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Introduction

Algebraic number theory is first and foremost the study of diophantine equa-
tions. Such a definition is arguably too narrow for a subject whose scope
has expanded over the years to encompass an ever-growing list of fundamen-
tal notions: number fields and their class groups, abelian varieties, moduli
spaces, Galois representations, p-divisible groups, modular forms, Shimura
varieties, and L-functions, to name just a few. All of these subjects will be
broached (sometimes too briefly, for reasons having less to do with their rela-
tive importance than with limitations of time, space, and the author’s grasp
of the subject) in this survey, which is devoted to the first nontrivial class
of diophantine equations: those associated to varieties of dimension one, or
algebraic curves.

The term diophantine equation refers to a system of polynomial equations

X :


f1(x1, . . . , xn) = 0

... (with fi ∈ Z[x1, . . . , xn]).
fm(x1, . . . , xn) = 0

(1)

Given such a system, one wishes to understand (and, if possible, determine
completely) its set of integer or rational solutions.
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Little of the essential features of the question are lost, and much flexibility
is gained, if one replaces the base ring Z by a more general ring O. The
prototypical examples are the ring of integers OK of a number field K, or
the ring OK,S of its S-integers, for a suitable finite set S of primes of OK .

Fix such a base ring O = OK,S from now on, and assume that the poly-
nomials in (1) have coefficients in O.

If R is any O-algebra, the set of solutions of (1) with coordinates in R is
denoted X(R):

X(R) := {(x1, . . . , xn) ∈ Rn satisfying (1)} .

The functor R 7→ X(R) from the category of O-algebras to the category of
sets is representable,

X(R) = HomO(AX , R), where AX = O[x1, . . . , xn]/(f1, . . . , fm). (2)

In this way the system (1) determines the affine scheme X := Spec(AX)
over Spec(O).

When the polynomials in (1) are homogenous, it is customary to view
X as giving rise to a projective scheme over O. When R is a principal ideal
domain, the set X(R) is a subset of the set Pn−1(R) of n-tuples (x1, . . . , xn) ∈
Rn satisfying Rx1 + · · · + Rxn = R, taken modulo the equivalence relation
defined by

(x1, . . . , xn) ∼ (x′1, . . . , x
′
n) if xix

′
j − xjx

′
i = 0, ∀ 1 ≤ i, j ≤ n.

Specifically,

X(R) := {(x1, . . . , xn) ∈ Pn−1(R) satisfying (1)} .

In the projective setting, replacing the base ring O by its fraction field K,
and X by its generic fiber XK—a projective variety over K—does not change
the diophantine problem. For instance, the natural map X(O) −→ XK(K)
is a bijection. So there is no distinction between the study of integral and
rational points on a scheme whose generic fiber is a projective variety.

Here are some of the basic questions that can be asked about the behaviour
of X(O).

Question 1. What is the cardinality of X(O)? Is it finite, or infinite?
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Question 2. If X(O) is finite, can its cardinality be bounded by a quantity
depending in a simple way on X and O?

Question 3. Can X(O) be effectively determined?

The arithmetic complexity of a point P ∈ X(O)—roughly speaking, the
amount of space that would be required to store the coordinates of P on a
computer—is measured by a (logarithmic) height function

h : X(O) −→ R.

The precise definitions and basic properties of heights are discussed elsewhere
in this volume. Let us just mention that for any real B > 0, the number
N(X;B) of P ∈ X(O) with h(P ) ≤ B is finite, in any reasonable definition
of h.

Question 4. When X(O) is infinite, what can be said about the asymptotics
of the function N(X;B) as B −→∞?

A related question is concerned with the equidistribution properties of
the points in X(O) (ordered by increasing height), relative to some natural
measure on X(R) or X(C).

An algebraic curve over O is a scheme X (either affine or projective) of
relative dimension one over Spec(O). If its generic fiber is smooth, the set
X(C) (relative to a chosen embedding of O into C, through which C becomes
an O-algebra) is a one-dimensional complex manifold. While a curve is often
described by equations like (1), it is to be viewed up to isomorphism, as an
equivalence class of such equations modulo suitable changes of variables. The
main objects we will study are curves X over Spec(O), and the behaviour of
the sets X(R) as R ranges over different O-algebras.

Remark. The term “integral points on elliptic curves” is often used (partic-
ularly by number theorists) to refer to to the integral solutions of an affine
Weierstrass equation:

E0 : y2 = x3 + ax+ b

which describes an affine curve over the base ring Z[a, b]. This is an abuse
of terminology, since elliptic curves are always defined as projective varieties
by passing to the projective equation

E : y2z = x3 + axz2 + bz3,
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resulting in the addition of the “point at infinity” O := (0, 1, 0) to E0. This
passage is crucial. Note, for instance, that E has the structure of an algebraic
group, while E0 does not. It should be kept in mind that the common
usage “integral points on E” refers to the integral points on the affine curve
E0 = E − {O}, which is not an elliptic curve at all, and that, according
to the definitions in standard usage, E(O) is equal to E(K) because E is
projective.

The fundamental trichotomy for curves
Suppose that the curve X is generically smooth, i.e., its generic fiber is a non-
singular curve over K, so that X(C) has the structure of a smooth Riemann
surface. The set X(C) is (topologically and analytically) identified with

X(C) ' S − {P1, . . . , Ps},

where S is a compact Riemann surface (of genus g, say) and P1, . . . , Ps are
distinct points. The invariants g and s, which completely determine the
topological isomorphism class of X(C), can be packaged into the Euler char-
acteristic

χ(X) = 2− 2g − s.
The answers to Questions 1—4 above depend on the sign of χ(X) in an
essential way.

I. Positive Euler characteristic. If χ(X) > 0, then g = 0 and s = 0 or
1. Therefore X is isomorphic over K̄ either to the projective line P1 or the
affine line A1. Forms of P1 over K correspond to conics, for which one has
the following basic result.

Theorem 5. Let X be a smooth conic over K. The following are equivalent.

(a) The curve X is isomorphic over K to P1.

(b) The set X(K) is nonempty.

(c) The set X(Kv) is nonempty, for all completions Kv of K.

The equivalence between (a) and (b) follows from the Riemann–Roch
theorem: given a rational point∞ ∈ X(K), there is a rational function with
only a simple pole at ∞; such a function gives an isomorphism between X
and P1 over K. The equivalence between (a) and (c) is the Hasse–Minkowski
theorem, one of the most basic instances of the so-called local-global principle
which is discussed at greater length elsewhere in this volume.
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Remark 6. The proof of the Hasse–Minkowski theorem, which relies on
geometry of numbers, leads to an upper bound on the smallest height of a
point on X(K), and thus is effective. Attempts to generalise Theorem 5 to
higher dimensional varieties have led to a rich theory which forms the basis
for some of the articles in this volume.

The case of positive Euler characteristic, for which the basic questions
1—4 are in some sense well-understood thanks to Theorem 5, will not be
treated any further in these notes.

II. Euler characteristic zero. There are two types of curve with Euler
characteristic zero:

• The affine case: g = 0 and s = 2.

• The projective case: g = 1 and s = 0.

The prototypical example of the affine case is when

X = P1 − {0,∞} = Gm.

The set X(O) = O× is an abelian group under multiplication, and X is
naturally equipped with the structure of a commutative group scheme over
O. Something similar happens in the projective case: since X is a curve of
genus one, it is isomorphic over K either to an elliptic curve, if X(K) 6= ∅,
or to a principal homogeneous space over such a curve. For the following
theorem, suppose that X(O) 6= ∅, and that X can be equipped with the
structure of a group scheme over O.

Theorem 7. The group X(O) is finitely generated.

In the affine case, Theorem 7 is essentially Dirichlet’s S-unit theorem,
while in the projective case it corresponds to the Mordell–Weil Theorem
that the group of rational points on an elliptic curve over a number field is
finitely generated.

III. Negative Euler characteristic. The theory of curves with negative
Euler characteristic is dominated by the following basic finiteness result.

Theorem 8. If χ(X) < 0, then X(O) is finite.
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In the affine case this is a theorem of Siegel proved in 1929, and can be
reduced to the most interesting special case where X = P1 − {0, 1,∞}. The
points in X(O) then correspond to solutions to the so-called S-unit equation

u+ v = 1, with u, v ∈ O×.

In the projective case Theorem 8 used to be known as the Mordell Con-
jecture. Its proof by Faltings in 1983 represents a significant achievement in
the diophantine theory of curves.

We now describe the contents of these notes.

Chapter 1 recalls some preliminary results that are used heavily in later
chapters: the main finiteness results of algebraic number theory, and the
method of descent based on unramified coverings and the Chevalley–Weil
theorem. Hugo Chapdelaine’s article [Chap] in these proceedings further
develops these themes by describing a relatively elementary application of
Falting’s theorem to a diophantine equation—the generalised Fermat equa-
tion xp + yq + zr = 0—that appears to fall somewhat beyond the scope of
the study of algebraic curves, but to which, it turns out, the “fundamental
trichotomy” described in this introduction can still be applied.

The main goal of Chapter 2 is to give a survey of Faltings’ proof of the
Mordell Conjecture. In many ways, this chapter forms the heart of these
notes. The ideas in Chapter 2 are used to motivate the startlingly diverse
array of techniques that arise in the diophantine study of curves. These tech-
niques are deployed in subsequent chapters to study several important and
illustrative classes of algebraic curves—specifically, modular curves, Fermat
curves, and elliptic curves.

Chapter 3 focusses on what may appear at first glance to be a rather
special collection of algebraic curves, the so-called modular curves over Q
classifying isomorphism classes of elliptic curves with extra level structure.
Singling out modular curves for careful study can be justified on (at least)
two grounds.

1. They are the simplest examples of moduli spaces. Classifying the ra-
tional points on modular curves translates into “uniform boundedness”
statements for the size of torsion subgroups of elliptic curves over Q,
and therefore leads to nontrivial results concerning rational points on
curves of genus one.
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2. Modular curves are also the simplest examples of Shimura varieties,
and their jacobians and `-adic cohomology are closely tied to spaces
of modular forms. (It is from this connection that they derive their
name.) This makes it feasible to address finer questions about the
rational points on modular curves, following a line of attack that was
initiated by Mazur [Ma1] in his landmark paper on the Eisenstein ideal.

Chapter 3 attempts to convey some of the flavour of Mazur’s approach by
describing a simple but illustrative special case of his general results: namely,
his proof of the conjecture, originally due to Ogg, that the size of the torsion
subgroup of elliptic curves over Q is uniformly bounded, by 14. The approach
we describe incorporates an important strengthening due to Merel exploit-
ing progress on the Birch and Swinnerton-Dyer conjecture that grew out of
later work of Gross–Zagier and Kolyvagin–Logachev. Marusia Rebolledo’s
article [Reb] in these proceedings takes this development one step further by
describing Merel’s proof of the strong uniform boundedness conjecture over
number fields: given d ≥ 1, the modular curves Y1(p) contain no points of
degree d when p is large enough (relative to d).

Chapter 4 describes the approach initiated by Frey, Serre, and Ribet for
reducing Fermat’s Last Theorem to deep questions about the relationship be-
tween elliptic curves and modular forms. This subject is only lightly touched
upon in these notes. Pierre Charollois’s article in this volume [Char] describes
a technique of Halberstadt and Kraus that strengthens the “modular ap-
proach” to prove a result on the generalised Fermat equation axp+byp+czp =
0 that is notable for its generality. This result also suggests that it might be
profitable to view the modular approach as part of a general method, rather
than just a serendipitous “trick” for proving Fermat’s Last Theorem.

Chapter 5 gives a rapid summary of the author’s second week of lectures
at the Göttingen summer school, devoted largely to curves of genus 1, par-
ticularly elliptic curves. This chapter is less detailed than the others, partly
because it covers topics that have already been treated elsewhere, notably in
[Da2]. The main topics that are touched upon (albeit briefly) in Chapter 5
are:

1. The collection of Heegner points on a modular elliptic curve, and Koly-
vagin’s use of them to prove essentially all of the Birch and Swinnerton-
Dyer conjecture for elliptic curves with analytic rank ≤ 1. Kolyvagin’s
techniques also supply a crucial ingredient in Merel’s proof of the uni-
form boundedness conjecture, further justifying its inclusion as a topic
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in the present notes. The article by Samit Dasgupta and John Voight
[DV] in these proceedings describes an application of the theory of
Heegner points to Sylvester’s conjecture on the primes that can be
expressed as a sum of two rational cubes.

2. Variants of the modular parametrisation which can be used to produce
more general systems of algebraic points on elliptic curves over Q.
Such systems are likely to continue to play an important role in further
progress on the Birch and Swinnerton-Dyer conjecture. A key example
is the fact that many elliptic curves defined over totally real fields are
expected to occur as factors of the jacobians of Shimura curves attached
to certain quaternion algebras. The articles by John Voight [Vo] and
Matthew Greenberg [Gre1] in these proceedings discuss the problem
of calculating with Shimura curves and their associated parametrisa-
tions from two different angles: from the point of view of producing
explicit equations in [Vo], and relying on the Cerednik–Drinfeld p-adic
uniformisation in [Gre1].

3. The theory of Stark–Heegner points which is meant to generalise clas-
sical Heegner points. Matthew Greenberg’s second article [Gre2] in
these proceedings discusses Stark–Heegner points attached to elliptic
curves over imaginary quadratic fields. Proving the existence and basic
algebraicity properties of the points that Greenberg describes how to
calculate numerically would lead to significant progress on the Birch
and Swinnerton-Dyer conjecture—at present, there is no elliptic curve
that is “genuinely” defined over a quadratic imaginary field for which
this conjecture is proved in even its weakest form.

1 Preliminaries

1.1 Zero-dimensional varieties

In order to get a good understanding of algebraic varieties of dimension d+1,
it is useful to understand the totality of algebraic varieties of dimension d.
Such a principle is hardly surprising, since a (d + 1)-dimensional variety
can be expressed as a family of d-dimensional varieties, parametrized by a
one-dimensional base. Any discussion of the diophantine properties of curves
must therefore necessarily begin with a mention of the zero-dimensional case.
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A zero-dimensional variety (of finite type) over a field K is an affine
scheme of the form X = Spec(R), where R is a finite-dimensional commuta-
tive K-algebra without nilpotent elements. Let

n := #X(K̄) = #Hom(R, K̄) = dimK(R),

where K̄ denotes as usual an algebraic closure of the field K. Finding the
rational points onX amounts to solving a degree n polynomial in one variable
over K.

An integral model of X over O is an affine scheme of the form Spec(RO),
where RO ⊂ R is an O-algebra satisfying RO⊗OK = R. Such a model is said
to be smooth if RO is finitely generated as an O-module and RO/p is a ring
without nilpotent elements for all p ∈ Spec(O). The reader can check that
X has a smooth model over Spec(O) if and only if R =

∏
i Li is a product

of field extensions Li/K which are unramified outside of S.
It is of interest to consider the collection of zero-dimensional varieties

of fixed cardinality n which possesses a smooth model over Spec(O). The
following classical finiteness result is extremely useful in the study of curves.

