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A rigid meromorphic cocycle is a class in H1(Γ,M×), where Γ := SL2(Z[1/p])
is Ihara’s group andM× is the multiplicative group of non-zero rigid meromorphic
functions on the Drinfeld p-adic upper half-plane Hp := P1(Cp)−P1(Qp), endowed
with its natural action of Γ by Möbius transformations.

It is a prototypical example of more general objects arising in a tentative “p-adic
Borcherds theory” which was briefly alluded to at the end of the lecture.

The main motivation (so far) for studying rigid meromorphic cocycles lies in
their eventual connection with explicit class field theory for real quadratic fields.
More precisely, a point τ ∈ Hp is called a real multiplication (RM) point if it
satisfies the following equivalent properties:

(1) The field Q(τ) is a real quadratic field;
(2) The stabiliser of τ in Γ is infinite.

When τ is an RM point, its stabiliser Γτ has rank one, and is generated up
to torsion by an automorph γτ ∈ Γ, which can be chosen consistently by fixing
appropriate orientations. The value of the rigid meromorphic cocycle J at τ is
defined to be

J [τ ] := J(γτ )(τ) ∈ C×p ∪ {0,∞}.
Although the rigid meromorphic function J(γτ ) depends on the choice of a rep-
resentative one-cocycle, the value of this function at τ depends only on the class
of J in cohomology. The value J [τ ] also depends only on the Γ-orbit of τ , i.e.,
J [γτ ] = J [τ ] for all γ ∈ Γ.

The stabiliser of the RM point τ in the matrix ring M2(Z[1/p]) is isomorphic
to a Z[1/p]-order, denoted O, in the real quadratic field F = Q(τ). Global class
field theory gives a canonical identification

Pic+(O) = Gal(Hτ/F ),

where Pic+(O) denotes the class group in the narrow sense of O — i.e., the Picard
group of projective O-modules equipped with an orientation at ∞. The abelian
extension Hτ of F is called the narrow ring class field attached to τ . Together
with cyclotomic fields, the narrow ring class fields generate almost the full maximal
abelian extension of F .

The following conjecture was proposed in [DV1]:

Conjecture 1. If J is a rigid meromorphic cocycle, then there is a finite exten-
sion HJ of Q — the “field of definition” of J — for which J [τ ] belongs to the
compositum HJ and Hτ , for all RM points τ of Hp.

Until recently, almost all of the evidence for Conjecture 1 has been numerical
and experimental, but recent progress based on the theory of p-adic deformations
of modular forms and their associated Galois representations has led to strong
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theoretical evidence as well, so that Conjecture 1 now appears to lie within the
scope of available techniques.

The lecture focussed first on a few simple examples of rigid meromorphic cocy-
cles and related objects:

(1) the Dedekind-Rademacher cocycle, an avatar of Siegel units;
(2) elliptic modular cocycles attached to elliptic curves of conductor p;
(3) genuine rigid meromorphic cocycles, which play the role of meromorphic

modular functions like the j-function.

It concluded by attempting to place the theory of rigid meromorphic cocycles in
the more general framework of automorphic forms on orthogonal groups.

Let A× ⊂M× be the multiplicative group of rigid analytic functions on Hp. It
turns out that there are no interesting genuine rigid analytic cocycles: the group
H1(Γ,A×) is generated by the class Jtriv given by

Jtriv

(
a b
c d

)
(z) := (cz + d),

whose value at an RM point is the fundamental unit of the associated order. A
richer class of examples is obtained by relaxing the definition and considering one-
cochains that satisfy the cocycle relation up to certain multiplicative periods. The
simplest example of such a “cocycle modulo periods” is the Dedekind-Rademacher
cocycle.

To define this cocycle, we begin by noting the canonical identification

H2(Γ,Q) = H1(Γ0(p),Q)

arising from the fact that Γ is an amalgamated product of two copies of SL2(Z)
intersecting in a subgroup that is conjugate to Γ0(p). (This in turn follows from the
transitive action of Γ on the edges of the Bruhat-Tits tree, in which the vertex and
edge stabilisers are conjugate to SL2(Z) and Γ0(p) respectively.) The Dedekind-
Rademacher two-cocycle is the class αDR ∈ H2(Γ,Z) that corresponds, under this
identification, to the Dedekind-Rademacher homomorphism ϕDR ∈ H1(Γ0(p),Z)
given by

ϕDR(γ) :=
1

2πi

∫ γz0

z0

E
(p)
2 (z), E

(p)
2 := dlog

(
∆(pz)

∆(z)

)
.

