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1 Introduction

Let E/Q be a modular elliptic curve with the modular parametrization:

φ : X0(N) → E,

where X0(N) is the complete curve over Q which classifies pairs of elliptic curves
related by a cyclic N -isogeny. The curve E is equipped with the collection of
Heegner points defined over ring class fields of suitable imaginary quadratic
fields.

More precisely, let K be an imaginary quadratic field in which all rational
primes dividing N are split and let O be the order of K of conductor c prime to
N . There exists a proper O-ideal N such that the natural projection of complex
tori

C/O → C/N−1 (1)

is a cyclic N -isogeny. The moduli interpretation of X0(N) identifies the diagram
(1) with a point of X0(N). By the theory of complex multiplication, this point
is defined over H, the ring class field of K of conductor c. Let α ∈ E(H) be its
image under φ.

The group G = Gal(H/K) acts naturally on the Z-module E(H), and
E(H) ⊗ C can be decomposed as a direct sum of eigenspaces under this ac-
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tion:
E(H)⊗C = ⊕χ∈ĜE(H)χ,

where Ĝ = Hom(G,C∗) is the group of complex characters of G. Let

eχ =
1

#G

∑
σ∈G

χ−1(σ)σ

be the idempotent in the group ring giving the projection onto the χ-eigenspace.
Gross and Zagier [3] proved the following limit formula when c = 1 (so that

H is the Hilbert class field of K):

L
′
(E/K,χ, 1) = aĥ(eχα),

where L(E/K,χ, s) is the L-series of E/K twisted by the character χ, a is a non-
zero invariant depending on E and K, and ĥ is the canonical height extended by
linearity to E(H)⊗C. In view of the conjecture of Birch and Swinnerton-Dyer,
Gross formulated the following:

Conjecture 1.1 If eχα 6= 0, then dimC E(H)χ = 1.

In his paper on Euler systems [4], Kolyvagin proves the above conjecture when
χ is the trivial character. We will apply Kolyvagin’s descent techniques to prove
the general case when E has no complex multiplications.

2 Preliminaries

Our strategy will be to do a p-descent for a suitable prime p. We choose p so
that

1. p6 |6cNDisc(K),

2. Q(Ep)/Q is a GL2(Fp)-extension,

3. p ≡ 1 (mod #G).

These conditions can be imposed simultaneously, provided that E has no com-
plex multiplications, by combining the “open image” theorem of Serre [8] with
the result of Dirichlet on primes in arithmetic progressions. The following lemma
is a simple consequence of conditions 1 and 2:

Lemma 2.1 If L is an extension of Q which is unramified at all primes dividing
Np, then Gal(L(Ep)/L) ' GL2(Fp).
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Proof: The extension Q(Ep)/Q is ramified only at places dividing Np, and
hence Q(Ep) and L are linearly disjoint over Q (the intersection of these two
fields is an unramified extension of Q, which is Q by Minkowski’s theorem).
Hence Gal(L(Ep)/L) = Gal(Q(Ep)/Q) = GL2(Fp).

By condition 3, any Fp[G]-module M splits as a direct sum of primary
representations:

M = ⊕χ∈ĜMχ,

where χ ranges over the Fp-valued characters of G. (By choosing a reduction
map

Z[µ#G] → Fp,

we identify complex and Fp-valued characters of G.) Notice that if eχα is non-
zero in E(H)⊗C, then it is also non zero in E(H)⊗ Fp for almost all primes
p. Furthermore, lemma 2.1 implies that Ep(H) = 0 and hence

dimC E(H)χ = dimFp
(E(H)⊗ Fp)χ.

Conjecture 1.1 is thus reduced to the following “mod p” analogue:

Theorem 2.2 If eχα 6= 0 in E(H)⊗ Fp = E(H)/pE(H), then

dimFp
(E(H)/pE(H))χ = 1.

Let us introduce some conventions and results that will be used throughout.
We fix an algebraic closure Q̄ of Q which contains all of the field extensions
which will be introduced later on. Let τ ∈ Gal(Q̄/Q) be a fixed complex
conjugation corresponding to a choice of an embedding Q̄ ↪→ C, and denote by
[τ ] its conjugacy class. It will be convenient to identify τ with its images in finite
quotients of Gal(Q̄/Q). If M is a module on which τ acts, the superscripts +
and − are used to designate projection onto the eigenspaces for the action of τ

(we assume that 2 is invertible in EndZ(M), so that M decomposes as a direct
sum of such eigenspaces):

M± = {m ∈ M |τm = ±m}.