Theorem 1.1 (Hermite–Minkowski). Given n and O = OK,S, there are
finitely many isomorphism classes of varieties of cardinality n over K which
possess a smooth model over Spec(O). Equivalently, there are finitely many
field extensions of K of degree at most n which are unramified outside of S.

The proof is explained, for example, in [Sz], p. 91. In the simplest spe-
cial case where K = Q and S = ∅, we mention the following more precise
statement:

Theorem 1.2 (Minkowski). Any zero–dimensional variety over Q which
has a smooth model over Spec(Z) is isomorphic to Spec(Qn) for some n ≥ 1.
Equivalently, there are no nontrivial everywhere unramified field extensions
of Q.

1.2 Etale morphisms and the Chevalley–Weil theorem

If π : X −→ Y is a nonconstant, finite morphism of projective curves defined
over K (or of affine curves over O = OK,S), then π induces finite-to-one maps
πK : X(K) −→ Y (K) and πO : X(O) −→ Y (O). In particular, if Y (K) is
finite, then so is X(K). This simple principle reduces the study of rational
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points on a curve X to the often simpler study of points on the image curve
Y . (For instance, the genus of Y is less than or equal to the genus of X, by
the Riemann–Hurwitz formula.) As an historical illustration, Fermat proved
that the equation x4 + y4 = z4 (which corresponds to a projective curve of
genus 3 over Q) has no nontrivial rational points by studying the integer
solutions of the auxiliary equation x4 + y4 = z2 which are primitive in the
sense of [Chap]. These primitive solutions correspond to rational points on
a curve of genus one (in line with the principles explained in [Chap]), and
Fermat is able to dispose of these rational points by his method of descent.

In contrast, the finiteness of X(K) does not imply the finiteness of Y (K)
in general, because the maps πK or πO need not be surjective, and in fact
are usually far from being so. The following weakening of the notion of
surjectivity is frequently useful in practice.

Definition 1.3. The map π : X −→ Y of curves over Spec(OK,S) is said to
be almost surjective if there is a finite extension L of K and a finite set T
of primes of L containing the primes above those in S, such that Y (OK,S) is
contained in the image of πOL,T

.

Definition 1.4. A morphism π : X −→ Y of curves over Spec(OK,S) is said
to be generically étale if it satisfies any of the following equivalent conditions:

(a) The induced map πC : X(C) −→ Y (C) is an unramified covering of
Riemann surfaces;

(b) The map πK : XK −→ YK is an étale morphism of K-varieties on the
generic fibers;

(c) There exists a finite set S ′ ⊃ S of primes of K such that the map
πOK,S′

: XOK,S′
→ YOK,S′

is a finite étale morphism of schemes over
Spec(OK,S′).

The following result, known as the Chevalley–Weil theorem, gives a cri-
terion for a map π to be almost surjective.

Theorem 1.5 (Chevalley–Weil). If the morphism π is generically étale,
then it is almost surjective.

Proof. Suppose that π is generically étale. By Property (c) in the definition,
we may suitably enlarge S so that the map π becomes étale over Spec(OK,S).
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If P belongs to Y (O) = Hom(Spec(O), Y ), let P ∗(X) = π−1(P ) denote the
fiber of π above P . This fiber can be described as a scheme over Spec(O)
by viewing P as a morphism Spec(O) −→ Y , and π−1(P ) as the scheme-
theoretic pull-back of π to Spec(O) via P , for which the following diagram
is cartesian

P ∗(X) −→ X
↓ ↓

Spec(O)
P−→ Y.

Note that π−1(P ) is a zero-dimensional scheme over Spec(O) of cardinality
n = deg(π), which is smooth because π is étale. By the Hermite–Minkowski
theorem (Theorem 1.1) there are finitely many possibilities for π−1(P ), as
P ranges over Y (O). Hence the compositum L of their fraction fields is a
finite extension of K. Let T denote the set of primes of L above those in S.
Then, by construction, Y (O) is contained in π(X(OL,T )). It follows that π
is almost surjective.

Example 1.6. The Klein and Fermat curves. The quartic curve

Y : x3y + y3z + z3x = 0 (3)

studied by Felix Klein is a curve of genus 3 having an automorphism group
G = PSL2(F7) of order 168. By the Hurwitz bound, this is the largest
number of automorphisms a curve of genus 3 may have. (A curve with this
property is in fact unique up to Q̄-isomorphism.) The curve Y is also a
model for the modular curve X(7). (Cf. Section 4.1 for a brief discussion of
X(n).) The automorphism group PSL2(7) arises from the transformations
that preserve the fibers of the natural projection of Y (7) onto the j-line. In
[Hur], Hurwitz proved that Y has no nontrivial rational points, as follows: let
(x, y, z) be a point on the Klein quartic with integer coordinates, satisfying
gcd(x, y, z) = 1. Although x, y and z have no common factor, they need not
be pairwise coprime; setting

u = gcd(x, y), v = gcd(y, z), w = gcd(z, x),

one sees (after changing the signs of u, v, and/or w if necessary) that

(x, y, z) = (u3w, v3u,w3v) =: π(u, v, w). (4)
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Substituting back into the original equation (3) and dividing by u3v3w3, one
finds that (u, v, w) is a rational point on the Fermat curve of degree 7:

X : u7 + v7 + w7 = 0.

Through this argument, Hurwitz shows that the map π : X −→ Y given
by (4), a generically étale map of degree 7, is almost surjective (in fact,
surjective) on rational points. This is a simple special case of Theorem 1.5.
Hurwitz then applies Lamé’s result for the Fermat equation of degree 7 to
conclude that the Klein quartic has no integer solutions except the trivial
ones.

Note that this example gives a nontrivial diophantine relation between
modular curves and Fermat curves. More sophisticated connections between
these two classes of curves are discussed in Section 4.

Example 1.7. Algebraic groups. Recall that O is the ring of S-integers of a
number field K. Let G be any commutative group scheme of finite type over
Spec(O). Then for any integer n ≥ 1, the morphism [n] given by g 7→ gn

is generically étale (more precisely, étale over Spec(O[1/n])). Therefore, the
Chevalley-Weil theorem implies that there is a finite extension L of K for
whichG(O)/nG(O) maps to the kernel of the natural mapG(K)/nG(K) −→
G(L)/nG(L). A standard construction shows that this kernel injects into
the finite group H1(Gal(L/K), G[n](L)), where G[n](L) is the finite group
of n-torsion-points on G(L). It follows that G(O)/nG(O) is finite. (When
G = Gm, this statement is a weak form of Dirichlet’s S-unit theorem, while
when G = A is an elliptic curve or an abelian variety, it is the weak Mordell–
Weil theorem asserting that A(K)/nA(K) is finite.)

Example 1.8. It is not hard to exhibit a projective curve X of genus greater
than 1 eqipped with a map π : X −→ P1 which is unramified outside
{0, 1,∞}. Examples include

(a) The Fermat curve xn + yn = zn with π(x, y, z) = xn/zn;

(b) The modular curves X0(n) and X1(n) introduced in Section 3.1, with
their natural maps to the j-line.

One can use the map π to show that Theorem 8 for projective curves (Falt-
ings’ Theorem) implies the case X = P1−{0, 1,∞} over Spec(O) of Theorem
8 (Siegel’s Theorem).

13



More generally, a celebrated theorem of Belyi asserts that any projective
curve X/K can be equipped with a morphism π : X −→ P1 which is unrami-
fied outside {0, 1,∞}. (See Hugo Chapdelaine’s article in these proceedings.)
This fact has been exploited by Elkies [El] to prove that the abc conjecture
implies Faltings’ theorem.

Further topic: Hugo Chapdelaine’s article in these proceedings explains
how the discussion of unramified coverings and the Chevalley–Weil Theorem
can be adapted to treat the primitive solutions of the generalised Fermat
equation xp + yq + zr = 0. The reader who has mastered the ideas in Section
1 may skip directly to this article if so inclined.
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2 Faltings’ theorem

This chapter is devoted to explaining the main ideas in Faltings’ proof of the
Mordell Conjecture (Theorem 8 for projective curves over number fields).

Theorem 2.1 (Faltings). Let X be a smooth projective curve of genus ≥ 2
defined over a number field K. Then X(K) is finite.

The proof will be presented as a series of reductions.

2.1 Prelude: the Shafarevich problem

The first of these reductions, explained in Section 2.2, reduces Theorem 2.1 to
a finiteness conjecture of Shafarevich. The Shafarevich problem is concerned
with the collection of all arithmetic objects sharing certain common features
and having “good reduction” over the ring O of S-integers of a number field
K, taken, of course, up to isomorphism over K. Some key examples are:

1. the set Fd(O) of smooth zero-dimensional schemes over Spec(O) of
cardinality d;

2. the setMg(O) of smooth curves of genus g over Spec(O);

3. the set Ag(O) of abelian schemes of dimension g over Spec(O);

4. the set Ig(O) of K-isogeny classes of abelian varieties of dimension g
over Spec(O).

The following question is known as the Shafarevich problem:

Question 2.2. How large are the sets above? Are they finite?

One can also ask what happens for specific values of K and S, the most
interesting special case being O = Z (i.e., K = Q and S = ∅).

We now discuss these questions for the various cases listed above:

1. The set Fd(O) corresponds to the set of étale K-algebras (i.e., products
of seperable field extensions) of rank d over K which are unramified
outside S. The finiteness of Fd(O) is just a restatement of the Hermite–
Minkowski Theorem (Theorem 1.1).
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2. The setM0(O) consists of the set of smooth conics over K which have
good reduction outside of S. It admits a cohomological interpretation,
via the exact sequence

0 −→M0(O) −→ H2(K,±1) −→ ⊕v/∈SH
2(Kv,±1).

The fundamental results of local and global class field theory imply
thatM0(O) is finite, and in fact, its order can be evaluated precisely:

#M0(O) = 2#S+r−1,

where r is the number of real places of K. In particular, when K = Q
and S = ∅, then M0(Z) consists of one element, corresponding to the
projective line P1 over Q.

3. The setM1(O) can be infinite; in fact, an infinite set of curves of genus
1 which are all isomorphic over K̄ and have good reduction outside of
S can sometimes be found, even if S consists of just one prime of
K. (See [Ma3], p. 241.) On the other hand, a deep conjecture of
Shafarevich and Tate implies thatM1(O) is finite if S is empty. Also,
if one replaces M1 by the set E of K-isomorphism classes of elliptic
curves, i.e., curves of genus 1 equipped with a K-rational point, then
Shafarevich [Sha] showed that E(O) is always finite.

When g > 1, the following conjecture of Shafarevich can be viewed as
a one-dimensional analogue of the Hermite–Minkowski theorem (Theorem
1.1):

Conjecture 2.3. Let g ≥ 2 be an integer, and let O be the ring of S-integers
of a number field K, for a finite set S of primes of K.

(a) (Shafarevich conjecture for curves). The setMg(O) is finite, i.e., there
are only finitely many K-isomorphism classes of curves of genus g de-
fined over K and having good reduction outside of S.

(b) (Shafarevich conjecture for abelian varieties). The set Ag(O) is finite,
i.e., there are only finitely many isomorphism classes of abelian vari-
eties of dimension g defined over K and having good reduction outside
of S.
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(c) (Shafarevich conjecture for isogeny classes). The set Ig(O) is finite,
i.e., there are only finitely many K-isogeny classes of abelian varieties
of dimension g with good reduction outside of S.

Remark 2.4. It is a deep theorem of Fontaine [Fo] that the sets A(Z) and
Mg(Z) are empty for g ≥ 2, i.e., there are no abelian varieties, or smooth
curves of genus ≥ 2, over Spec(Z).

2.2 First reduction: the Kodaira–Parshin trick

In [Pa1], Parshin showed that part 2.3 of Conjecture 2.3 implies Theorem
2.1.

Theorem 2.5. (Kodaira–Parshin). The Shafarevich conjecture for curves
implies Mordell’s conjecture.

Sketch of proof. Let X be a curve of genus g > 1 defined over a number field
K. To each point P ∈ X(K) one associates a curve XP and a covering map
φP : XP −→ X with the following properties:

1. The curve XP and the map φP can be defined over a finite extension
K ′ of K which does not depend on P .

2. The genus g′ of XP (and the degree of φP ) is fixed and in particular
does not depend on P .

3. The map φP is ramified only over the point P .

4. The curve XP has good reduction outside a finite set of primes S ′ of
K ′ which does not depend on P .

For a description of this assignment, see [Ma3], p. 243-244, [FW], p. 191-197,
or [Pa1]. The reader should note that one has some leeway in constructing
it, and that different versions appear in the literature.

We will describe one approach here, which consists in considering the
embeddingX −→ J ofX into its jacobian that sends P to the origin of J , and
letting X̃ be the pullback to X of the multiplication-by-2 map [2] : J −→ J .
This map induces an unramified covering π : X̃ −→ X of degree 22g, and
hence the genus of X̃ can be calculated explicitly using the Riemann–Hurwitz
formula. The fiber π−1(P ) can be written as

π−1(P ) = P̃ +D,
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where P̃ corresponds to the identity element of J , and hence belongs to
X̃(K), and D is an effective divisor of degree 22g − 1 defined over K with
support disjoint from P̃ . Let JD be the generalised jacobian attached to X̃
and D: the group JD(K̄) is identified with the group of degree zero divisors
on X̃ with support outside D, modulo the subgroup of principal divisors of
the form div(f), as f ranges over the functions satisfying f(D0) = 1, for all
degree zero divisors D0 supported on D. The functor L 7→ JD(K̄)GL (where
GL := Gal(L̄/L)) on finite extensions of K is representable by the algebraic
group over K denoted JD, which is an extension of J by a torus T over K
of rank (22g − 2). In other words, there is a natural exact sequence

1 −→ T −→ JD −→ J −→ 1

of commutative algebraic groups over K.
One can embed X̃ −D into JD by sending a point Q to the equivalence

class of the divisor (Q)−(P̃ ). The multiplication-by-2 map [2] on JD induces
a mapX0

P −→ X̃−D, as summarised by the following diagram with cartesian
squares in which the vertical maps are induced by multiplication by 2:

JD ←− X0
P

↓ ↓
JD ←− X̃ −D −→ J

↓ ↓
X −→ J.

(5)

The closure XP of X0
P has the desired properties 1-4: it is defined over K,

and it follows directly from the Riemann–Hurwitz formula that its genus g′

does not depend on P . Furthermore, the map X0
P −→ X̃ −D is unramified,

and hence XP −→ X is ramified only over the point P . Finally, if X is
smooth over Spec(O), the curve XP has a smooth model over O′ := O[1/2].