The one-cocycle ϕDR and the two-cocycle αDR thus encode the periods of the

Eisenstein series E
(p)
2 arising from the logarithmic derivative of the Siegel unit

∆(pz)/∆(z) on the open modular curve Y0(p).
The key fact underlying the construction of the Dedekind-Rademacher cocycle

is that pαDR ∈ H2(Γ,C×p ) is trivialised in the group H2(Γ,A×). The following
theorem from [DPV2] refines an earlier construction from [DD]:

Theorem 2. There is a one-cochain JDR ∈ C1(Γ,A×) satisfying

γ1JDR(γ2)÷ JDR(γ1γ2)× JDR(γ1) = pαDR(γ1,γ2), for all γ1, γ2 ∈ Γ.
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The essential triviality of H1(Γ,A×) ensures that the one co-chain JDR of The-
orem 2 is well defined, up to powers of Jtriv and one-coboundaries. Furthermore,
it satisfies the one-cocycle relation up to powers of p. Its image in H1(Γ,A×/pZ)
is therefore well-defined up to powers of Jtriv. This image is called the Dedekind-
Rademacher cocycle, and is also denoted by JDR, by a slight abuse of notation.

Theorem 3. Let τ be an RM point in Hp. Up to torsion in Qp(τ)×, the value
JDR[τ ] belongs to OHτ [1/p]×.

This proof of this theorem emerged from a gradual series of developments over
almost two decades:

1. Relation with the Gross-Stark conjecture. The relation

logp(Norm
Q2
p

Qp(JDR[τ ])) = L′p(Cτ , 0),

where Lp(Cτ , s) is the partial p-adic L-function attached to the narrow ideal class
Cτ := [1, τ ] was obtained in [DD]. This result shows the algebraicity properties
of JDR[τ ] asserted in Theorem 3 are satisfied by its norm from (F ⊗ Qp)× to
Q×p , assuming Gross’s p-adic analogue of the Stark conjecture on leading terms of
abelian L-series at s = 0 [Gr1].

2. Proof of the Gross-Stark conjecture in rank one. It was then shown in [DDP]
that the Gross-Stark conjecture is true for the first derivatives of these abelian
L-series, hence that JDR[τ ] satisfies the predicted algebraicity properties, up to
torsion and elements of (F ⊗Qp)× of norm one. What makes Gross’s p-adic ana-
logue of the Stark conjecture more approachable than the original archimedean
conjectures, which are still completely open, is the availability of the theory of
p-adic deformations of modular forms and their associated p-adic Galois represen-
tations, along with the reciprocity law of global class field theory. In a sense, these
ingredients are used to parlay class field theory for abelian extensions of F into
explicit class field theory for F .

3. The work of Dasgupta and Kakde. The ambiguity by elements of norm one in
Q×p2 is a serious limitation of the results following from [DDP]. It is addressed in

a remarkable series of recent works by Samit Dasgupta and Mahesh Kakde, who
show that the full Theorem 3 (up to torsion) would follow from Gross’s “tame
refinement” of the p-adic Gross-Stark conjecture [Gr2] and the Brumer–Stark con-
jecture. They are then able to prove these conjectures, by significantly refining
and extending the techniques of [DDP] to the tame setting.

4. Modular generating series. An ongoing project with Alice Pozzi and Jan Vonk
[DPV2] aims to give an alternate, more “genuinely p-adic” proof of Theorem 3
by realising the RM values of the Dedekind-Rademacher cocycle as the fourier
coefficients of a modular generating series. This approach is suggested by [DPV1]
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which studies the fourier coefficients of the ordinary projection of the first deriv-
ative, with respect to the weight, of the diagonal restriction of a p-adic family of
Hilbert modular Eisenstein series attached to totally odd characters of F .

The methods used to understand the RM values of JDR are somewhat round-
about, relying crucially on p-adic deformations of modular forms and their associ-
ated Galois representations. These techniques do not dispel the mystery surround-
ing the deeper arithmetic meaning of rigid meromorphic cocycles. To underscore
this point, the lecture then turned to a discussion of elliptic cocycles.