Also, if x ∈ M and X ⊂ M , we let

x± =
1
2
(x± τx),

X± = {x±|x ∈ X}.
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For conciseness, we shall occasionally use the notation M/p to denote the Fp-
vector space M ⊗ Fp = M/pM .

Let H[n] ⊂ Q̄ denote the ring class field of K associated to the order On of
conductor cn, where (n, N) = 1, let Gn = Gal(H[n]/H), and let α(n) be the
Heegner point corresponding to the N -isogeny

C/On → C/(On ∩N )−1.

By class field theory, Gn is canonically isomorphic to (O/nO)∗/(Z/nZ)∗, and
complex conjugation acts on the group Gal(H[n]/K) by

τxτ−1 = x−1. (2)

Let ε = ±1 denote the negative of the sign in the functional equation for
L(E/Q, s). The following describes the action of τ on the Heegner points in
E(H[n])/p:

Lemma 2.3 There exists σ0 ∈ Gal(H[n]/K) such that τα(n) = εσ0α(n) in
E(H[n])/p. Hence, τeχα(n) = εχ̄(σ0)eχ̄α(n).

Proof: In [2], it is observed that

τα(n) = εσ0α(n) + torsion,

for some σ0 ∈ Gal(H[n]/K). By lemma 2.1, the group E(H[n]) has no p-torsion,
and the first statement follows. The second is a consequence of the identity:

τeχ = eχ̄τ,

which results from equation (2).
Kolyvagin’s idea is to construct elements in the dual of the Selmer group,

Seldual
p (E/H) = Hom(Selp(E/H),Fp),

via local Tate duality, and to control the size of this module by certain global
cohomology classes related to Heegner points. Section 3 is devoted to the con-
struction and study of these “Heegner cohomology classes”.

3 The Heegner cohomology classes

Definition 3.1 A rational prime l is said to be special if l6 |Npc and

Frobl(K(Ep)/Q) = [τ ].
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Observe that, if l is special, then

al ≡ l + 1 ≡ 0 (mod p), (3)

where al denotes the trace of Frobenius acting on the Tate module Tp(E). This
follows from comparing the minimal polynomials of Frobl and τ acting on Ep.

Let n denote a squarefree product of special primes, and let l be a special
prime not dividing n. The prime l is inert in K by definition; let λ = (l) be
the unique prime of K above it. The prime λ splits completely in H[n]/K (its
image in Gn = (O/nO)∗/(Z/nZ)∗ by the Artin map is trivial), and any prime
λ

′
of H[n] above λ is totally ramified in H[nl]. Fix a choice of λ

′
, and denote by

λ
′′

the unique prime of H[nl] above it. The following proposition summarizes
the properties of Heegner points that will be needed in the constructions:

Proposition 3.2 The system of Heegner points α(n) ∈ H[n] satisfies:

1. Tr H[nl]/H[n]α(nl) = alα(n);

2. α(nl) ≡ Frobλ′ α(n) (mod λ
′′
).

These two properties are axiomatized by Kolyvagin in his definition of “Euler
sytems” with congruence [4, §1]. For a proof, see for example [2, prop. 3.7]

Since Hn is the compositum of the extensions Hl which are linearly dis-
joint over H, we have a canonical isomorphism Gn =

∏
l|n Gl, allowing us to

view Gl as a subgroup of Gn. By class field theory, each Gl is isomorphic to
(Ok/λ)∗/(Z/l)∗. Choose for each l a generator σl of Gl, and let

Tr l =
l∑

i=0

σi
l ∈ Fp[Gl]

Dl =
l∑

i=1

iσi
l ∈ Fp[Gl]

Dn =
∏
l|n

Dl ∈ Fp[Gn].

Lemma 3.3 Dnα(n) ∈ (E(H[n])/p)Gn .

Proof: For all primes l dividing n,

(σl − 1)Dl = 1 + l − Tr l = −Tr l,
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where the last equality follows from eq. (3). Combining prop. 3.2 with eq. (3),
one has:

−Tr lα(n) = −alα(n/l) = 0.

Hence σlDnα(n) = Dnα(n); since the σl generate Gn, the lemma follows.
By lemma 2.1, Ep(H[n]) = 0, and the following sequence is exact:

0 → E(H[n])
p→ E(H[n]) → E(H[n])/p → 0.

Taking Gn-invariants yields the exact sequence of Fp[G]-modules:

0 → E(H)/pE(H) → (E(H[n])/p)Gn → H1(Gn, E(H[n]))p → 0.