The assignment P 7→ XP therefore gives rise to a well-defined map

R1 : X(K) −→Mg′(O′).

But this assignment is finite-to-one; for otherwise there would be a curve Y
and infinitely many (by property 3) distinct maps φP : Y −→ X. This would
contradict the following geometric finiteness result of De Franchis (cf. [Ma3],
p. 227).

Theorem 2.6. If X and Y are curves over any field K, and Y has genus
g ≥ 2, then the set Mor K(X, Y ) of K-morphisms from X to Y is finite.
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The Shafarevich conjecture for curves, which asserts the finiteness of
Mg′(O′), therefore implies the finiteness of X(K). This completes the proof
of Theorem 2.5.

Remark 2.7. The reader will note that the proof of Theorem 2.5 breaks
down (as it should!) when g = 1, because the set Mor K(Y,X) can be (and
in fact, frequently is) infinite when X has genus 1.

2.3 Second reduction: passing to the jacobian

The second step in the proof of the Mordell conjecture consists in observing
that the Shafarevich conjecture for curves would follow from the correspond-
ing statement for abelian varieties.

Proposition 2.8. The Shafarevich conjecture for curves follows from the
Shafarevich conjecture for abelian varieties.

To prove Proposition 2.8, one studies the map R2 which associates to a
curve X its jacobian J . If X is smooth over Spec(O), the same is true of J ,
and hence R2 defines a map Mg(O) −→ Ag(O). Key to Proposition 2.8 is
the following corollary of Torelli’s theorem:

Theorem 2.9. If g ≥ 2, then the map R2 is finite-to-one.

Proof. Torelli’s theorem asserts that a curve X of genus ≥ 2 can be recovered
by the data of its jacobian J together with the principal polarisation associ-
ated to the Riemann theta-divisor. But a given abelian variety can carry only
finitely many principal polarisations. (See [CS] for a more detailed exposition
of the Torelli Theorem and surrounding concepts.)

2.4 Third reduction: passing to isogeny classes

The third, crucial and more difficult reduction was carried out by Faltings
himself.

Theorem 2.10. (Faltings). The Shafarevich conjecture for abelian varieties
follows from the Shafarevich conjecture for isogeny classes.

As one would expect, the proof is based on showing that the natural map
R3 : Ag(O) −→ Ig(O) has finite fibers. This is a consequence of the following
key result:
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Theorem 2.11. (Faltings) There are finitely many isomorphism classes of
abelian varieties over K in a given K-isogeny class.

This result is the technical heart of Faltings’ proof, and rests on his the-
ory of heights on moduli spaces of abelian varieties. Things become some-
what simpler if we assume that the abelian varieties in the isogeny class
are semistable. This can be assumed without loss of generality because of
Grothendieck’s semistable reduction theorem which asserts that every abelian
variety becomes semistable after a finite extension of the ground field (for
instance, one over which the points of order 3 become rational). For a finite
extension K ′/K, there are finitely many K-isomorphism classes of abelian
varieties that are K ′-isomorphic to a given abelian variety over K ′, and hence
the finiteness of the K-isogeny class follows from that of any K ′-isogeny class.

Faltings defines a height function (now called the Faltings height) of an
abelian variety. We will not dwell on the definition, but will content ourselves
with stating two of its main finiteness properties:

Theorem 2.12. Let K be a number field and H be a positive constant. There
are finitely many isomorphism classes of g-dimensional abelian varieties over
K with height less than H.

The second finiteness property concerns the behaviour of the Faltings
height on a K-isogeny class. Given a prime `, the `-isogeny class of an
abelian variety A is the set of abelian varieties which are isogenous to A via
an isogeny of `-power degree. More generally, if M is any finite set of rational
primes, two abelian varieties are said to be M -isogenous if they are related
by a K-isogeny whose degree is a product of primes in M .

Theorem 2.13. If A is a semistable abelian variety over a number field K,
then:

1. There exists a finite set M of rational primes, depending only on the
isogeny class of A, such that if A −→ B is a K-isogeny of degree not
divisible by the primes in M , then

h(A) = h(B).

2. For any finite set S of rational primes, the Faltings height is bounded
on S-isogeny classes.
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The proof of this theorem relies on deep results of Tate and Raynaud on
group schemes and p-divisible groups; cf. Theorems 2.4 and 2.6 of [De].

For more details on the proof of theorems 2.12 and 2.13 see the expositions
[CS], [FW], [Sz], [De], or [ZP]. Note that these two theorems together imply:

Proposition 2.14. Let A be a semistable abelian variety over K, and let M
be as in part 1 of Theorem 2.13.

1. Up to K-isomorphism, there are finitely many abelian varieties that are
K-isogenous to A via an isogeny of degree not divisible by the primes
in M .

2. Given any abelian variety B over K and any finite set S of rational
primes, there are finitely many abelian varieties in the S-isogeny class
of B.

Proof of Theorem 2.11: Let φ : A −→ B be a K-isogeny. We can write φ as
a composition of isogenies

A
φo−→ B0

φ1−→ B1,

where φ0 is of degree not divisible by the primes in M , and φ1 is an M -
isogeny. By part 1 of Proposition 2.14, there are finitely many possibilities
for φ0 and for B0. By part 2 of this proposition, for each B0 there are finitely
many possibilities for B1. Theorem 2.11 follows.

2.5 Fourth reduction: from isogeny classes to `-adic
representations

To an abelian variety A over K of dimension g and a prime `, one can
associate the `-adic Tate module and `-adic representations

T`(A) := lim
←−

A[`n], V`(A) := T`(A)⊗Q`,

where the inverse limit is taken with respect to the multiplication-by-` maps.
The Q` vector space V`(A) is 2g-dimensional and is equipped with a Q`-linear
action by two commuting Q`-algebras E and ΠK defined by

E = EndK(A)⊗Q`, ΠK := Z`[[GK ]]⊗Q`.
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Here Z`[[GK ]] denotes the profinite group ring lim←−Z`[Gal(L/K)], where the

projective limit is taken over all finite Galois extensions L ⊂ K̄ of K.
If A and B are K-isogenous abelian varieties, they give rise to `-adic

representations that are isomorphic as ΠK-modules. In other words, the
assignment A 7→ V`(A) yields a map

R4 : Ig(O) −→


Isomorphism classes of
2g-dimensional `-adic
representations of ΠK

 .

The strategy will now consist in showing that R4 has finite fibers, and finally
in describing the image R4 precisely enough to show that it is finite.

We begin by introducing some further notations and recalling some back-
ground. Given a prime v of K, let Iv ⊂ Gv ⊂ GK be inertia and decompo-
sition subgroups of GK attached to v. Note that the groups Gv and Iv are
only well-defined up to conjugation in GK , since they depend on a choice
of a prime of K̄ above v. The quotient Gv/Iv is procyclic with a canonical
generator Frobv called the Frobenius element at v, which induces the auto-
morphism x 7→ xNv on the residue field, where Nv denotes the norm of v
(the cardinality of the associated residue field).

If V is any finite-dimensional Q`-vector space equipped with a continuous
ΠK-action, we say that V is unramified at v if Iv acts trivially on V . When
this happens, the Frobenius element Frobv ∈ Gv/Iv gives an element of
GL(V ) which is well-defined up to conjugation in this group.

The following theorem lists some of the basic properties of V`(A).

Theorem 2.15. Let A be an abelian scheme over Spec(OK,S). The `-adic
Galois representation V`(A) satisfies the following properties:

1. It is semisimple as a representation of E.

2. It is unramified at all v /∈ S ′ := S ∪ {λ|`}.

3. (Rationality) If v /∈ S ′, then the characteristic polynomial of Frobv has
rational integer coefficients. The complex roots of this polynomial have
absolute value Nv1/2.

4. (Tate conjecture) The representation V`(A) is semisimple as a repre-
sentation of ΠK.
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Property 1 follows from the basic theory of duality for abelian varieties,
and properties 2 and 3 were shown by Weil (cf. [We]). Property 4, a partic-
ular case of the Tate conjecture, is one of Faltings’ important contributions.
We now explain how Faltings proved the semisimplicity of V`(A) over ΠK ,
adapting an idea used by Tate to prove the corresponding statement over
finite fields.

Lemma 2.16. For every ΠK-invariant subspace W in V`(A), there is an
element u ∈ E such that

uV`(A) = W.

Proof. The Z`-module W∞ = W ∩ T`(A) gives rise to a collection of groups
Wn = W∞/`

nW∞ ⊂ A[`n] which are defined over K and compatible under
the natural maps A[`n+1] −→ A[`n]. Let

αn : A −→ An := A/Wn,

be the natural isogeny with kernel Wn, and let βn denote the isogeny char-
acterised by

αnβn = `n, βnαn = `n.

Note that βn(An[`n]) = Wn by construction, in light of the first identity
above. By Faltings’ finiteness theorem 2.11, there exists an infinite set I =
{n0, n1, . . .} ⊂ Z>0 for which there exist isomorphisms

νi : An0 ' Ai

for all i ∈ I. Now define a sequence of K-endomorphisms of A by the rule

ui := βiνiαn0 .

Since EndK(A)⊗Z` is compact in the `-adic topology, the sequence (ui) has
a convergent subsequence (ui)i∈J in this topology. Let u denote the limit of
such a subsequence. After eventually refining J further, we can assume that
for each i ∈ J , we have natural maps

u(A[`i]) = ui(A[`i]) −→ βi(Ai[`
i]) = Wi,

with kernel and cokernel bounded independently of i, because they arise from
αn0 . It follows that

u(V`(A)) = W,

as was to be shown.
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Corollary 2.17. The representation V`(A) is a semisimple ΠK-module.

Proof. Let W be a ΠK-stable subspace of V`(A), and let u ∈ E be an element
constructed in Lemma 2.16, satisfying u(V`(A)) = W . Consider the right
ideal uE in the algebra E. Because E is semisimple, this ideal is generated
by an idempotent u0. Note that u0(V`(A)) = W . The subspace ker(u0) is
therefore a ΠK-stable complement of W in V`(A). Hence V`(A) is semisimple
over ΠK .

In conclusion, let RepS(GK , 2g) be the set of isomorphism classes of ra-
tional semisimple `-adic representations of GK of dimension 2g which are un-
ramified outside of S. We have shown that R4 maps Ig(O) to RepS(GK , 2g).
To complete the proof of the Mordell conjecture, it remains to show:

1. The map R4 is finite-to-one.

2. The set RepS(GK , 2g) is finite.

We will prove the first in the next section, and the second in Section 2.7.

2.6 The isogeny conjecture

The proof of the following deep conjecture of Tate is a cornerstone of Faltings’
strategy for proving the Mordell conjecture.

Theorem 2.18. (Isogeny conjecture). Let A and B be abelian varieties de-
fined over a number field K. If V`(A) is isomorphic to V`(B) as a ΠK-module,
then the abelian varieties A and B are isogenous.

In other words, the map R4 is injective.
We first note that Theorem 2.18 can be reduced to the following state-

ment, known as the Tate conjecture for abelian varieties.

Theorem 2.19. (Tate conjecture). Let A and B be abelian varieties defined
over K. Then the natural map

HomK(A,B)⊗Q` −→ HomΠK
(V`(A), V`(B))

is surjective.
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To see that Theorem 2.19 implies Theorem 2.18, let j : V`(A) ' V`(B) be
a ΠK-equivariant isomorphism. By Theorem 2.19, this isomorphism comes
from an element u ∈ HomK(A,B)⊗Q`. After multiplying u by some power of
`, we can assume that u belongs to HomK(A,B)⊗Z`. Note that HomK(A,B)
is dense in HomK(A,B)⊗Z`. Any good enough `-adic approximation to u in
HomK(A,B) gives the desired K-isogeny between A and B. Theorem 2.18
follows.

We next observe that Theorem 2.19 can be reduced to the following spe-
cial case:

Theorem 2.20. Let A be an abelian variety over K. The natural map

EndK(A)⊗Q` −→ EndΠK
(V`(A))

is surjective.

The fact that Theorem 2.20 implies Theorem 2.19 can be seen by applying
Theorem 2.20 to the abelian variety A×B, since

EndK(A×B) = EndK(A)⊕ HomK(A,B)⊕ HomK(B,A)⊕ EndK(B)

and likewise for End(V`(A×B)) = End(V`(A)× V`(B)).

Proof of Theorem 2.20: Let φ be an element of EndΠK
(V`(A)), and let

W = {(x, φ(x)) ∈ V`(A)× V`(A)} ⊂ V`(A× A)

be the graph of φ. Note that W is ΠK-stable. Hence there is an endomor-
phism u ∈ EndK(A × A) ⊗ Q` = M2(E) associated to W by Lemma 2.16,
satisfying u(V`(A× A)) = W .

Let E0 = EndE(V`(A)) denote the commutant of E in End(V`(A)). For

any α ∈ E0, the matrix

(
α 0
0 α

)
with entries in End(V`(A)) commutes

with u ∈ M2(E) ⊂ M2(End(V`(A)). It follows that this matrix preserves
W = image(u), and hence α commutes with φ. Since this argument is valid
for any α ∈ E0, the endomorphism φ belongs to the double commutant E00

which is equal to E by the semisimplicity of V`(A) as a module over E.
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2.7 The finiteness principle for rational `-adic repre-
sentations

Now that R4 has been shown to be injective, it remains to prove that the
target RepS(GK , 2g) is finite. The main theorem of this section is:

Theorem 2.21. (Finiteness principle for rational semisimple `-adic repre-
sentations). Let K be a number field and S a finite set of primes of K. Then
there are finitely many isomorphism classes of rational, semisimple `-adic
representations of GK of dimension d which are unramified outside of S.

Remark. The reader will observe that this finiteness principle is close in
spirit to the Hermite–Minkowski theorem: it asserts that there are only
finitely many extensions of K (albeit, of infinite degree) of a certain special
kind with bounded ramification. The proof of Theorem 2.21 will in fact rely
crucially on the Hermite–Minkowski theorem, as well as on the Chebotarev
density theorem.

We begin by establishing the following key lemma.

Lemma 2.22. There exists a finite set T of primes of K (depending on S
and d) satisfying the following two properties:

1. T is disjoint from S` := S ∪ {v|`}.

2. Two representations ρ1, ρ2 ∈ RepS(GK , d) are isomorphic if and only
if

trace(ρ1(Frobv)) = trace(ρ2(Frobv)), for all v ∈ T.

