl)}$$
(42)

as desired.

If M is a **Z**-module and m belongs to M, we say that $n \in \mathbf{Z}$ divides m if there exists $m' \in M$ with $n \cdot m' = m$. Given a rational prime p, one defines $\operatorname{ord}_p(m)$ to be the integer M such that p^M divides m, but p^{M+1} does not. (If this integer does not exist one sets $\operatorname{ord}_p(m) = \infty$.) Recall that $C_S(K)$ is defined to be the quotient of the ideal class group of K by the subgroup generated by the prime ideals lying above S, and that $h_S(K)$ denotes its order. The main result of Thaine and Kolyvagin gives a bound on the order of $C_S(K)$ in terms of the divisibility of the elements $\kappa(S)$.

Theorem 6.5 (Thaine, Kolyvagin) The greatest common divisor of n(S)and $h_S(K)$ divides $\kappa(S)$.

Proof: We prove this by induction on $h_S(K)$. If $h_S(K) = 1$, then the theorem is trivially true. Otherwise, choose a prime p dividing $h_S(K)$. Suppose that $\operatorname{ord}_p(\kappa(S)) = M_0 < \infty$, and let $M = M_0 + 1$. We must whow that p^M does not divide $\operatorname{gcd}(n(S), h_S(K))$. If p^M does not divide n(S), we are done. Hence, suppose that p^M divides n(S). (So that in particular, p is odd). Now, choose a prime l in S not dividing S, such that

- 1. *l* splits in K/\mathbf{Q} ; let λ denote a prime of K lying above it.
- 2. $l \equiv 1 \pmod{P^M}$ (i.e., l splits in $\mathbf{Q}(\mu_{p^M})/\mathbf{Q}$).
- 3. $\operatorname{ord}_p(\operatorname{red}_\lambda(\kappa(S))) = M_0.$
- 4. The image of λ in $C_S(K) \otimes \mathbf{Z}_p$ is non trivial, and the exact sequence

$$0 \longrightarrow \langle \lambda \rangle \longrightarrow C_S(K) \otimes \mathbf{Z}_p \longrightarrow C_{Sl}(K) \otimes \mathbf{Z}_p \longrightarrow 0$$

is split (and hence in particular $\operatorname{ord}_p(\lambda) = 0$).

Let $F = K(\mu_{p^M}, \kappa(S)^{1/p^M})$. Conditions 2 and 3 are equivalent to the condition that $\operatorname{Frob}_{\lambda}$ in $\operatorname{Gal}(F/K)$ belongs to the subgroup $\operatorname{Gal}(F/K(\mu_{p^M}))$ and is non-trivial. Condition 4 is equivalent to a condition on $\operatorname{Frob}_{\lambda}$ in $\operatorname{Gal}(H_S/K)$ where H_S is a non-trivial subfield of the Hilbert class field H of K. Since F and H are linearly disjoint over K (as can be seen for example by ramification considerations), it follows from the Chebotarev density theorem that conditions 1-4 can be imposed simultaneously.

Let $m = \operatorname{ord}_p(\kappa(Sl))$. By combining proposition 6.4 with condition 3 satisfied by l, one has

$$\operatorname{ord}_{p}(\tilde{v}_{\lambda}(\kappa(Sl))) = M_{0}, \tag{43}$$

and hence a fortiori $m \leq M_0$. Moreover, since p^M divides l-1, it also divides n(Sl). Let ρ be the natural projection of $\kappa(Sl)$ to K^*/K^{*p^M} , and let $\kappa'(Sl) = \rho^{1/p^m}$ which is well defined in $K^*/K^{*p^{M-m}}$. By equation 43 and condition 3, one has

$$\tilde{v}_{\lambda}(\kappa'(Sl)) = u \cdot p^{M_0 - m},\tag{44}$$

where u is a unit in $\mathbf{Z}/p^{M-m}\mathbf{Z}$. Hence p^{M_0-m} annihilates the class of λ in $C(S) \otimes \mathbf{Z}/p^{M-m}\mathbf{Z}$. Because of condition 4, we have

$$\#\langle\lambda\rangle \le p^{M_0-m}.\tag{45}$$

In particular, $m < M_0$, and by the induction hypothesis,

$$#C_{Sl}(K) \otimes \mathbf{Z}_p \le p^m.$$
(46)

Combining the inequalities (45) and (46) gives

$$#C_S(K) \otimes \mathbf{Z}_p \le p^{M_0},\tag{47}$$

so that p^M does not divide $h_S(K)$, as was to be shown.