Let ν(n) be the image of Dnα(n) in H1(Gn, E(H[n]))p. By abuse of notation,
we identify ν(n) with its image in H1(H,E)p under inflation.

Let w be a prime of K lying above the rational prime v. There is a natural
localization map

resw : H → ⊕w′ |wHw′ .

By abuse of notation, we identify the map resw with its image by any functor
(from the category of étale algebras to the category of Fp-vector spaces). The
context will make it clear what the source and target of resw are. Denote by
Fw′ the residue field of Hw′ .

Lemma 3.4 The behaviour of the class ν(n) under the localization maps is
given by:

1. If v does not divide n, then reswν(n) = 0.

2. For l special, there is a canonical G-equivariant isomorphism

T : ⊕λ′ |λH1(Hλ′ , E)p ' ⊕λ′ |λHom(µp(Fλ′ ), Ep(Fλ′ ))

such that, when l divides n, the homomorphism T (resλν(n)) maps each
µp(Fλ′ ) onto the subgroup of Ep(Fλ′ ) generated by

(
(l + 1)Frobl − al

p
)Dn/lα(n/l),

where we identify the point Dn/lα(n/l) with its reduction mod λ
′
.
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When v is a place of good reduction for E, part 1 follows from standard co-
homological arguments, using the fact that ν(n) is inflated from a class in
H1(H[n]/H,E) and that the w

′
are unramified in H[n]/H. The general case is

proved in [2, prop. 6.2]. The isomorphism in part 2 is explicitely constructed in
[2, prop. 6.2], using local class field theory.

Part 2 of lemma 3.4 will be applied via the following corollary:

Corollary 3.5 There is a G-equivariant isomorphism

⊕λ′ |λH1(Hλ′ , E)p → ⊕λ′ |λE(Fλ′ )/p

which sends resλν(n) to resλDn/lα(n/l).

(Observe that resλDn/lα(n/l) is well-defined in ⊕λ′ |λE(Fλ′ )/p.) Using the map
T of lemma 3.4, a choice of generators for µp(Fλ′ ) defines a (non-canonical)
isomorphism

i : ⊕λ′ |λH1(Hλ′ , E)p
∼→ ⊕λ′ |λEp(Fλ′ ).

By choosing the generators appropriately, we may ensure that i sends resλν(n)
to

(
(l + 1)Frobl − al

p
)resλDn/lα(n/l).

The operator W = ( (l+1)Frobl−al

p ) induces an isomorphism E(Fλ′ )/p → Ep(Fλ′ ).
(This can be shown by decomposing E(Fλ′ ) into eigencomponents for the ac-
tion of the involution Frobl. The trivial and non-trivial components are of order
l + 1 − al and l + 1 + al respectively, and hence W is an isomorphism on the
eigencomponents.) The composition W−1i gives the desired map.

4 Local Tate duality: generating Seldual
p (E/H)

Local Tate duality [6] gives a perfect pairing

< >λ′ : E(Hλ′ )/p×H1(Hλ′ , E)p → Z/pZ

which identifies ⊕λ′ |λH1(Hλ′ , E)p with (⊕λ′ |λE(Hλ′ )/p)dual. The p–Selmer
group Selp(E/H) consists of the cohomology classes s ∈ H1(H,Ep) whose re-
strictions resv(s) ∈ H1(Hv, Ep) belong to E(Hv)/p for all places v of H, where
we view E(Hv)/p as a subspace of H1(Hv, Ep) by using the local p-descent exact
sequence

0 → E(Hv)/p → H1(Hv, Ep) → H1(Hv, E)p → 0.
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Transposing the map:

resλ : Selp(E/H) → (⊕λ′ |λE(Hλ′ )/p),

and using the identification given by the local Tate pairing, we get a homomor-
phism

Ψl : ⊕λ′ |λH1(Hλ′ , E)p → Seldual
p (E/H).

Let Xl denote the image of Ψl in Seldual
p (E/H). We choose an auxiliary special

prime l1 and define the following Galois extensions of Q:

F = H[l1](Ep),

M0 = F (α/p)Gal,

M1 = F (Dl1α(l1)/p)Gal,

M = M0M1,

where the superscript “Gal” indicates taking normal closure over Q. (The rea-
sons for these definitions will become clear in the next section.) By lemma
2.1,

Gal(F/Q) = Gal(H[l1]/Q)×Gal(Q(Ep)/Q) = Gal(H[l1]/Q)×GL2(Fp).

The Galois groups V0, V1, and V of M0, M1, and M over F are Fp-vector spaces
equipped with a natural action of Gal(F/Q).