Proof. Consider the set of all extensions of K of degree ≤ l2d2
which are un-

ramified outside S`. By Theorem 1.1 (Hermite–Minkowki), there are finitely
many such extensions, and hence their compositum L is a finite extension
of K. Let T = {v1, . . . vN} be a set of primes of K which are not in S and
such that the Frobenius conjugacy classes Frobvi

generate Gal(L/K). The
existence of such a finite set follows from the Chebotarev density theorem.
We claim that this set T satisfies the conclusion of Lemma 2.22. Given
ρ1, ρ2 ∈ RepS(GK , d), a choice of GK-stable Z`-lattices in the underlying
representation spaces makes it possible to view each ρi as a homomorphism
from Z`[[GK ]] to Md(Z`). Let

j = ρ1 ⊕ ρ2 : Z`[[GK ]] −→Md(Z`)×Md(Z`),
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and let M denote the image of j. The induced homomorphism

j̄ : GK −→ (M/`M)×

factors through Gal(L/K), since the cardinality of M/`M is at most `2d2
and

j̄ is unramified outside of S`. It follows that the elements

j̄(Frobv1), . . . , j̄(FrobvN
)

generate M/`M . By Nakayama’s lemma, the elements

j(Frobv1), . . . , j(FrobvN
)

generate M as a Z`-module.
In particular, if

trace(ρ1(Frobvj
)) = trace(ρ2(Frobvj

)), for j = 1, . . . , N,

then
M ⊆ ∆ ⊂Md(Z`)×Md(Z`),

where ∆ = Md(Z`) is embedded diagonally. Therefore one has

trace(ρ1(σ)) = trace(ρ2(σ)) for all σ ∈ ΠK .

Hence ρ1 and ρ2 have the same traces. Since they are semisimple, it follows
that they are isomorphic as ΠK-representations.

Proof of Theorem 2.21. Let T = {v1, . . . , vN} be as in the statement of
Lemma 2.22. The assignment

ρ 7→ (Tr (ρ(Frobv1)), . . . ,Tr (ρ(FrobvN
)))

is injective on RepS(GK , d), and can only assume finitely many values, by
the rationality of ρ. (More precisely, each Tr (Frobvi

) is a rational integer of

absolute value ≤ dNv
1/2
i .) Theorem 2.21 follows.
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2.8 A summary of Faltings’ proof

Faltings’ proof of Mordell’s conjecture is based on a sequence of maps (here
X is a curve of genus g defined over K and having good reduction outside of
the finite set S of primes of K):{

K-rational
points on X

}
R1−→

{
Curves of genus g′ over K ′

with good reduction outside S ′

}
R2−→


Isomorphism classes of semistable
abelian varieties of dimension g′

with good reduction outside S ′


R3−→


Isogeny classes of abelian varieties
of dimension g′

with good reduction outside S ′


R4−→

{
Rational semisimple `-adic representations
of dimension 2g′ unramified outside S ′`

}
1. The map R1 is given by Parshin’s construction, and is finite-to-one, by

the geometric theorem of De Franchis.

2. The map R2 is defined by passing to the jacobian of a curve, and is
finite-to-one by Torelli’s theorem.

3. The map R3 is the obvious one, and is finite-to-one, by Falting’s funda-
mental Theorem 2.11 on finiteness of abelian varieties in a given isogeny
class.

4. The map R4 is defined by passing to the Tate module, and is one-to-
one, thanks to the Tate conjectures proved by Faltings. The proof of
the Tate conjectures is obtained by combining a strategy of Tate with
the finiteness Theorem 2.11. These ideas are also used to show that
the Galois representations arising in the image of R4 are semisimple.

5. The last set in this sequence of maps is finite by the finiteness principle
for rational semisimple `-adic representations, which is itself a conse-
quence of the Chebotarev density theorem and the Hermite–Minkowski
theorem.
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3 Modular curves and Mazur’s theorem

The first step in the proof of the Mordell conjecture (the Kodaira–Parshin
reduction) consists in transforming a question about rational points on a
given curve into the Shafarevich conjecture. This new diophantine question
is concerned with the moduli space of curves themselves, to which an array
of techniques (notably, jacobians, `-adic representations, etc.) can be ap-
plied. It is therefore apparent that the extra structures afforded by moduli
spaces are of great help in studying the diophantine questions that are asso-
ciated to them. So it is natural to examine more closely the simplest class of
moduli spaces, which are also curves in their own right: the modular curves
classifying elliptic curves with extra level structure.

3.1 Modular curves

Let p be a prime ≥ 5, and write Z for the ring Z[1/p]. The functor Y1(p)
which to any Z-algebra R associates the set of R-isomorphism classes of pairs
(E,P ) where E is an elliptic curve over Spec(R) and P is a point of order
p on ER is representable by a smooth affine scheme over Spec(Z) of relative
dimension one, denoted Y1(p).

The group (Z/pZ)× acts on Y1(p) by the rule t·(E,P ) := (E, tP ), and the
quotient of Y1(p) by this action is an affine scheme Y0(p) over Spec(Z) which
is a coarse moduli scheme classifying pairs (E,C) consisting of an elliptic
curve over R and a cyclic subgroup scheme C ⊂ E of order p defined over R.

These curves admit analytic descriptions as quotients of the Poincaré
upper half-plane

H = {τ ∈ C, Im(τ) > 0}

by the action of the following discrete subgroups of SL2(Z):

Γ1(p) =

{(
a b
c d

)
with a− 1 ≡ c ≡ d− 1 ≡ 0 (mod p)

}
,

Γ0(p) =

{(
a b
c d

)
with c ≡ 0 (mod p)

}
.

For example, the curve Y0(1) is identified with Spec(Z[j]), and a birational
(singular, even on the generic fiber) model for Y0(p) over Spec(Z) is given by

Spec(Z[j, j′]/Φp(j, j
′)),
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where Φp(x, y) ∈ Z[x, y] is the canonical modular polynomial of bidegree p+1
satisfying Φp(j(τ), j(pτ)) = 0, for all τ ∈ H.

A rational point on Y1(p) (resp. on Y0(p)) determines an elliptic curve
over Q with a Q-rational point of order p (resp. a rational subgroup of order
p). The main goal of this chapter is to explain the proof of the following
theorem of Mazur.

Theorem 3.1. If p > 13, then Y1(p)(Q) = ∅.

Remark 3.2. Note that Theorem 3.1 can be viewed as a theorem about
curves in two different ways. Firstly, it asserts that the collection of modular
curves Y1(p), whose genera grow with p, have no rational points once p is
large enough—a type of statement that is similar in flavour to Fermat’s Last
Theorem. Secondly, it leads to the uniform boundedness of the size of the
torsion subgroups E(Q)tors as E ranges over all elliptic curves over Q, and
is therefore also a theorem about curves of genus one.

3.2 Mazur’s criterion

An important role is played in Mazur’s argument by the compactification
X0(p) of the affine curve Y0(p). As a Riemann surface, X0(p)(C) is obtained
by adjoining to Y0(p) a finite set of cusps which are in bijection with the
orbits of Γ0(p) acting on P1(Q) by Mobius transformations. More precisely,
letting H∗ := H ∪ P1(Q), we have

X0(p)(C) = Γ0(p)\H∗ = (Γ0(p)\H) ∪ {0,∞} = Y0(p)(C) ∪ {0,∞}.

The complex structure in a neighbourhood of∞ is defined by letting q = e2πiτ

be a local parameter at ∞.
The equation for the universal elliptic curve in a formal punctured neigh-

bourhood of ∞ is given by the Tate curve

Eq = Z[[q]]×/qZ : y2 + xy = x3 + a(q)x+ b(q) over Z((q)),

where

a(q) = −5
∞∑

n=1

σ3(n)qn, b(q) = − 1

12

∞∑
n=1

(7σ5(n) + 5σ3(n))qn.
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(Recall that σk(n) =
∑

d|n d
k.) The discriminant of Eq is equal to

∆(Eq) = q
∏
n≥1

(1− qn)24,

and therefore Eq defines an elliptic curve over Z((q)).
The important q-expansion principle asserts that the parameter q is also

a local parameter for the scheme X0(p)Z in a neighborhood of∞. Thanks to
the q-expansion principle, the completion of the local ring of X0(p)Z at ∞ is
identified with the power series ring Z[[q]]:

ÔX0(p),∞ = Z[[q]].

A basic technique in Mazur’s proof is to study the behaviour of certain
maps on modular curves, via their behaviour in a formal neighbourhood of
∞. The following definition will be useful.

Definition 3.3. A morphism j : X −→ Y of schemes over Z is a formal
immersion at x ∈ X(Z) if the induced map on completed local rings

j∗ : ÔY,j(x) −→ ÔX,x

is surjective.

Let J0(p) denote the jacobian of X0(p). It is an abelian variety over Z
and is equipped with an embedding

Φ : X0(p) −→ J0(p)

defined by letting Φ(x) be the class of the degree zero divisor (x)− (∞).
If J](p) is any quotient of J0(p), let j] : X0(p) −→ J](p) be the map

obtained by composing Φ with the projection to J](p). The following criterion
of Mazur for Y1(p)(Q) = ∅ is the main result of this section.

Theorem 3.4. Assume that p > 7. Suppose that there is an abelian variety
quotient J](p) of J0(p) satisfying the following conditions:

(a) The map j] : X0(p) −→ J](p) is a formal immersion at ∞.

(b) J](p)(Q) is finite.

Then Y1(p)(Q) = ∅.
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Sketch of proof. Let x̃ be a point in Y1(p)(Q) corresponding to the pair
(E,P ), where E is an elliptic curve over Q and P ∈ E(Q) is of order p.
Let E be the minimal Weierstrass model of E over Z.

The proof is divided into four steps.

Step 1. If E has potentially good reduction at the prime 3, then the special
fiber EF3 is either an elliptic curve, or an extension of a finite group of con-
nected components of cardinality 2a3b by the additive group Ga/F3 . Such a
group cannot contain a point of order p > 7, by the Hasse bound. Hence E
has potentially mutiplicative reduction at 3.

Step 2. Let x ∈ X0(p)(Q) be the image of x̃ under the natural map: it
corresponds to the pair (E, 〈P 〉) consisting of the curve E and the cyclic
subgroup generated by P . By Step 1, the point x reduces to one of the cusps
0 or ∞ of X0(p) modulo 3. It can be asssumed without loss of generality
that x reduces to ∞, by replacing (E, 〈P 〉) by (E/〈P 〉, E[p]/〈P 〉) otherwise.

Step 3. Consider the element j](x) ∈ J](p)(Q). By step 2 this element
belongs to the formal group J1

] (p)(Q3), which is torsion-free because Q3

is absolutely unramified. It also belongs to J](p)(Q), which is torsion by
assumption. It follows that j](x) = 0.

Step 4. We now use the fact that j] is a formal immersion to deduce that
x =∞. To see this, let Spec(R) be an affine neighborhood of ∞ containing
x. The point x gives rise to a ring homomorphism x : R −→ Z3, which
factors through the local ring ÔX0(p),∞ = Z[[q]], so that x can be viewed as
a map Z[[q]] −→ Z3. By step 3, we have

x ◦ j∗] =∞◦ j∗] .

It follows that x = ∞, since j∗] was assumed to be surjective, contradicting
the initial assumption that x belongs to Y0(p).

Mazur’s criterion reduces Theorem 3.1 to the problem of exhibiting a
quotient J](p) of J0(p) satisfying the conditions of Theorem 3.4.

3.3 The jacobian J0(p)

The fact that makes it possible to analyse the jacobian J0(p) precisely, and
exhibit a nontrivial quotient of it with finite Mordell–Weil group, arises from
two related ingredients.
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(a) Hecke operators. If n is an integer that is not divisible by p, the modular
curve X0(np) is equipped with two maps π1, π2 to X0(p), defined by

π1(E,C) = (E,C[p]), π2(E,C) = (E/C[n], C/C[n]).

The pair (π1, π2) gives rise to an embedding of X0(pn) in the product
X0(p) × X0(p). The image in this product, denoted Tn, is an alge-
braic correspondence on X0(p) defined over Q, which gives rise to an
endomorphism of J0(p) defined over Q. On the level of divisors, Tn is
described by

Tn(E,C) =
∑

E−→E′

(E ′, C ′), (6)

where the sum is taken over the cyclic isogenies ϕ : E −→ E ′ of degree
n, and C ′ = ϕ(C). Let T denote the subring of EndQ(J0(p)) generated
by the Hecke operators Tn. It is finitely generated (as a ring, and even
as a module) over Z. Our basic approach to constructing J](p) is to use
the endomorphisms in T to decompose the abelian variety J0(p) (up to
Q-isogeny) into smaller pieces which can then be analysed individually.
If R is any ring, let TR denote the R-algebra T⊗R.

(b) Modular forms. If R is any Z-algebra, let S2(p,R) denote the space of
regular differentials on X0(p)R. Restriction to the formal neighborhood
Spec(R[[q]]) of ∞ ∈ X0(p) gives rise to a map (called the q-expansion
map)

q-exp : S2(p,R) −→ R[[q]]dq.

When R = C, the space S2(p,C) is identified with the vector space of
homomorphic functions f : H −→ C for which

(i) the differential 2πif(τ)dτ is invariant under Γ0(p), i.e.,

f

(
aτ + b

cτ + d

)
= (cτ + d)2f(τ), for all

(
a b
c d

)
∈ Γ0(p).

(ii) 2πif(τ)dτ extends to a holomorphic differential on the compact-
ified modular curve X0(p). In particular, it admits a Fourier ex-
pansion of the form

f(τ) =
∞∑

n=1

ane
2πinτ ,

so that q-exp(2πif(τ)dτ) =
∑∞

n=1 anq
n dq

q
.
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The action of the Hecke operators Tn on J0(p)R induces an action on the
cotangent space S2(p,R), which can be described explicitly on the level of
the q-expansions. For example, if ` 6= p is prime,

T`

(
∞∑

n=1

anq
ndq

q

)
=

∑
`|n

anq
n/` + `

∞∑
n=1

anq
n`

 dq

q
. (7)

There is an extra Hecke operator Tp defined via an algebraic correspondence
X0(p

2) ⊂ X0(p) × X0(p) which admits the following simpler formula for its
action on q-expansions:

Tp

(
∞∑

n=1

anq
ndq

q

)
=

∑
p|n

anq
n/p

 dq

q
. (8)

The definition of T` for ` prime can then be extended to all integers n by the
multiplicativity relations implicit in the following identity of formal Dirichlet
series: ∑

n≥1

Tnn
−s = (1− Tpp

−s)−1
∏
` 6=p

(1− T``
−s + `1−2s)−1. (9)

In other words,

Tmn = TmTn if gcd(m,n) = 1, T`n+1 = a`T`n − `T`n−1 .

Proposition 3.5. The algebra TQ is a commutative semisimple algebra of
dimension g := dimQ S2(p,Q) = genus(X0(p)).

Sketch. The fact that TQ is commutative follows from the explicit descrip-
tion of the operators Tn as correspondences given in (6) (or, if one prefers,
from equation (7) describing its effect on q-expansions). The semisimplicity
arises from the fact that the operators Tn are self-adjoint with respect to the
Hermitian pairing on S2(p,C) (Petersson scalar product) defined by

〈ω1, ω2〉 =
1

2i

∫
Γ0(p)\H

ω1 ∧ ω̄2.