7 Formal properties of $\theta'(\omega, S)$

We now turn to the study of the element $\theta'(\omega, S)$ defined by

$$\theta'(\omega, S) = \sum_{\sigma \in \Gamma_S} \sigma \alpha(S) \otimes \sigma \in K_S^* \otimes \mathbf{Z}[\Gamma_S].$$
(48)

Given

$$\gamma \in \operatorname{Gal}(K_S/\mathbf{Q}) = \Gamma_S \times \operatorname{Gal}(K/\mathbf{Q}),$$

let $\gamma(T)$ denote its natural projection in Γ_T .

The group $\operatorname{Gal}(K_S/\mathbf{Q})$ acts on the left of $K_S^* \otimes \mathbf{Z}[\Gamma_S]$ by the Galois action, and Γ_S acts on the right by multiplication in the group ring.

Lemma 7.1 $\gamma \theta'(\omega, S) = \omega(\gamma) \cdot \theta'(\omega, S) \cdot \gamma(S)^{-1}$.

Proof: A change of variable argument.

Given a divisor T of S, let $P_{S,T} : K_S^* \otimes \mathbf{Z}[\Gamma_S] \longrightarrow K_S^* \otimes \mathbf{Z}[\Gamma_S]$ be the map induced by the projection $\Gamma_S \longrightarrow \Gamma_T \subset \Gamma_S$.

Lemma 7.2

$$P_{S,T}(\theta'(\omega,S)) = \theta'(\omega,T) \cdot \prod_{l|S/T} (1 - \omega(l) \cdot \sigma_{l,T}).$$

Proof: One has

$$P_{S,T}(\theta'(\omega,S)) = \sum_{\sigma \in \Gamma_T} \left(\mathbf{N}_{S/T} \cdot \sigma \alpha_S \otimes \sigma \right).$$
(49)

Hence by proposition 5.1

$$P_{S,T}(\theta'(\omega,S)) = \left(\prod_{l|S/T} (1 - \sigma_{l,T}^{-1})\right) \theta'(\omega,T),$$
(50)

which is equal to $\theta'(\omega, T) \cdot \prod (1 - \omega(l)\sigma_{l,T})$ by lemma 7.1.

8 The order of vanishing of $\theta'(\omega, S)$

Let us write S as S = PQ, where $P = l_1 \cdots l_s$ is a product of split primes in K/\mathbf{Q} , and Q is a product of inert primes. When σ runs over Γ_S , write

$$\sigma = \sigma_1 \cdots \sigma_s \tau, \tag{51}$$

for its unique decomposition as a product with $\sigma_i \in \Gamma_{l_i}$, and $\tau \in \Gamma_Q$.

Lemma 8.1

$$\theta'(\omega, S) = \sum_{\sigma \in \Gamma_S} \sigma \alpha_S(\sigma_1 - 1) \cdots (\sigma_s - 1) \tau - \sum_{T \mid P, T \neq P} \left(\mu(P/T) \cdot \theta'(\omega, TQ) \cdot \prod_{l \mid P/T} (1 - \sigma_{l, TQ}) \right).$$

Proof: By direct computation,

$$\sum_{\sigma \in \Gamma_S} \sigma \alpha_S(\sigma_1 - 1) \cdots (\sigma_s - 1) \tau = \theta'(\omega, S) + \sum_{T \mid T \neq P} \mu(P/T) P_{S,TQ}(\theta'(\omega, S)).$$
(52)

The formula now follows from lemma 7.2.

We are now ready to prove theorem 4.2.

Theorem 4.2 (Order of vanishing) The element $\theta'(\omega, S)$ belongs to $K_S^* \otimes I^s = K_S^* \otimes I^{r-1}$.

Proof: By induction on s, using lemma 8.1 for the induction step.

9 The leading coefficient

We now turn to the study of the element $\tilde{\theta}'(\omega, S)$ defined by projecting $\theta'(\omega, S)$ to the value group $K_S^* \otimes (I_2^{r-1}/I_2^r)$.