An elliptic rigid analytic cocycle can be attached to an elliptic curve E of
conductor p, or rather to its normalised newform f of weight two, whose real and
imaginary periods are encoded by two one-cocycles ϕ+

f and ϕ−f in H1(Γ0(p),Z).

Let α+
f and α−f be the corresponding two-cocycles in H2(Γ,Z). The following

trivialisation result, in which αDR is replaced by α±f , and the prime p by the Tate

period qE ∈ Q×p attached to E over Qp, was shown in [Da] to follow from the
“exceptional zero conjecture” of Mazur, Tate and Teitelbaum [MTT] proved by
Greenberg and Stevens [GS].

Theorem 4. There are one-cochains J+
f , J

−
f ∈ C1(Γ,A×) satisfying

γ1J
±
f (γ2)÷ J±f (γ1γ2)× J±f (γ1) = q

α±
f (γ1,γ2)

E , for all γ1, γ2 ∈ Γ,

up to torsion in (F ⊗Qp)×.

In particular, the one-cochains J+
f and J−f satisfy the cocycle relation up to

powers of qE and up to torsion. After raising them to a suitable integer power
to remove the torsion ambiguity, their images in H1(Γ,A×/qZE) are called the
even and odd elliptic modular cocycles attached to f , and denoted J±f by abuse of
notation.

The RM values J±f [τ ] are then canonical elements of C×p /qZE = E(Cp). The

following conjecture, an elliptic analogue of Theorem 3, was proposed in [Da].

Conjecture 5. The RM values J+
f [τ ] and J−f [τ ] belong to E(Hτ ).

The evidence for this conjecture so far is largely experimental [DP], [GMS],
and the speaker can discern no proof on the horizon: the tools used to handle the
Dedekind-Rademacher cocycle are not available in this setting, and would perhaps
need to be supplemented with a more geometric perspective on the theory of rigid
cocycles.

The lecture concluded by returning to rigid meromorphic cocycles. In contrast
with the fact that H1(Γ,A×) is essentially trivial, the following theorem from
[DV1] shows that rigid meromorphic cocycles exist in abundance:
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Theorem 6. Assume that p − 1 divides 12, i.e, p = 2, 3, 5, 7, or 13. For all
RM points τ , there is a unique Jτ ∈ H1(Γ,M×) for which the rigid meromorphic
functions Jτ (γ) have divisor supported in the Γ-orbit of τ .

In [DV1], it is conjectured that the quantity

Jp(τ1, τ2) := Jτ1 [τ2],

for pairs (τ1, τ2) of RM points (with co-prime discriminants, say) behave “in es-
sentially all respects” like the differences j(τ1) − j(τ2) of singular moduli studied
in the work of Gross and Zagier (with τ1 and τ2 CM points in the Poincaré upper
half-plane). The p-adic logarithm of Jp(τ1, τ2) can thus be envisaged as a kind of
p-adic Green’s function evaluated on the pair of RM cycles attached to τ1 and τ2.

For example, let τ1 = ϕ := (1+
√

5)/2 be the golden ratio, and τ2 = 2
√

2, which
are roots of primitive binary quadratic forms of discriminants D1 = 5 and D2 = 32
respectively. The associated ring class fields are H1 = Q(

√
5) and H2 = Q(

√
2, i).

The pair (τ1, τ2) belongs to Hp × Hp when p = 3 or p = 13, and a computer
calculation reveals that

J3(ϕ, 2
√

2) ≡ (33 + 56i)/(5 · 13) (mod 3600),

J13(ϕ, 2
√

2) ≡ (1 + 2
√
−2)/3 (mod 13100).

The table below lists the prime factorisations of the quantities (D1D2−t2)/4 when
t ranges over the even integers between 0 and 12:

t (160− t2)/4 a3(t) a13(t)
0 23 · 5 1 1
2 3 · 13 13 3
4 2232 1 1
6 31 1 1
8 23 · 3 1 1

10 3 · 5 5 1
12 22 1 1

The two rightmost columns are obtained by picking out the terms in the second
column that are divisible by 3 and 13 respectively, and taking the remaining fac-
tors. These are exactly the primes that appear in the experimentally observed
factorisations of J3(τ1, τ2) and J13(τ1, τ2). Such patterns are reminiscent of the
recipes for the factorisation of singular moduli in the theorem of Gross and Zagier
[GZ].