(We mention in passing that in general, the operator T` acting on S2(N,C)
need not be self-adjoint when `|N , but it is self-adjoint when restricted to the
space of so-called newforms. We are using implicitly the fact that S2(p,C)
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is equal to its subspace of newforms.) One computes the dimension of TQ

by showing that the bilinear pairing

TQ × S2(p,Q) −→ Q, (T, f) := a1(Tf)

is left and right nondegenerate, and in fact positive definite. The details
are left to the reader (who may also consult Section 2.2 of [Da2] for more
details).

As a consequence of Proposition 3.5 and its proof, one has the decompo-
sition

TQ = K1 × · · · ×Kt

of TQ into a product of totally real fields, with
∑t

j=1[Kj : Q] = n. The
factors Kj are indexed by:

(a) The points φ1, . . . , φt of Spec(TQ), viewed as algebra homomorphisms
φj : TQ −→ Q̄ (taken modulo the natural action of GQ = Gal(Q̄/Q)).

(b) The distinct GQ-equivalences classes f1, . . . , ft of eigenforms for T, nor-
malised so that a1(fj) = 1. The q-expansions of these eigenforms are
described by

fj =
∞∑

n=1

φj(Tn)qn.

The quotient Af attached to f is defined by letting

Af := J0(p)/If , where If := ker(T −→ Kf ).

With these notations, the main result of this section is the following
Eichler-Shimura decomposition, which asserts that J0(p) is isogenous to a
product of Q-simple factors indexed by the (GQ-orbits of) normalised eigen-
forms fj (j = 1, . . . , t).

Theorem 3.6. The abelian variety J0(p) is Q-isogenous to the product

t∏
i=1

Afi
,

of Q-simple abelian varieties Afi
. The varieties Af that occur in this decom-

position have the following properties:
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(a) dim(Af ) = [Kf : Q];

(b) The natural image of TQ in EndQ(Af )⊗Q is isomorphic to Kf .

For more details on this decomposition see Chapter 2 of [Da2].
Thanks to Theorem 3.6, we are reduced to the following question:

Question 3.7. Find a criterion involving the normalised eigenform f for
the quotient Af to have finite Mordell–Weil group.

3.4 The Birch and Swinnerton-Dyer conjecture

The key to bounding the rank of Af (Q) (and showing that this rank is zero,
for a sufficiently large collection of normalised eigenforms f) lies in studying
the so-called Hasse–Weil L-series attached to Af .

Let A be an abelian variety (of dimension d, say) defined over Q. The
Hasse–Weil L-series of A is most conveniently defined in terms of the `-adic
representation V`(A) that was introduced in Section 2.5. If p 6= ` is a prime,
the Frobenius element acts naturally on on the space V`(A)Ip of vectors in
V`(A) that are fixed under the action of the inertia group at p. (Recall that
V`(A)Ip = V`(A) if A has good reduction at p 6= `.) By the rationality of the
representation V`(A), the characteristic polynomial

Fp(T ) := det(1− Frobp|V`(A)IpT )

has integer coefficients. Furthermore, it does not depend on the choice of `,
and can therefore be defined for all p. This makes it possible to define the
Hasse–Weil L-series as a function of the complex variable s, by the infinite
product

L(A, s) =
∏

p

Fp(p
−s)−1.

Using the rationality of the Galois representation V`(f) in the sense of The-
orem 2.15, one can show that the infinite product defining L(A, s) converges
uniformly on compact subsets of {s ∈ C|<(s) > 3/2}, and hence defines an
analytic function in this region.

Concerning the behaviour of L(A, s) and its connection to the arithmetic
of A over Q, there are the following two fundamental conjectures:
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Conjecture 3.8. The L-series L(A, s) has an analytic continuation to the
entire complex plane and a functional equation of the form

Λ(A, s) := (2π)−dsΓ(s)dN s/2L(A, s) = ±Λ(A, 2− s),

where N is the conductor of A.

In particular, if Conjecture 3.8 is true, the process of analytic continuation
gives meaning to the behaviour of L(A, s) in a neighborhood of the central
critical point s = 1 for the functional equation, and in particular, the order
of vanishing of L(A, s) at s = 1 is defined. The Birch and Swinnerton-Dyer
conjecture relates this order of vanishing to the arithmetic of A over Q:

Conjecture 3.9. If A is an abelian variety over Q, then

rank(A(Q)) = ords=1(L(A, s)).

In particular, A(Q) is finite if L(A, 1) 6= 0.

Both Conjectures 3.8 and 3.9 are far from being proved in general. But
much more is known when A = Af occurs in the Eichler–Shimura decom-
position of the modular jacobian J0(N), as will be explained in the next
section.

3.5 Hecke theory

A newform of level N is a normalised eigenform f =
∑

n≥1 anq
n dq

q
on Γ0(N)

whose associated sequence (an)(n,N)=1 of Fourier coefficients is different from
that of any eigenform g on Γ0(d) with d|N and d 6= N .

To each newform f =
∑

n≥1 anq
n dq

q
∈ S2(N,C), one can associate an

L-series

L(f, s) :=
∞∑

n=1

ann
−s.

This L-series enjoys the following properties, which were established by
Hecke:

(a) Euler product: It admits the Euler product factorisation given by

L(f, s) =
∏
p-N

(1− app
−s + p1−2s)−1

∏
p|N

(1− app
−s)−1,

as can be seen by applying ϕf to the formal identity (9) expressing the
Hecke operators Tn in terms of the operators T` for ` prime.
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(b) Integral representation: The L-series L(f, s) can be represented as
an integral transform of the modular form f , by the formula:

Λ(f, s) := (2π)−sΓ(s)N s/2L(f, s) = N s/2

∫ ∞
0

f(it)ts−1dt, (10)

where Γ(s) =
∫∞

0
e−tts−1dt is the Γ-function. In particular, because f

is of rapid decay at the cusps, this integral converges absolutely to an
analytic function of s ∈ C.

(c) Functional equation: The involution w defined on S2(N,C) by the
rule

w(f)(τ) =
1

Nτ 2
f

(
−1

Nτ

)
(11)

commutes with the Hecke operators and hence preserves its associated
eigenspaces. It follows that for the eigenform f ,

w(f) = εf, where ε = ±1. (12)

The L-series L(f, s) satisfies the functional equation

Λ(f, s) = −Λ(w(f), 2− s) = −εΛ(f, 2− s). (13)

It is a direct calculation to derive this functional equation from the
integral representation of Λ(f, s).

For the next result, we view f as an element of S2(N,Kf ). (Recall that
Kf is the totally real field generated by the Fourier coefficients of f .) Any
complex embedding σ : Kf ↪→ C yields an eigenform fσ with complex co-
efficients, to which the Hecke L-function L(fσ, s) may be attached. The
following result relates the L-series of Hasse–Weil and of Hecke.

Theorem 3.10. Let Af be the abelian variety associated to the newform
f ∈ S2(N,C) by the Eichler–Shimura construction. Then

L(Af , s) =
∏

σ:Kf−→C

L(fσ, s).

In particular, Conjecture 3.8 holds for Af .
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The main ingredient in the proof of Theorem 3.10 is the Eichler–Shimura
congruence which relates the Hecke correspondence Tp ⊂ X0(N)2 in char-
acteristic p to the graph of the Frobenius morphism and its transpose. For
more details and references see Chapter 2 of [Da2].

Theorem 3.10 reveals that one has better control of the arithmetic of the
abelian varieties Af—Conjecture 3.8 remains open for the general abelian
varietyA over Q. In fact, one has the following strong evidence for Conjecture
3.9 for the abelian varieties Af .

Theorem 3.11. If L(Af , 1) 6= 0, then Af (Q) is finite.

The main ingredients that go into the proof of Theorem 3.11 are

1. The theory of Heegner points on modular curves;

2. The theorem of Gross–Zagier expressing the canonical heights of the
images of these points in Af in terms of special values of L-series closely
related to L(f, s);

3. A theorem of Kolyvagin which relates the system of Heegner points
and the arithmetic of Af over Q.

These ingredients will be discussed in somewhat more detail in Section 5
devoted to elliptic curves and the Birch and Swinnerton-Dyer conjecture.

3.6 The winding quotient

The criterion for the finiteness of Af (Q) supplied by Theorem 3.11 allows us
to construct a quotient J](p) which is in some sense the “largest possible”
quotient with finite Mordell–Weil group.

We construct J](p), following Merel, by letting e0 be the vertical path from
0 to i∞ on H; its image in X0(p) gives an element in the relative homology
H1(X0(p)(C),Z; {cusps}). By a result of Manin–Drinfeld, the element e0
gives rise to an element e in the rational homology H := H1(X0(p)(C),Q).
This element is referred to as the winding element.

The Hecke algebra T = TQ acts on H by functoriality of correspondences.
Let ef denote the image of e in H/IfH. The integral formula (10) for L(f, s)
shows that

ef 6= 0 if and only if L(f, 1) 6= 0.
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Hence it is natural to define

Je(p) := J0(p)/Ie, where Ie := AnnT(e).

Theorem 3.12. The Mordell–Weil group Je(p)(Q) is finite.

Proof. Up to isogeny, Je(p) decomposes as

Je(p) ∼
∏
ef 6=0

Af =
∏

L(f,1) 6=0

Af .

Theorem 3.11 implies that Af (Q) is finite for all the f that appear in this
decomposition. The theorem follows.

In order to exploit Mazur’s criterion with J](p) = Je(p), and thereby prove
Theorem 3.1, it remains to show that the natural map je : X0(p) −→ Je(p) is
a formal immersion at ∞. (So that in particular Je(p) is nontrivial, which is
not clear a priori from its definition!) This is done in the article of Marusia
Rebolledo in these proceedings (cf. Theorem 4 of Section 2.3 of [Reb]). Re-
bolledo’s article goes significantly further by showing that the natural map
from the d-th symmetric power X0(p)

(d) of X0(p) sending (P1, . . . , Pd) to
the image in J](p) of the divisor class (P1) + · · · + (Pd) − d(∞) is a formal
immersion at (∞, . . . ,∞), as soon as p is sufficiently large relative to d.

Remark 3.13. Our presentation of Mazur’s argument incorporates an im-
portant simplification due to Merel, which consists in working with the wind-
ing quotient Je(p) whose finiteness is known thanks to Theorem 3.11. At the
time of Mazur’s original proof described in [Ma1], Theorems 3.11 and 3.12
were not available, and Mazur’s approach worked with the so-called Eisen-
stein quotient Jeis(p). This quotient contains a rational torsion subgroup of
order n = numerator(p−1

12
), and one of the key results in [Ma1] is to estab-

lish the finiteness of Jeis(Q) by an n-descent argument. In Merel’s approach,
Mazur’s somewhat delicate “Eisenstein descent” is in effect replaced by Koly-
vagin’s descent based on Heegner points and the theorem of Gross–Zagier.

3.7 More results and questions

By various refinements of the techniques discussed above, Mazur was able to
classify all possible rational torsion subgroups of elliptic curves over Q and
obtained the following results:
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Theorem 3.14. Let T be the torsion subgroup of the Mordell–Weil group of
an elliptic curve E over Q. Then T is isomorphic to one of the following 15
groups:

Z/mZ for 1 ≤ m ≤ 10 or m = 12,
Z/2mZ× Z/2Z for 1 ≤ m ≤ 4.

For the proof, see [Ma1], p. 156. We note in passing that all possibilities for
T that are not ruled out by Mazur’s theorem do in fact occur infinitely often:
the associated modular curves are of genus 0 and have a rational point.

Mazur’s theorem implies that rational points of order p on elliptic curves
cannot occur for p > 7. One can ask similar questions for rational subgroups.
In this direction, Mazur proved the following result in [Ma2].

Theorem 3.15. Suppose that there is an elliptic curve E over Q with a
rational subgroup of prime order p. Then p ≤ 19 or p = 37, 43, 67, or 163.

The four exceptional values of p in Theorem 3.15 correspond to discrim-
inants of imaginary quadratic fields of class number one. The corresponding
elliptic curves with complex multiplication can be defined over Q and have
a rational subgroup of order p.

Theorem 3.15 implies that for large enough p, the Galois representation

ρE,p : GQ −→ Aut(E[p])

is always irreducible. One can also ask whether, for large enough p, this
Galois representation is in fact necessarily surjective. The existence of elliptic
curves with complex multiplication, for which ρE,p is never surjective when
p ≥ 3, precludes an affirmative answer to this question. Discarding elliptic
curves with complex multiplication, the following conjecture (which appears
in [Se1], p. 299, §4.3, phrased more prudently as an open question) can be
proposed:

Conjecture 3.16. (Surjectivity conjecture) If E is an elliptic curve over
Q without complex multiplication, and p ≥ 19 is prime, then the Galois
representation associated to E[p] is surjective.

The surjectivity conjecture remains open, more than 30 years after [Ma1].
The hypothetical cases that are the most difficult to dispose of are those
where the image of ρE,p is contained in the normalizer of a Cartan subgroup,
particularly a nonsplit Cartan subgroup.
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It is also natural to search for analogues of Theorem 3.14 over number
fields other than Q; a remarkable breakthrough was achieved on this problem
by S. Kamienny and Merel around 1992 ([Ka], [Me]).

Theorem 3.17. Let K be a number field. Then the size of E(K)tors is
bounded by a constant B(K) which depends only on K. In fact, this constant
can be made to depend only on the degree of K over Q.

The proof of this theorem is explained in the article by Marusia Rebolledo
[Reb] in these proceedings.

We finish with a conjecture that can be viewed as a “mod p analogue” of
Theorem 2.18 (Tate’s isogeny conjecture).

Conjecture 3.18. There exists an integer M such that, for all p ≥M , any
two elliptic curves E1 and E2 over Q are isogenous if and only if E1[p] ' E2[p]
as GQ-modules.

This conjecture appears to be difficult. It is not even clear what the
best value M might be, assuming it exists. (Calculations of Cremona [Cr]
based on his complete tables of elliptic curves over Q of conductor ≤ 30, 000
show that necessarily M > 13.) We mention Conjecture 3.18 here because
it implies strong results about ternary diophantine equations analogous to
Fermat’s Last Theorem, thanks to the methods explained in Chapter 4.