M
↗ | ↖

M0 |V M1

V0 ↖ | ↗V1

F
|
K

Given a subset U of V , define

L(U) = {l rational prime |Frobl(M/Q) = [τu], for u ∈ U}.

Note that every l ∈ L(U) is special.

Proposition 4.1 If U+ generates V +, then the Xl, with l ranging over L(U),
generate Seldual

p (E/H).
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Proof: Let s be in Selp(E/H). To prove the proposition, it suffices (by the non-
degeneracy of the local Tate pairing) to show that resλ(s) = 0 for all l ∈ L(U)
implies s = 0. Assume without loss of generality that s is in an eigenspace for
the action of τ . Let us identify s with its image by restriction in:

H1(F,Ep)Gal(F/H) ⊂ HomGal(H(Ep)/H)(Gal(M̄/F ), Ep),

where M̄ denotes the maximal abelian extension of F whose Galois group is of
exponent p. The restriction is injective because it can be written as a composi-
tion

H1(H,Ep) → H1(H(Ep), Ep)Gal(H(Ep)/H) → H1(F,Ep)Gal(H(Ep)/H).

Both arrows are injections: the kernel of the first is

H1(H(Ep)/H,Ep) = H1(GL2(Fp),F2
p) = 0,

and the kernel of the second is

HomGal(H(Ep)/H)(Gal(F/H(Ep)), Ep) = 0.

Choose a minimal Galois extension M̃ of Q containing M with the property
that s factors through Gal(M̃/F ). Let x ∈ Gal(M̃/F ) be such that x|M ∈ U . By
the Chebotarev density theorem, we may find l ∈ L(U) such that Frobl(M̃/Q) =
[τx]. The hypothesis resλ(s) = 0 means that:

s(Frobλ′ (M̃/F )) = 0,

for all primes λ
′
of M̃ above l. On the other hand, for some λ

′
above l,

Frobλ′ (M̃/F ) = (τx)2 = xτx = (x+)2,

and hence s(x+) = 0. Since U+ generates V +, the homomorphism s vanishes
on Gal(M̃/F )+. Hence the image of s is contained in an eigenspace of Ep for
the action of τ . In particular, it is a proper Gal(H[l1](Ep)/H[l1])-submodule of
Ep. Hence it is trivial, since

Gal(H[l1](Ep)/H[l1]) = GL2(Fp)

by lemma 2.1. Therefore s = 0.
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5 Global Tate duality: relations in Seldual
p (E/H)

The tool for finding relations in Seldual
p (E/H) is:

Proposition 5.1 If s ∈ Selp(E/H) and γ ∈ H1(H,E)p, then∑
w

< resws, reswγ >w= 0,

where the sum is taken over all places of H.

This proposition is an immediate consequence of the global reciprocity law for
elements in the Brauer group of H, taking into account the definition of the
local Tate duality [6].

We suppose that the auxiliary special prime l1 of the previous section satisfies
the following property:

resλ1eχ̄α 6= 0 (4)

(and hence resλ1eχα 6= 0, by lemma 2.3.) Such an l1 exists by the Chebotarev
density theorem applied to the extension H(Ep)(eχ̄α/p)/Q, using the hypothesis
that eχ̄α 6= 0 in E(H)/p. By corollary 3.5, condition (4) implies that

resλ1eχ̄ν(l1) 6= 0. (5)

We need to examine the extensions M of F defined in the previous section.
Let M χ̄

0 (resp. M χ̄
1 , M χ̄) denote the extensions F (eχ̄α/p) (resp. F (eχ̄Dl1α(l1)/p),

F (eχ̄α/p, eχ̄Dl1α(l1)/p)).

Lemma 5.2 The extensions M χ̄
0 and M χ̄

1 are linearly disjoint over F .

Proof: Indeed, linearly independent points in E(H[l1])/p give rise to linearly
disjoint extensions over F . This is because the map

E(H[l1])/p → HomGal(F/H[l1])(V,Ep)

is injective, and linearly independent elements of HomGal(F/H[l1])(V,Ep) cut out
linearly disjoint extensions over F (use the fact that Gal(F/H[l1]) ' GL2(Fp),
by lemma 2.1). Hence, if M χ̄

0 and M χ̄
1 were not linearly disjoint over F, we

would have:
eχ̄Dl1α(l1) = ueχ̄α in E(H[l1])/p, u ∈ F∗p.