Lemma 9.1 The leading coefficient $\tilde{\theta}'(\omega, S)_2$ belongs to the subgroup of elements in $(K_S^* \otimes (I_2^{r-1}/I_2^r))^{\Gamma_S}$ fixed by the left (Galois) action of Γ_S .

Proof: Given σ in Γ_S , by lemma 7.1 we have

$$(\sigma - 1)\tilde{\theta}'(\omega, S)_2 = \tilde{\theta}'(\omega, S)_2(\sigma^{-1} - 1),$$
(53)

and lemma 9.1 follows.

Lemma 9.2 Let Γ be a finite abelian group of odd order, and let Γ_S act on the module $K_S^* \otimes \Gamma$ by the Galois action. Then the natural map

$$K^* \otimes \Gamma \longrightarrow (K^*_S \otimes \Gamma)^{\Gamma_S}$$

is an isomorphism.

Proof: By decomposing Γ as a direct product of cyclic groups, one reduces the proof of lemma 9.2 to the case where Γ is cyclic of odd order n. If K_S contains no n-th roots of unity, then we are in the situation of lemma 6.3. In general, one uses the fact that the restriction map

$$H^1(K,\mu_n) \longrightarrow H^1(K_S,\mu_n)^{\Gamma_S}$$
 (54)

is an isomorphism.

Lemma 9.3 $n(S)(\gamma_{l_1}-1)\cdots(\gamma_{l_s}-1)=0 \pmod{I_2^r}.$

Proof: We can write $(\gamma_{l_1} - 1) \cdots (\gamma_{l_s} - 1)$ as a sum of terms of the form $(\gamma_{l_1}^{(p)} - 1) \cdots (\gamma_{l_s}^{(p)} - 1) \pmod{I_2^r}$, where the $\gamma_{l_i}^{(p)}$ are of order a power of p (p an odd prime) and at least one of the $\gamma_{l_j}^{(p)}$ is of order exactly $q = p^{\operatorname{ord}_p(n(S))}$. Hence it suffices to show the theorem when n(S) = q is a power of a prime. In that case, one has

$$0 = \gamma_{l_j}^q - 1 = \sum_{i=1}^q \binom{q}{i} (\gamma_{l_j} - 1)^i,$$

so that $q(\gamma_{l_i} - 1) \in I_2^2$. The result follows.

The following proposition gives an inductive formula for the leading coefficient $\tilde{\theta}'(\omega, S)_2$.

Proposition 9.4 .

$$\tilde{\theta}'(\omega,S)_2 = 2^{\#(l|Q)}\kappa(P) \otimes (\gamma_{l_1}-1)\cdots(\gamma_{l_s}-1) \\ -\sum_{T|P,T\neq P} \mu(P/T) \cdot \tilde{\theta}'(\omega,T) \cdot \prod(1-\sigma_{l,T}).$$

Proof: This follows from lemma 8.1 together with the fact that

$$\sum_{\sigma \in \Gamma_S} \sigma \alpha_S \otimes (\sigma_1 - 1) \cdots (\sigma_s - 1) \tau = 2^{\#(l|Q)} \beta(P) \otimes (\gamma_{l_1} - 1) \cdots (\gamma_{l_s} - 1)$$
(55)

in $K_S^* \otimes (I^{r-1}/I^r)$. Because $(\gamma_{l_1} - 1) \cdots (\gamma_{l_s} - 1)$ is killed by n(P) in I_2^{r-1}/I_2^r (lemma 9.3), one can replace $\beta(P)$ by $\kappa(P)$ in the formula.

In the remainder of this section we will prove theorem 4.5 which we first recall:

Theorem 4.5

- 1. Conjecture 4.3 is true when r = 1.
- 2. $\tilde{\theta}'(\omega, S)_2$ belongs to $K^* \otimes I_2^{r-1}/I_2^r$.
- 3. If $gcd(h_S(K), n(T)) = 1$ for all T|S, then $\tilde{\theta}'(\omega, S)_2$ belongs to $\mathcal{O}_s^* \otimes (I_2^{r-1}/I_2^r)$.
- 4. $h_S(K)$ divides $\tilde{\theta}'(\omega, S)_2$.
- 5. Suppose that $\Gamma_S = \Gamma_l$ is cyclic, and that l is split in K/\mathbf{Q} so that r = 2. Let λ be a prime of K above l, and let $k_{\lambda} \simeq \mathbf{F}_l$ denote the residue field at λ . If the fundamental unit of K/\mathbf{Q} is a generator for k_{λ}^* , and gcd(h(K), n(l)) = 1, then

$$\theta'(\omega, l)_2 = \pm 2h_l R_l \pmod{I_2^2}.$$

Proof:

1. When r = 1, we have $\tilde{\theta}'(\omega, S) = P_{S,1}(\theta'(\omega, S))$, where $P_{S,1} : \mathbb{Z}[\Gamma_S] \longrightarrow \mathbb{Z}$ is the augmentation map. By lemma 7.2,

$$P_{S,1}(\theta'(\omega,S)) = \alpha(1) \prod_{l|S} (1-\omega(l)) = 2^{\#(l|S)} \alpha(1),$$
 (56)

since all the *l* dividing *S* are inert in K/\mathbf{Q} . We know from Dirichlet's analytic class number formula that $\alpha(1) = 2h_1R_1$, and hence the result follows.

- 2. Combine lemmas 9.1 and 9.2.
- 3. By prop 6.4, we have $v_{\lambda}(\kappa(T)) = 0 \pmod{n(T)}$ for all places λ which do not lie above S. Let $(K^*/K^{*n(T)})(S)$ denote the subgroup of elements in $K^*/K^{*n(T)}$ satisfying this property. There is a natural exact sequence

$$0 \longrightarrow \mathcal{O}_{S}^{*}/\mathcal{O}_{S}^{*n(T)} \longrightarrow (K^{*}/K^{*n(T)})(S) \longrightarrow C_{S}(K) \otimes \mathbf{Z}/n(T)\mathbf{Z}.$$
 (57)

The assumption that $(h_S(K), n(T)) = 1$ for all T|S implies that the natural map from $\mathcal{O}_S^*/\mathcal{O}_S^{*n(T)}$ to $(K^*/K^{*n(T)})(S)$ is an isomorphism, so that the $\kappa(T)$ are S-units modulo n(T)-th powers. The result follows from prop. 9.4.

- 4. This is a direct consequence of theorem 6.5 combined with prop. 9.4.
- 5. The fact that $gcd(h_l(K), n(l)) = 1$ implies, by the previous fact, that $\kappa(l)$ is an *l*-unit of K modulo n(l)th powers, and hence $\tilde{\theta}'(\omega, l)$ belongs to $\mathcal{O}_l^* \otimes (I_2/I_2^2)$. We want to prove the equality of two objects in $\mathcal{O}_l^* \otimes (I/I^2)$. For this, we use two maps:

$$\phi_1: \mathcal{O}_l^* \otimes (I_2/I_2^2) \longrightarrow I_2/I_2^2, \quad \phi_2: \mathcal{O}_l^* \otimes (I_2/I_2^2) \longrightarrow I_2^2/I_2^3.$$
(58)

The first is induced from the map $v_{\lambda} : \mathcal{O}_{l}^{*} \longrightarrow \mathbf{Z}$, and the second from the map $\operatorname{rec}_{\lambda} : \mathcal{O}_{l}^{*} \longrightarrow \Gamma_{l} \longrightarrow I_{2}/I_{2}^{2}$ given by the reciprocity law of local class field theory. Because $\operatorname{gcd}(h(K), n(l)) = 1$, the kernel of the map ϕ_{1} is just $\mathcal{O}_{K}^{*} \otimes (I_{2}/I_{2}^{2})$. The assumption that the fundamental unit for K is a generator of k_{λ}^{*} means that ϕ_{2} is injective on $\mathcal{O}_{K}^{*} \otimes (I_{2}/I_{2}^{2})$. Hence, if two elements in $\mathcal{O}_{l}^{*} \otimes (I_{2}/I_{2}^{2})$ have the same image by ϕ_{1} and ϕ_{2} , then they are equal.