4 Fermat curves

The purpose of this section is to discuss the Fermat curves

Fn : xn + yn = zn,

and the proof of Fermat’s Last Theorem, that these curves have no nontrivial
rational points when n ≥ 3. Fermat’s Last Theorem has the same flavour as
Mazur’s Theorem 3.1, since it determines all of the rational points in a nat-
urally arising infinite collection of algebraic curves. Although Fermat curves
are simpler to write down as explicit equations, they do not admit a direct
moduli interpretation, and therefore turn out to be harder to analyse than
modular curves. In fact, the eventual solution of Fermat’s Last Theorem is
based on an elaborate reduction of the study of Fermat curves to diophantine
questions about modular curves. In particular, Theorem 3.1—its statement,
as well as some of the techniques used in its proof—play an essential role in
the proof of Fermat’s Last Theorem.
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4.1 Motivation for the strategy

Hugo Chapdelaine’s article in these proceedings discusses the more general
problem of classifying the primitive integer solutions of the generalised Fer-
mat equation

xp + yq + zr = 0, (14)

and sets up a “dictionary” relating
Strategies for studying
primitive solutions of
xp + yq + zr = 0

 and


Unramified coverings
of P1 − {0, 1,∞}
of signature (p, q, r)

 .

The idea explained in [Chap] is that, given an unramified covering

π : X −→ P1 − {0, 1,∞},

one can study (14) by

1. Attempting to classify the possible fibers of π over the points in

Σp,q,r =

{
ap

cr
, with ap + bq = cr and (a, b, c) primitive

}
⊂ P1(Q).

Since the ramification in these fibers is bounded, there can only be
finitely many, by the Hermite–Minkowski theorem. In particular, the
compositum of these extensions is a finite extension of Q, denoted L.

2. Understanding the L-rational points on the curve X.

To apply these principles to the classical Fermat equation, one is led to
consider unramified coverings of P1−{0, 1,∞} of signature (p, p, p). Among
such coverings, one finds:

1. the Fermat curve Fp : xp + yp = zp itself, equipped with the natural
projection π : (x, y, z) 7→ t = xp

zp of degree p2. For this π, it is clear that
π(Fp(Q)) ⊃ Σp,p,p; but this merely leads to a tautological reformulation
of the original question.

2. There are many coverings of signature (p, p, p) with solvable Galois
groups, and studying these leads to classical attempts to prove Fermat’s
Last Theorem by factoring xp +yp over the p-th cyclotomic fields. This
circle of ideas led to many interesting questions on cyclotomic fields
and their class groups, but has proved unsucessful (so far) in settling
Fermat’s Last Theorem.
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A third type of covering is obtained from modular curves. These coverings,
which are nonsolvable, arises naturally in light of the strong results obtained
in Section 3.

More precisely, let Y (n) be the open modular curve that classifies elliptic
curves with full level n structure, i.e., pairs

(E, ι : Z/nZ× µn −→ E[n])

where ι is an identification which induces an isomorphism

∧2ι : ∧2(Z/nZ× µn) = µn ' ∧2(E[n]) = µn.

Over the base Z = Z[1/2], the curve Y (2)Z is identified with

Spec(Z[λ, 1/λ, 1/(λ− 1)]) = (P1 − {0, 1,∞})Z ,

where λ is the parameter that occurs in the Legendre family

Eλ : y2 = x(x− 1)(x− λ).

The natural covering map π : Y (2p) −→ Y (2) is an unramified covering
of signature (p, p, p), with Galois group SL2(Z/pZ)/〈±1〉. Given λ = ap

cp ∈
Σp,p,p, the fiber π−1(λ) is contained in the field of definition of the field of
p-division points of the elliptic curve

y2 = x(x− 1)(x− ap/cp). (15)

In practice, it is more convenient to work with the closely related Frey curve,

Ea,b,c : y2 = x(x− ap)(x− cp),
which differs from (15) by a quadratic twist, and replace the study of the
fiber of π at λ with considerations involving the mod p Galois representation

ρa,b,c : GQ −→ Aut(Ea,b,c[p]) ' GL2(Z/pZ).

We normalise (a, b, c) so that a ≡ 3 (mod 4) and c is even. (This can
always be done, by permuting a, b and c and changing their signs if neces-
sary.) With this normalisation, the minimal discriminant, conductor, and
j-invariant associated to Ea,b,c are

∆ = 2−8(abc)2p, N =
∏
`|abc

`, j =
28(b2p + apcp)3

(abc)2p
. (16)

In particular, the elliptic curve Ea,b,c is semistable: it has either good or
(split or nonsplit) multiplicative reduction at all primes. (The reader may
wish to consult Section 2 of the article by Pierre Charollois in this proceedings
volume, which discusses the local invariants of Frey curves in greater detail.)
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4.2 Galois representations associated to Frey curves

The following theorem states the main local properties of the Galois repre-
sentation ρa,b,c.

Theorem 4.1. The representation ρ = ρa,b,c has the following properties.

(a) It is unramified outside 2 and p;

(b) The restriction of ρ to a decomposition group D2 at 2 is of the form

ρa,b,c|D2 =

(
χcycψ κ

0 ψ−1

)
,

where χcyc : GQ2 −→ (Z/pZ)× is the mod p cyclotomic character, and
ψ is an unramified character of order 1 or 2.

(c) The restriction of ρ to Dp comes from the Galois action on the points
of a finite flat group scheme over Zp.

Proof. (a) Let ` 6= 2, p be a prime. The analysis of the restriction of ρ = ρa,b,c

to D` can be divided into three cases:

Case 1: The prime ` does not divide abc. In that case, it is a prime of good
reduction for Ea,b,c, and the action of D` on Ea,b,c[p] is therefore unramified,
by the criterion of Néron–Ogg–Shafarevich.

Case 2: The prime ` divides abc. It is therefore a prime of multiplicative
reduction for Ea,b,c. Hence the curve Ea,b,c, or a twist of it over the un-
ramified quadratic extension of Q`, is isomorphic to the Tate curve Gm/q

Z
`

over Q`. More precisely, replacing Ea,b,c by its twist if necesary, we have an
identification which respects the action of GQ`

on both sides:

E(Q̄`) ' Q̄×` /〈q`〉, (17)

where q` ∈ Q×` is the `-adic Tate period, which is obtained by reverting the
power series with integer coefficients

j =
1

q
+ 744 + 196884q + · · ·

that expresses j in terms of q, to obtain a power series

q = Tate(1/j) = 1/j + · · · ∈ (1/j)Z[[1/j]]×.
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In particular, note that, by (16),

ord`(q`) = ord`(1/j) = ord`(∆) ≡ 0 (mod p). (18)

The explicit description of the GQ`
-module E(Q̄`) given by (17) implies that

E(Q̄`)[p] ' {ζa
p q

b/p
` , 0 ≤ a, b ≤ p− 1},

where ζp is a primitive pth root of unity in Q̄×` . In the basis (ζp, q
1/p
` ) for

E[p], the restriction of ρ = ρa,b,c to D` can be written as

ρ(σ) =

(
χcyc(σ)ψ(σ) κ(σ)

0 ψ−1(σ)

)
, (19)

where χcyc is the p-th cyclotomic character giving the action of D` on the
p-th roots of unity, and ψ is an unramified character of order at most 2
(which is trivial precisely when E has split multiplicative reduction at `.)
Furthermore, the cocycle κ is unramified, by (18): this is because the exten-

sion Q`(ζp, q
1/p
` ) through which ρa,b,c|GQ`

factors is unramified. Part (a) of
Theorem 4.1 follows.

(b) When ` = 2, the elliptic curve Ea,b,c has multiplicative reduction at 2,
and hence is identified with a Tate curve over Q2. The result then follows
from (19) with ` = 2.

(c) When ` = p does not divide abc, the Galois representation ρa,b,c arises from
the p-torsion of an elliptic curve with good reduction at p, and is hence from a
finite flat group scheme over Zp. In the case where p|abc (which corresponds
to what was known classically as the second case of Fermat’s Last Theorem)
one has a similar conclusion: essentially, the condition ordp(qp) ≡ 0 (mod p)
limits the ramification of ρa,b,c at p and implies that Ea,b,c[p] extends to a
finite flat group scheme over Zp, in spite of the fact that Ea,b,c itself does not
have a smooth model over Zp.

The following theorem gives a global property of the representation ρa,b,c.

Theorem 4.2 (Mazur). The Galois representation ρa,b,c is irreducible.

Proof. This follows (at least when p is large enough) from Theorem 3.15. We
will now give a self-contained proof which rests on the ideas developed in the
proof of Theorem 3.4.
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Suppose that ρa,b,c is reducible. Then E = Ea,b,c has a rational subgroup
C of order p, and the pair (E,C) gives rise to a rational point x on the
modular curve X0(p). Let ` 6= p be an odd prime that divides abc. Then
E has multiplicative reduction at `. Therefore, the point x reduces to one
of the cusps 0 or ∞ of X0(p) modulo `. It can be asssumed without loss of
generality that x reduces to ∞, as in Step 2 of the proof of Theorem 3.4.
Now recall the natural projection Φe : J0(p) −→ Je(p) of J0(p) to its winding
quotient Je(p), and the resulting map je : X0(p) −→ Je(p). The element
je(x) belongs to the formal group J1

e (p)(Q`), which is torsion-free, and to
Je(p)(Q), which is torsion by Theorem 3.12. Hence je(x) = 0. We now use
the fact that je is a formal immersion to deduce that x =∞, as in Step 4 of
the proof of Theorem 3.4 (with 3 replaced by `).

Remark 4.3. The importance of the diophantine study of modular curves
described in Chapter 3 in the proof of Fermat’s Last Theorem, via Theorem
4.2, cannot be overemphasised. It is sometimes underplayed in expositions
of Fermat’s Last Theorem which tend to focus on the ingredients that were
supplied later.

Thanks to Theorems 4.1 and 4.2, Fermat’s Last Theorem is now reduced
to the problem of “classifying” the irreducible two-dimensional mod p rep-
resentations satisfying the strong restrictions on ramification imposed by
Theorem 4.1—or in some sense, to make Theorem 1.1 precise for the class of
extensions of Q arising from such representations. The control we have over
questions of this type (which in general seem very hard) arises from the deep
and largely conjectural connection that is predicted to exist between Galois
representations and modular forms.

4.3 Modular forms and Galois representations

Let f =
∑

n anq
n be a newform in S2(N,C). Let Kf denote as before the

finite extension of Q generated by the Fourier coefficients of f , so that f
belongs to S2(N,Kf ). The Fourier coefficients of f belong to the ring Of

of integers of Kf . Let p be a prime ideal of Of and let Kf,p denote the
completion of Kf at p.

Theorem 4.4. There exists a Galois representation

ρf,p : GQ −→ GL2(Kf,p)

such that
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1. The representation ρf,p is unramified ouside Np.

2. The characteristic polynomial of ρf,p(Frob`) is equal to x2−a`x+ `, for
all primes ` not dividing p.

3. The representation ρf,p is odd, i.e., the image of complex conjugation
has eigenvalues 1 and −1.

Sketch of proof. Let Af be the abelian variety quotient of J0(N) associated
to f by the Eichler–Shimura construction (Theorem 3.6). Its endomorphism
ring EndQ(Af ) contains T/If , which is an order in Kf . In this way, the
Galois representation Vp(Af ) is equipped with an action of Kf ⊗Qp which
commutes with the action of GQ. Let

Vf,p = Vp(Af )⊗Kf
Kf,p.

It is a two-dimensional Kf,p-vector-space, equipped with a continuous linear
action of GQ. The fact that it has the desired properties, particularly prop-
erty 2, is a consquence of the Eichler–Shimura congruence that was used to
prove the equality of L-series given in Theorem 3.10. See Chapter 2 of [Da2]
for further details and references.

4.4 Serre’s conjecture

Modular forms can also be used to construct two-dimensional representations
of GQ over finite fields. More precisely, let Of,p be the ring of integers of Kf,p.
Since GQ is compact and acts continuously on Vf,p, it preserves an Of,p-stable
sublattice V 0

f,p ⊂ Vf,p of rank two over Op,p. Let Fp := Of,p/p be the residue
field of Of at p. The action of GQ on the two-dimensional Fp-vector space
Wf,p := V 0

f,p/pV
0
f,p gives rise to a two-dimensional mod p representation

ρ̄f,p : GQ −→ GL2(Fp).

Like its p-adic counterpart, this representation is unramified outside of pN
and also satisfies parts 2 and 3 of Theorem 4.4.

In [Se2], Serre associates to any two-dimensional Galois representation

ρ : GQ −→ GL2(F) (20)

with coefficients in a finite field F two invariants N(ρ) and k(ρ), called the
Serre conductor and Serre weight of ρ, respectively. The Serre conductor
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N(ρ) is only divisible by primes distinct from the characteristic of F at which
ρ is ramified. When ρ = ρ̄f,p arises from a modular form, the Serre conductor
N(ρ) always divides (but is not necessarily equal to) the level N of f . In
particular, using parts 1 and 2 of Theorem 4.1, one can show that

N(ρa,b,c) = 2. (21)

The recipe for defining k(ρ) is somewhat more involved, but depends only
on the restriction of ρ to the decomposition group (in fact, the inertia group)
at p. It will suffice, for the purposes of this survey, to note that when ρ arises
from the p-division points of a finite flat group scheme over Zp, then Serre’s
recipe gives k(ρ) = 2. Hence, by part 3 of Theorem 4.1,

k(ρa,b,c) = 2. (22)

In [Se2], Serre conjectures that any odd irreducible two-dimensional mod
p Galois representation ρ as in (20) necessarily arises from an appropriate
modular form mod p of weight k(ρ) and level N(ρ). This conjecture has
recently been proved by Khare and Wintenberger (cf. Theorem 1.2 of [KW])
in the case where N(ρa,b,c) is odd, and follows in the general case from a
similar method, using a result of Kisin [Ki].

Theorem 4.5. Let ρ be an odd, irreducible two-dimensional mod p represen-
tation of GQ. Then there exists an eigenform f of weight k(ρ) on Γ1(N(ρ)),
and a prime p|p of the field Kf such that ρ is isomorphic to ρ̄f,p as a repre-
sentation of GQ.

Proof of Fermat’s Last Theorem. Let (a, b, c) be a primitive nontrivial solu-
tion of Fermat’s equation xp+yp = zp, and consider the Galois representation
ρ = ρa,b,c associated to the p-division points of the associated Frey curve. It
follows from Theorem 4.2 that ρ is an odd, irreducible mod p representation
of GQ. Its Serre conductor and weight are N(ρ) = 2 and k(ρ) = 2 by (21)
and (22). Therefore Theorem 4.5 implies the existence of a nontrivial cusp
form in S2(2,C). This leads to a contradiction, because there are no such
cusp forms: the modular curve X0(2) has genus zero and hence has no regular
differentials. This contradiction implies Fermat’s Last Theorem.

4.5 The Shimura–Taniyama conjecture

Historically, the proof of Theorem 4.5 by Khare and Wintenberger came
almost 10 years after Wiles proved Fermat’s Last theorem. In essence, Wiles
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proved enough of Theorem 4.5 to cover the Galois representations ρa,b,c arising
from hypothetical solutions of Fermat’s equation.

More precisely, the articles [Wi] and [TW] proved the following result,
known as the Shimura-Taniyama conjecture for semistable elliptic curves:

Theorem 4.6. Let E be a semistable elliptic curve over Q of conductor
N . Then there is a normalised eigenform f in S2(N,Z) such that Vp(E) is
isomorphic to Vp(Af ).