The exact sequence

0 → (E(H)/p)χ̄ → (E(H[ll])/p)Gl1 ,χ̄ → H1(Gl1 , E)χ̄
p → 0

eχ̄Dl1α(l1) 7→ eχ̄ν(l1)
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and equation (5) show that this cannot happen.
We now describe the action of complex conjugation on V χ̄, by using 2.3 and

the relation τDl = −Dlτ . There are two cases:
Case 1: χ = χ̄. Complex conjugation τ acts on V χ = V χ

0 × V χ
1 = Ep × Ep by

τ(x, y)τ = (εχ(σ0)τx,−εχ(σ0)τy)

Case 2: χ 6= χ̄. Then τ does not stabilize V χ or V χ̄, but interchanges these
two components. The action of τ on

V χ
0 × V χ̄

0 × V χ
1 × V χ̄

1 ' E4
p

is given by:

τ(x, y, z, w)τ = (εχ̄(σ0)τy, εχ(σ0)τx,−εχ̄(σ0)τw,−εχ(σ0)τz)

We define a subset U of V as follows:

Case 1 : U = {(x, y)|εχ̄(σ0)τx + x and − εχ̄(σ0)τy + y generate Ep} (6)

Case 2 : U = {(x, y, z, w)|εχ(σ0)τx + y and

− εχ̄(σ0)τz + w generate Ep} (7)

Note that, in both cases, U satisfies the property of prop. 4.1. Let l be a prime
in L(U):

Lemma 5.3 The local cohomology classes resλeχ̄ν(l) and resλeχ̄ν(ll1) generate
(⊕λ′ |λH1(Hλ′ , E)p)χ̄.

Proof: Since ⊕λ′ |λH1(Hλ′ , E)p ' (⊕λ′ |λE(Hλ′ )/p)dual is isomorphic to two
copies of the regular representation as an Fp[G]-module, we have

dimFp(⊕λ′ |λH1(Hλ′ , E)p)χ̄ = 2.

The isomorphism of corollary 3.5 sends resλeχ̄ν(l) and resλeχ̄ν(ll1) to eχ̄α and
eχ̄Dl1α(l1). The frobenius condition on l in the definitions (6,7) of U show that
these two points are linearly independant in ⊕λ′ |λE(Fλ′ )/p. Hence resλeχ̄ν(l)
and resλeχ̄ν(ll1) are linearly independant, and span (⊕λ′ |λH1(Hλ′ , E)p)χ̄. We
recall that Xl is the image of (⊕λ′ |λH1(Hλ′ , E)p)dual in Selp(E/H)dual.

Proposition 5.4 The module X χ̄
l is of dimension 1 over Fp.
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Proof: By prop. 5.1 and part 1 of lemma 3.4, the kernel of the map

(⊕λ′ |λH1(Hλ′ , E)p)χ̄ → X χ̄
l

contains the non-trival element resλeχ̄ν(l). On the other hand, X χ̄
l 6= 0: it does

not vanish identically on eχ̄α, since resλeχ̄α 6= 0, and the local Tate pairing is
non-degenerate. Hence X χ̄

l is one-dimensional.

Proposition 5.5 All of the X χ̄
l are equal, for l ∈ L(U).

Proof: We show that X χ̄
l = X χ̄

l1
for all l ∈ L(U). By prop. 5.1 applied to the

Heegner class eχ̄ν(ll1), we have:

resλeχ̄ν(ll1) + resλ1eχ̄ν(ll1) = 0 in Seldual
p (E/H)χ̄.

By lemma 5.3, resλeχ̄ν(ll1) generates X χ̄
l . Hence resλ1eχ̄ν(ll1) is non-zero and

generates X χ̄
l1

, and X χ̄
l = X χ̄

l1
.

6 Conclusion of the proof

Let δ denote the coboundary map E(H)/p → H1(H,Ep). We can now show:

Theorem 6.1 The following are true:

1. Selp(E/H)χ = Fpδ(eχα);

2. E(H)/pE(H)χ = Fp(eχα).

Proof: By prop. 4.1, the X χ̄
l generate Seldual

p (E/H)χ̄ when l ranges over L(U).
On the other hand, each X χ̄

l is one-dimensional, and all the X χ̄
l are equal. Hence

dimFp
Seldual

p (E/H)χ̄ = dimFp
Selp(E/H)χ = 1,

and Selp(E/H)χ is generated by the non-zero element δ(eχα). It follows that
(E(H)/p)χ is one-dimensional, generated by the Heegner point eχα.

Remarks:

1. In [1], Gross formulates his conjecture for abelian varieties which are quo-
tients of the jacobian of the modular curve X0(N). The argument given
above extends to this more general situation. For more details, see [5].

2. For applications of the formalism of Euler systems to different arithmetic
situations, see [7].
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