The restriction on p in Theorem 6 is made to ensure that the modular curve
X0(p) has genus zero, i.e., that there are no weight two cusp forms of level p. For
general primes p, there is an obstruction to producing a rigid meromorphic cocycle
with a prescribed rational RM divisor, which lies in the space of weight two cusp
forms on Γ0(p) – or equivalently, by the Shimura correspondence, in (the Kohnen
subspace of) the space M3/2(4p) of modular forms of weight 3/2 and level 4p.

Let M !!
1/2(4p) be the space of weakly holomorphic modular forms of weight 1/2
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and level 4p which are regular at all the cusps except ∞ and have integer fourier
coefficients at that cusp. The following theorem, which produces a systematic
supply of rigid meromorphic cocycles for all primes p, is part of a work in progress
[DV2]:

Theorem 7. There is an injective homomorphism

BL× : M !!
1/2(4p)→ H1(Γ,M×)

satisfying all the formal properties of Borcherds’ multiplicative “singular theta-
lift”. (Notably, the RM divisor of BL×(g) is encoded in the principal part of g.)

This result suggests the following immediate generalisation, placing the theory of
rigid meromorphic cocycles in the broader setting of p-arithmetic subgroups of
orthogonal groups. Let V be a quadratic space over Q of real signature (r, s), and
let d := r + s be its dimension. Let L ⊂ V be a Z[1/p]-lattice in V , and assume
for simplicity that it is equal to its dual. The orthogonal group Γ := O(L) of this
lattice is a p-arithmetic group which acts on the real symmetric space

X∞ := O(V )/(O(r)×O(s))

of dimension rs, as well as on the p-adic symmetric space

Xp := X̃p/C×p , X̃p := {x ∈ V ⊗ Cp with 〈x, x〉 = 0} −
⋃

〈v,v〉=1

(Qpv)⊥,

the union being taken over all vectors v ∈ V ⊗Qp of norm 1. The domain Xp can
be identified with the Cp-points of a rigid analytic space over Qp. LetM× be the
multiplicative group of non zero rigid meromorphic functions on Xp. Theorem 7
is generalised in [DV3] to give an injective homomorphism

BL× : M !!
2−d/2(4p)→ Hs(Γ,M×)

with the requisite properties, most importantly, that the divisor of BL×(g) is
related to a collection of “rational quadratic divisors” on Xp which can be read off

from the principal part of g. The construction of BL× rests crucially on the Kudla-
Millson theta kernels [KM] with coefficients in the homology of the real manifold
X∞/O(V,Z), and on the variation of these theta-kernels in p-adic families.

In the case of signature (3, 0), taking V to be the space of trace zero elements on
a definite quaternion algebra B over Q equipped with the norm form, the image of
the p-adic Borcherds lift consists of Γ-invariant meromorphic functions on Hp with
divisor supported on CM points. The rigid analytic quotient Γ\Hp is identified
with the Cp-points of a Shimura curve attached to B, thanks to the uniformisation
theory of Cerednik Drinfeld. The p-adic Borcherds lift in this case leads to a new,
“purely p-adic” proof of the theorem of Gross-Kohnen-Zagier asserting that a
generating series made from Heegner divisors of varying discriminants is a modular
form of weight 3/2.

In the case of signature (2, 1), taking V to be the space of trace zero elements in
the matrix ring M2(Q) and L := M2(Z[1/p])∩V , the image of the p-adic Borcherds
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lift is the “original” space of rigid meromorphic cocycles for Γ := SL2(Z[1/p]) that
provided the starting point for this lecture.

The case of signature (3, 1) is noteworthy in light of the “accidental” isomor-
phisms relating the orthogonal group of this signature and the Bianchi group
SL2(OK) where K is an imaginary quadratic field. That the resulting rigid mero-
morphic cocycles should have arithmetic significance is suggested by the work of
Mak Trifkovic [Tr] and of Daniel Barrera and Chris Williams [BW] on analytic
cocycles in the Bianchi setting. Peter Scholze has proposed [Sch] that (additive,
weight one) rigid analytic cocycles on the Bianchi modular group might also be
relevant for understanding the conjectural correspondence between Maass forms
with Laplace eigenvalue 1/4 and even two-dimensional Artin representations.
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