The proof of this theorem—or even, an outline of its main ideas—is be-
yond the scope of this survey. For details the reader is invited to consult
[DDT] for example.

Theorem 4.6 implies that ρa,b,c arises from a modular form in S2(N,C),
where N =

∏
`|abc `. The Serre conjecture (Theorem 4.5) for ρa,b,c then follows

from an earlier theorem of Ribet (which also played an important role in
Wiles’ original approach to proving Theorem Theorem 4.6.)

Theorem 4.7. Suppose that p is odd. Let ρ be an irreducible mod p Galois
representation which arises from a modular form (of some weight and level).
Then it also arises from an eigenform of weight k(ρ) and level N(ρ).

Aside from the fact that it proves Fermat’s Last Theorem, the importance
of Theorem 4.6 can be justified on several other levels.

Firstly, the methods used to prove Theorem 4.6 were subsequently refined
in [BCDT] to prove the full Shimura–Taniyama conjecture: all elliptic curves
over Q are modular. This result is of great importance in understanding the
arithmetic of elliptic curves over Q, as will be explained in more detail in the
next chapter.

Secondly—and this is a theme that we will not begin to do justice to,
because it falls outside the scope of this survey—Wiles’ method for proving
Theorem 4.6 has led to a general, flexible method for establishing relation-
ships between Galois representations and modular forms. It was by building
on these techniques that Khare and Wintenberger proved Serre’s conjecture
(Theorem 4.5). Over the years, many other conjectures of this type have
been proved building on the proof of Theorem 4.6: for instance, special cases
of Artin’s conjecture relating representations with finite image to modular
forms of weight one (cf. for example [Tay2] and the references contained
therein), and a proof of the Sato–Tate conjecture for elliptic curves over Q
in [Tay1], [HST], and [CHT].
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Closer to the themes that have been developed in this chapter, we mention
a natural generalisation of Theorem 4.6 concerning abelian varieties of GL2-
type. An abelian variety A over Q is said to be of GL2-type if EndQ(A)⊗Q
contains a field K with [K : Q] = dim(A). The reason for this terminology is
that such an A gives rise, for each prime ideal p of K, to a two-dimensional
Galois representation

ρA,p : GQ −→ GL2(Kp)

arising from the action of GQ on Vp(A)⊗KKp. The abelian varieties Af aris-
ing from the Eichler-Shimura construction are examples of abelian varieties
of GL2-type. A conjecture of Fontaine and Mazur predicts that all abelian
varieties of GL2-type arise as quotients of jacobians of modular curves. It
can be shown that this generalisation of the Shimura-Taniyama conjecture
follows from Theorem 4.5. (Cf. for example [Se2] or the introduction of [Ki].)

4.6 A summary of Wiles’ proof

There are some enlightening parallels to be drawn between the proof of Fer-
mat’s Last Theorem and Faltings’ proof of the Mordell conjecture as sum-
marised in Section 2.8. Like Faltings’ proof, the proof of Fermat’s Last
theorem is based on a sequence of maps, resulting in a sequence of trans-
formations leading from the original problem to questions about other types
of structures, such as Galois representations, and ultimately modular forms.
These reductions are summarised in the diagram below.

Integer solutions
(a,b,c) of
xp + yp = zp

 R1−→


Semistable elliptic curves
of conductor N = abc
and discriminant 2−8(abc)2p


R4−→


Irreducible galois representations
ρ : GQ −→ GL2(Fp)
with N(ρ) = 2 and k(ρ) = 2.


R5−→

{
Cusp forms in
S2(2,Z/pZ).

}
.

1. The map R1 is defined via the Frey curve, and is reminiscent of the
Kodaira–Parshin construction of Section 2.2. An important difference
is that the set of primes of bad reduction of the Frey curve associated
to (a, b, c) is not bounded independently of (a, b, c). In fact, the set of
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primes of bad reduction for E consists exactly of the primes that divide
abc.

2. The map R4 plays a role analogous to the passage to the `-adic repre-
sentations in Faltings’ proof. An important difference here is that we
consider mod p representations (with coefficients in a finite field) rather
than p-adic representations. The justification for doing this is given by
Theorem 4.1, which shows that the mod p representation ρ attached
to Ea,b,c has bounded ramification. Note that the corresponding p-adic
representation would be ramified precisely at the primes dividing pabc.
It is an exercise to show that the map R4 is finite-to-one when p ≥ 7.
(Hint: use Faltings’ theorem 2.1, and the fact that X(p) has genus > 1
when p ≥ 7.) It is even believed that R4 is injective once p is large
enough (cf. Conjecture 3.18), but this assertion is still unproved.

3. The map R5 is a new ingredient that has no counterpart in Faltings’
proof of Mordell’s conjecture, and exploits the deep “dictionary” that is
expected to exist between Galois representations and modular forms—
in this case, the Serre conjecture proved by Khare and Wintenberger.

4. The final step in the argument exploits the fact that there are no mod-
ular forms of weight two and level two. This last point may seem like
a “lucky accident” in the proof of Fermat’s Last Theorem. Indeed
the presence of modular forms of higher level presents an obstruction
for the method based on Frey curves to yield results on more general
ternary diophantine equations of Fermat type. However, see the article
by Charollois in this volume [Char], where a refinement of the tech-
niques described in this chapter leads to a strikingly general result on
the generalised Fermat equation axp + byp + czp = 0.

Remark 4.8. One of the consequences of Conjecture 3.18 is that the gen-
eralised Fermat equation axn + byn + czn = 0 (with a, b, c fixed) has no
primitive integer solutions (x, y, z) with xyz 6= 0,±1, once n is large enough.
(The reader who masters the ideas in the article by Pierre Charollois in this
proceedings volume will be able to prove this assertion.)
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5 Elliptic curves

After surveying curves of genus > 1, we turn our attention to curves of genus
1. A projective curve of genus 1 over a field K, equipped with a distinguished
K-rational point over that field, is endowed with a natural structure of a
commutative algebraic group over K for which the distinguished element
becomes the identity. Such a curve is called an elliptic curve.

If E is an elliptic curve defined over a number field K, then the Mordell–
Weil Theorem (cf. Theorem 7 of the introduction) asserts that the group
E(K) of K-rational points on E is finitely generated. Let r(E,K) denote
the rank of this finitely generated abelian group. Many of the important
questions in the theory of elliptic curves revolves around calculating this
invariant, and understanding its behaviour as E or K vary.

Question 5.1. Is there an effective algorithm to calculate r(E,K), given E
and K?

Showing that Fermat’s method of descent yields such an effective algo-
rithm is intimately connected to the Shafarevich–Tate conjecture asserting
the finiteness of the Shafarevich–Tate group LLI(E/K) of E/K.

One can also fix a base field (the most natural, and interesting, case being
the case where K = Q) and ask

Question 5.2. Is the rank r(E,K) unbounded, as E ranges over all elliptic
curves defined over K?

One can also fix an elliptic curve E and enquire about the variation of
r(E,K) as K ranges over different number fields.

The main tool available at present to study r(E,K) is the relationship
between the rank and the Hasse–Weil L-series predicted by the Birch and
Swinnerton-Dyer conjecture (Conjecture 3.9).

Assume that E is an elliptic curve over Q. Thanks to Theorem 4.6 (and
its extension to all elliptic curves over Q given in [BCDT]), the Hasse–Weil
L-series L(E, s) is equal to L(f, s) for some newform f of weight two. In
particular, L(E, s) has an analytic continuation to the entire complex plane,
and a functional equation.

The main result we will discuss in this chapter is the following:

Theorem 5.3. Let E be an elliptic curve over Q, and let L(E, s) be its
Hasse–Weil L-series. If r := ords=1L(E, s) ≤ 1, then r(E,Q) = r and
LLI(E/Q) is finite.

53



5.1 Modular parametrisations

Let E be an elliptic curve over Q of conductor N . Recall the modular curve
X0(N) that was introduced in Section 3.1. The following theorem, which
produces a dominant rational map from such a curve to E, plays a crucial
role in the proof of Theorem 5.3.

Theorem 5.4. There exists a nonconstant map of curves over Q

ϕ : X0(N) −→ E.

Proof. By Theorem 4.6, there is a normalised eigenform f in S2(N,Z) sat-
isfying L(E, s) = L(f, s). Let Af be the quotient of J0(N) associated to
f via the Eichler–Shimura construction. By assumption, the Galois repre-
sentations Vp(E) and Vp(Af ) are isomorphic. Hence the isogeny conjecture
(Theorem 2.18) implies the existence of an isogeny α : Af −→ E defined
over Q. Composing such an isogeny with the natural surjective morphism
J0(N) −→ Af gives a nonconstant map Φ : J0(N) −→ E. The modular
parametrisation ϕ is defined by setting ϕ(x) := Φ((x)− (∞)).

It is useful to describe briefly how the modular parametrisation ϕ can be
computed analytically. The pull-back ϕ∗(ωE) is a nonzero rational multiple
of the diferential form

ωf := 2πif(τ)dτ =
∞∑

n=1

anq
ndq

q
.

Denote by Λf the collection of periods of ωf (integrals of ωf against smooth
closed one-chains C in X0(N)(C)):

Λf :=

{∫
C

ωf , where ∂C = 0

}
.

It is a lattice in C, and Af (C) ' C/Λf . Let us replace E by Af , so that
α = 1. It is suggestive (for later generalisations) to view ϕ as a map

ϕ : Div0(X0(N)) −→ E.

This map is defined on Div0(X0(N)(C)) by the rule

ϕ(∆) :=

∫
C s.t.
∂(C)=∆

ωf (mod Λf ), (23)

where the integral is taken over any smooth one-chain C whose boundary
is ∆. The invariant ϕ(∆) ∈ C/Λf is viewed as a point on E(C) via the
Weierstrass uniformisation.
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5.2 Heegner points

Perhaps the most important arithmetic application of the modular parametri-
sation arises from the fact that X0(N) is endowed with a systematic supply
of algebraic points defined over abelian extensions of imaginary quadratic
fields—the so-called CM-points. These points correspond, in the moduli in-
terpretation of X0(N), to pairs (A,C) where A is an elliptic curve whose
endomorphism ring O = End(A) is an order in a quadratic imaginary field
K. Such an elliptic curve is said to have complex multiplication by K, and
the corresponding points on X0(N) are called CM-points attached to K. Let
CM(K) denote the set of all CM points in X0(N) attached to K. It satisfies
the following properties.

1. The set CM(K) is dense in X0(N)(C) (relative to the Zariski topology,
and also the complex topology).

2. Let Kab denote the maximal abelian extension of K. Then CM(K) is
contained in X0(N)(Kab).

3. Analytically, CM(K) = Γ0(N)\(H ∩K).

Definition 5.5. The collection of points

HP (K) := {ϕ(∆)}∆∈Div0(CM(K)) ⊂ E(Kab)

is called the system of Heegner points on E attached to K.

The usefulness of Heegner points arises from two facts:

1. They can be related to L-series, thanks to the theorem of Gross–Zagier
and its generalisations.

2. They can be used to bound Mordell–Weil groups and Shafarevich–Tate
groups of elliptic curves, following a descent method that was discovered
by Kolyvagin.

Heegner points and L-series.
For simplicity, suppose that the imaginary quadratic field K satisfies the

following so-called Heegner hypothesis:

Hypothesis 5.6. There exists a ideal N of norm N in OK with cyclic quo-
tient.
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This hypothesis is used to construct a distinguished element in HP(K).
More precisely, let h denote the class number of K, and let H be its Hilbert
class field. By the theory of complex multiplication, there are precisely h
distinct (up to isomorphism over C) elliptic curves A1, . . . , Ah having en-
domorphism ring equal to OK . The j-invariants of these curves belong to
H, and are permuted simply transitively by the action of Gal(H/K). It is
therefore possible to choose A1, . . . , Ah in such a way that they are defined
over H, and permuted by the action of Gal(H/K).

The pairs (Ai, Ai[N ]) (with 1 ≤ i ≤ h) correspond to points Pi in
X0(N)(H). Let

PK := ϕ((P1) + · · ·+ (Ph)− h(∞)) ∈ E(K). (24)

The fact that the point PK has an explicit moduli description makes it pos-
sible to establish some of its key properties. For example, let P̄K denote the
image of PK under complex conjugation. Then it can be shown that

P̄K = wPK (mod E(K)tors), (25)

where w ∈ {±1} is the negative of the sign in the functional equation for
L(E, s) = L(f, s). (Cf. Chapter 3 of [Da2].) This provides a simple connec-
tion between the behaviour of PK and the L-series L(E, s).

We note that, in many cases where Hypothesis 5.6 is satisfied (for exam-
ple, when all the primes dividing N are split in the quadratic imaginary field
K), the sign in the functional equation for the Hasse–Weil L-series L(E/K, s)
is −1, so that L(E/K, 1) = 0. It then becomes natural to consider the first
derivative L′(E/K, 1) at the central critical point. The following theorem of
Gross and Zagier establishes an explicit link between PK and this quantity.

Theorem 5.7. Let 〈f, f〉 denote the Petersson scalar product of f with itself,
and let h(PK) denote the Néron–Tate canonical height of PK on E(K). There
is an explicit nonzero rational number t such that

L′(E/K, 1) = t · 〈f, f〉 · h(PK). (26)

In particular, the point PK is of infinite order if and only if L′(E/K, 1) 6= 0.

The proof of Theorem 5.7 given in [GZ] proceeds by a direct calculation
in which both sides of (26) are computed explicitly, compared, and found to
be equal.
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Remark 5.8. Let Pn be a point in CM(K) corresponding to an elliptic curve
with endomorphism ring equal to the order On of conductor n in K. Such a
point can be defined over the ring class field Hn of K of conductor n, whose
Galois group Gn := Gal(Hn/K) is canonically identified with the class group
Pic(On) by class field theory. If χ : Gn −→ C× is a complex character, one
can generalise (24) to define

Pχ := ϕ

(∑
σ∈Gn

χ(σ)P σ
n

)
∈ E(Hn)⊗C. (27)

A generalisation of Theorem 5.7 due to S. Zhang (cf. for example [Zh1],
[Zh2], [Ho1] and [Ho2]) relates the height of Pχ to the derivative of the
twisted L-series L(E/K,χ, s) at s = 1.

When L′(E/K, 1) 6= 0, the method of Heegner points gives an efficient
method for producing a point of infinite order in E(K). The following propo-
sition asserts the existence of many K for which the L-series does not vanish.

Proposition 5.9. Suppose that r := ords=1L(E, s) ≤ 1. Then there exist
infinitely many quadratic imaginary fields K satisfying Hypothesis 5.6 for
which

ords=1(L(E/K, s)) = 1.

The proof of this proposition is explained in [MM].