Recall that $u_l \in k_{\lambda}^*$ denotes the element which corresponds to the chosen generator γ_l of Γ_l by the reciprocity law of local class field theory. By prop. 9.4, we have

$$\tilde{\theta}'(\omega, l)_2 = \kappa(l) \otimes (\gamma_l - 1).$$
(59)

Hence, by prop. 6.4,

$$\phi_1(\tilde{\theta}'(\omega,l)_2) = v_\lambda(\kappa(l)) \otimes (\gamma_l - 1) = \log_{u_l}(\kappa(1))(\gamma_l - 1).$$
(60)

Let u be a fundamental unit for K. By Dirichlet's class number formula, we can write

$$\kappa(1) = u^{\pm 2h},\tag{61}$$

so that $\log_{u_l}(\kappa(1)) = \pm 2h \log_{u_l}(u)$. It follows that

$$\phi_1(\tilde{\theta}'(\omega, l)_2) = \pm 2h \log_{u_l}(u)(\gamma_l - 1) = \pm 2h(\operatorname{rec}(u) - 1).$$
(62)

Since $\kappa(l) = \beta(l) x^{n(l)}$, where x belongs to K_l^* , and since

$$\operatorname{norm}_{K_l/K}(\beta(l)) = 1$$

by prop. 5.1, we have by taking norms:

$$\kappa(l)^{l-1} = \operatorname{norm}_{K_l/K} x^{n(l)}.$$
(63)

Hence $\kappa(l)^{(l-1)/n(l)} = \pm \operatorname{norm}_{K_l/K} x$, so that $\kappa(l)^{2^a}$ is a norm for some $a \ge 0$. Since norms lie in the kernel of the local reciprocity map, we find that

$$\phi_2(\tilde{\theta}'(\omega, l)_2) = 0. \tag{64}$$

We choose a **Z**-basis for \mathcal{O}_l^* , given by a fundamental unit u and an l-unit u(l). This can be done in such a way that

$$v_{\lambda}(u(l)) = h/h_l, \tag{65}$$

since this number is the order of the class of λ in the ideal class group of K. The regulator R_l can be written explicitly as

$$R_l = \pm \left(u \otimes \left(rec(u(l)) - 1 \right) - u(l) \otimes \left(rec(u) - 1 \right) \right).$$
(66)

Hence,

$$\phi_1(2h_l R_l) = \pm 2h_l v_\lambda(u(l)) \otimes (\operatorname{rec}(u) - 1) = \pm 2h(\operatorname{rec}(u) - 1).$$
(67)

It is immediate from the definition of R_l that

$$\phi_2(4h_l R_l) = 0. (68)$$

Combining equations (62), (64), (67), and (68) we find that

$$\hat{\theta}'(\omega, l)_2 = \pm 2h_l R_l \pmod{I_2^2},$$

as claimed.

References

- [DR] P. Deligne and K. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), pp. 227-286.
- [Gr] B.H. Gross, On the values of abelian L-functions at s = 0, Journal of the Faculty of Science, the University of Tokyo, Sect. IA, Math. Vol. 35, No. 1, pp. 177-197, March, 1988.

- [H1] Alfred W. Hales, Augmentation terminals of finite abelian groups, in SLN 1006, 1983, pp. 720-733.
- [H2] Alfred W. Hales, *Stable augmentation quotients of abelian groups*, Pacific Journal of Math, vol 118, no. 2, 1985, pp. 401-410.
- [Iw] K. Iwasawa, On \mathbb{Z}_l -extensions of algebraic number fields, Annals of Mathematics, second series, vol. 98, no. 2, 1973.
- [Ko] V.A. Kolyvagin, *Euler Systems*, (1988). To appear in a Birkhäuser volume in honor of Grothendieck.
- [La] S. Lang, Cyclotomic fields I and II, combined second edition, GTM 121, Springer-Verlag 1990.
- [MT] B. Mazur and J. Tate, *Refined conjectures of the "Birch and Swinnerton-Dyer type"*, Duke Math Journal, Vol. 54, No. 2, 1987, p. 711.
- [Pa] I.B.S. Passi, Group rings and their augmentation ideals, SLN 715, Berlin-New York, 1979.
- [Ru] K.C. Rubin, Global units and ideal class groups, Invent. Math. 89, 511-526, (1987).
- [Sch] R. Schoof, preprint.
- [Th] F. Thaine, On the ideal class groups of real abelian number fields, Ann. of Math. 128 (1988), pp. 1-18.
- [Wa] L. Washington, Introduction to cyclotomic fields, GTM 83, New York, Springer-Verlag (1982).