Heegner points and arithmetic: Kolyvagin’s descent
Theorem 5.7 implies that if L′(E/K, 1) 6= 0, then PK is of infinite order

and hence r(E,K) ≥ 1. The following theorem of Kolyvagin gives a bound
in the other direction as well.

Theorem 5.10 (Kolyvagin). Suppose that PK is of infinite order in E(K).
Then r(E,K) = 1, and LLI(E/K) is finite.

For a proof of this theorem, see [Gr] or Chapter 10 of [Da2]. Let us
just mention here that Kolyvagin’s proof makes essential use of the fact
that point PK does not come alone, but rather is part of a norm-compatible
system of points in E(Kab) arising from the (infinite) collection of points
in HP(K). These points are used to construct global cohomology classes in
H1(K,E[p]) whose local behaviour can be controlled precisely and related
to PK . Under the assumption that PK is of infinite order, this system of
ramified cohomology classes is enough to bound the p-Selmer group of E/K
and show that r(E,K) = 1.
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5.3 Proof of Theorem 5.3

We will now explain how the properties of PK and HP(K) described in the
previous section can be combined to prove Theorem 5.3:

Proof of Theorem 5.3. Assume that r ≤ 1. By Proposition 5.9, there is a
quadratic imaginary field K satisfying Hypothesis 5.6, for which

ords=1(L(E/K, s)) = 1.

Fix such a K, and consider the point PK . Since L′(E/K, 1) 6= 0, Theorem
5.7 implies that PK is of infinite order. Theorem 5.10 then shows that

r(E,K) = 1, and LLI(E/K) is finite.

Let E ′ denote the quadratic twist of E over K. We then have

1 = r(E,K) = r(E,Q) + r(E ′,Q).

To be able to ignore finer phenomena associated to torsion in E(K), it is
convenient to replace PK by its image in E(K) ⊗ Q. Since E(K) ⊗ Q is
generated by PK , it follows that

r(E,Q) =

{
0 if P̄K = −PK ,
1 if P̄K = PK .

Theorem 5.3 now follows from (25).

Remark 5.11. The proof of Theorem 5.3 carries over with only minor
changes when E is replaced by the abelian variety quotient Af attached
to an arbitrary eigenform f of weight 2 on Γ0(N). This is how Theorem 3.11
is proved:

L(Af , 1) 6= 0 =⇒ Af (Q) is finite.

The reader will recall the key role played by this theorem in the proof of
Theorem 3.1 and (even more importantly) in Merel’s proof of the uniform
boundedness conjecture for elliptic curves explained in Marusia Rebolledo’s
article in these proceedings.
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5.4 Modularity of elliptic curves over totally real fields

Because of the crucial role played by the system HP(K) in the proof of
Theorem 5.3, it is natural to ask whether such structures are present in more
general settings. For example, we would like to prove analogues of Theorem
5.3 for elliptic curves defined over number fields other than Q. The class of
number fields for which this program is best understood is the class of totally
real fields.

More precisely, let F be a totally real field of degree n, and let E be an
elliptic curve over F , of conductor N . Assume, for simplicity, that F has
narrow class number one, so that in particular the conductor can now be
viewed as a totally positive element of OF rather than just an ideal.

The group Γ0(N ;OF ) ⊂ SL2(OF ) is defined as the group of matri-
ces that are upper triangular modulo N . The n distinct real embeddings
v1, . . . , vn : F −→ R of F allow us to view Γ0(N ;OF ) as a subgroup of
SL2(R)n. This subgroup acts discretely on the product Hn, and the ana-
lytic quotient Γ0(N ;OF )\Hn represents the natural generalisation of modular
curves to this setting:

1. This quotient is identified with the complex points of an n-dimensional
algebraic variety Y0(N ;OF ) defined over F . This variety can be com-
pactified by adjoining a finite set of cusps, much as in the setting n = 1
of classical modular curves. A suitable desingularisation of the resulting
projective variety is denoted X0(N ;OF ), and is called a Hilbert mod-
ular variety. Hilbert modular varieties are basic examples of higher
dimensional Shimura varieties.

2. The varietyX0(N ;OF ) is equipped with natural Hecke correspondences
Tλ indexed by the prime ideals of OF .

3. These correspondences induce linear actions on the n-th deRham coho-
mology Hn

dR(X0(N ;OF )), and the eigenvalues of the Hecke operators
are expected to encode the same type of arithmetic information as in
the case where F = Q.

To amplify this last point and make it more precise, we state the following
generalisation of the Shimura–Taniyama conjecture to elliptic curves over F :

Conjecture 5.12. Let E be an elliptic curve over F of conductor N . There
exists a closed (in fact, holomorphic) differential form ω ∈ Hn

dR(X0(N ;OF ))

59



satisfying
Tλ(ω) = aλ(E)ω,

for all primes λ 6 |N of OF .

Remark 5.13. In some cases, the methods of Wiles for proving the modu-
larity of elliptic curves over Q have been extended to the setting of elliptic
curves over totally real fields, and many cases of Conjecture 5.12 can be made
uncondtional.

5.5 Shimura curves

When n > 1, the holomorphic differential form ω whose existence is predicted
by Conjecture 5.12 cannot be used to directly produce an analogue of the
modular parametrisation. In this sense, there is no immediate generalisation
of Theorem 5.4, which plays such a crucial role in the construction of HP(K)
when n = 1.

To extend the notion of Heegner points, it is necessary to introduce an-
other generalisation of modular curves: the so-called Shimura curves associ-
ated to certain quaternion algebras over F .

A quaternion algebra B over F is said to be almost totally definite if

B ⊗v1 R 'M2(R), B ⊗vj
R ' H, for 2 ≤ j ≤ n.

We can associate to any order R in B a discrete subgroup

Γ := v1(R
×) ⊂ SL2(R),

which acts discretely on H by Mobius transformations. When F = Q and
B = M2(Q) is the split quaternion algebra, one recovers the analytic descrip-
tion of the modular curves X0(N). Otherwise, the analytic quotient Γ ⊂ H is
a compact Riemann surface which can be identified with the complex points
of an algebraic curve X possessing a canonical model over F . The curve
X can be related (following a construction of Shimura) to the solution of a
moduli problem and is also equipped with a supply CM(K) ⊂ X(Kab) of CM
points, associated this time to any quadratic totally imaginary extension K
of F .

An elliptic curve E over F is said to be arithmetically uniformisable if
there is a nonconstant map defined over F , generalising Theorem 5.4,

ϕ : Div0(X) −→ E.
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The theory of Jacquet–Langlands gives a precise (partly conjectural) un-
derstanding of the class of elliptic curves that should be arithmetically uni-
formisable:

Theorem 5.14. Let E be an elliptic curve over F which is not isogenous to
any of its Galois conjugates. Then E is arithmetically uniformisable if and
only if

1. E is modular in the sense of Conjecture 5.12;

2. E has potentially semistable reduction at a prime of F , or can be defined
over a field F of odd degree.

The collection HP(K) := ϕ(Div0(CM(K))) ⊂ E(Kab), for suitable to-
tally complex quadratic extensions K/F , can be used to obtain results anal-
ogous to Theorem 5.3 for elliptic curves over totally real fields. See [Zh1]
where general results in this direction are obtained.

The articles [Vo] and [Gre1] in this volume describe Shimura curves and
the associated parametrisations in more detail, from a computational angle.
The article [Vo] discusses explicit equations for Shimura curves of low degree,
and [Gre1] explains how to approach the numerical calculation of the systems
HP(K) of Heegner points via p-adic integration of the associated modular
forms, exploiting the theory of p-adic uniformisation of these curves due to
Cerednik and Drinfeld.

5.6 Stark–Heegner points

Heegner points arising from Shimura curve parametrisations do not com-
pletely dispell the mystery surrounding the Birch and Swinnerton-Dyer con-
jecture for (modular) elliptic curves over totally real fields, since (even as-
suming the modularity Conjecture 5.12) there remain elliptic curves over F
that are not arithmetically uniformisable.

The simplest example of such an elliptic curve is one that has every-
where good reduction over a totally real field F of even degree, and is not
isogenous to any of its Galois conjugates. (More generally, one can also con-
sider any quadratic twist of such a curve.) For these elliptic curves, there
is at present very little evidence for the Birch and Swinnerton-Dyer conjec-
ture, and in particular the analogue of Theorem 5.3 is still unproved when
ords=1L(E/F, s) = 1. (In the case where L(E/F, 1) 6= 0, see the work of
Matteo Longo [Lo].)
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The notion of Stark–Heegner points represents an attempt to remedy this
situation (albeit conjecturally) by exploiting the holomorphic differential n-
form ω whose existence is predicted by Conjecture 5.12 rather than resorting
to a Shimura curve parametrisation. We note that the holomorphic form ω
can be written

ω = f(τ1, . . . , τn)dτ1 · · · dτn,
where f is a (holomorphic) Hilbert modular form of parallel weight 2 on

Γ0(N), satisfying, for all matrices

(
a b
c d

)
∈ Γ0(N),

f

(
a1τ1 + b1
c1τ1 + d1

, . . . ,
anτn + bn
cnτn + dn

)
= (c1τ1 + d1)

2 · · · (cnτn + dn)2f(τ1, . . . , τn).

We let any unit ε ∈ O×F act on Hn by the rule:

ε ? τj =

{
εjτj if εj > 0;
εj τ̄j if εj < 0.

For any subset S ⊂ {2, . . . , n} of cardinality m, we can then define a closed
differential n-form of type (n − m,m) by choosing a unit ε of O×F which is
negative at the places of S, and positive at the other embeddings, and setting

ωS = f(ε ? τ1, . . . , ε ? τn)d(ε ? τ1) . . . d(ε ? τn).

Finally we set

ωE :=
∑

S⊂{2,...,n}

ωS.

The following conjecture is due to Oda [Oda].

Conjecture 5.15. The set of periods

Λf :=

{∫
C

ωE for C ∈ Hn(X0(N,F )(C),Z)

}
⊂ C

is a lattice which is commensurable with the period lattice of E1 := v1(E).

Conjecture 5.15 can be used to define a generalisation of the modular
parametrisation of equation (23). This map is defined on homologically triv-
ial (n− 1)-cycles on X0(N ;OF )(C) by the rule

ϕ(∆) :=

∫
C s.t.

∂(C)=∆

ωf (mod Λf ). (28)
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The interest of this generalisation of (23) is that it is possible to define a
collection of distinguished topological (n−1)-cycles on which ϕ is conjectured
to take algebraic values.

These cycles, which play the same role that Heegner divisors of degree
zero played in the case where n = 1, are defined in terms of certain quadratic
extensions K of F . Such a quadratic extension is said to be almost totally
real if

K ⊗v1 R ' C, K ⊗vj
R ' R⊕R for 2 ≤ j ≤ n.

Let ι : K −→ M2(F ) be an F -algebra embedding, and let K×1 be the group
of elements whose norm to F is equal to 1. The torus v1(ι(K

×
1 )) acts on

H with a unique fixed point τ1, and ι(K×1 ) acts on the region {τ1} × Hn−1

without fixed points. The orbit of any point in this region under the action
of ι((K ⊗F R)×1 ) is a real (n − 1)-dimensional manifold Zι ⊂ {τ1} × Hn−1

which is homeomorphic to Rn−1. The group Gι := ι(K×) ∩ Γ0(N,OF ) is an
abelian group of rank n− 1, corresponding to a finite index subgroup of the
group of relative units in K/F . Consider a fundamental region for the action
of Gι on Zι. The image ∆ι of such a region in the Hilbert modular variety
X0(N ;OF ) is a closed (n − 1)-cycle, which is topologically isomorphic to a
real (n− 1)-dimensional torus.

Conjecture 5.16. Assume that ∆ι is homologically trivial. Then the point
ϕ(∆ι) ∈ E1(C) is an algebraic point, and is in fact the image of a point in
E(Kab) under any embedding Kab −→ C extending v1 : F −→ R.

Remark 5.17. The original formulation of Conjecture 5.16 given in [DL]
was phrased in terms of group cohomology. The definition of ϕ(∆ι) used
in Conjecture 5.16, which suggests an analogy between ϕ and higher Abel-
Jacobi maps, was formulated only later, in [CD] (in a context where cusp
forms are replaced by Eisenstein series; the elements ϕ(∆ι) can then be
related to Stark units). The equivalence between Conjecture 5.16 and the
main conjecture of [DL] is explained in [CD].

Conjecture 5.16 can be formulated more precisely, in a way that makes a
prediction about the fields of definition of the points ϕ(∆ι). It is expected
that the system of points

HP(K) := {ϕ(∆ι)}ι:K−→M2(F ),

as ι ranges over all possible embeddings, gives rise to an infinite collection
of algebraic points in E(Kab) with properties similar to those of the system
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of Heegner points defined in Section 5.2. Such a system of points (if its
existence, and basic properties, could be established, a tall order at present!)
would lead to a proof of Theorem 5.3 for all (modular) elliptic curves defined
over totally real fields, not just those that are arithmetically uniformisable.

For more details on Conjecture 5.16, a more precise formulation, and
numerical evidence, see Chapter 8 of [Da2], or [DL]. For an explanation of
the relation between Conjecture 5.16 and the conjectures of [DL], see [CD].

The Stark-Heegner points attached to Hilbert modular forms that were
defined and studied in [DL] and [CD] can be viewed as the basic prototype for
the general notion of Stark-Heegner points. Here are some further variants
that have been explored so far in the literature:

1. If E is an elliptic curve over Q of conductor N = pM with p - M , a
p-adic analogue of the map ϕ of equation (28)—described in terms of
group cohomology rather than singular cohomology, following the same
approach and in [DL]—is defined in [Da1], by viewing E as uniformised
by the “mock Hilbert surface”

Γ0(M ;Z[1/p])\(Hp ×H),

where Hp := Cp−Qp is the p-adic upper half plane, and Γ0(M ;Z[1/p])
is the group of matrices in SL2(Z[1/p]) which are upper-triangular
modulo M . The resulting map ϕ associates a point in Pι ∈ E(Q̄p)
to any embedding ι : K −→ M2(Q) when K is a real quadratic field
in which p is inert. The system {Pι} ⊂ E(Q̄p), as ι ranges over all
embeddings of K into M2(Q), is expected to yield a system of points
in E(Kab) with the same properties as the Heegner points attached to
an imaginary quadratic base field. This construction is not expected
to yield new cases of the Birch and Swinnerton-Dyer over the base
field Q—this conjecture is completely known when ords=1L(E, s) ≤
1, thanks to Theorem 5.3. However, it would give new cases of this
conjecture over certain abelian extensions of real quadratic fields, and,
more importantly perhaps, it suggests an explicit analytic construction
of class fields of real quadratic fields. For more details on Stark-Heegner
points attached to real quadratic fields, see [Da1] or Chapter 9 of [Da2].
The article [DP] describes efficient algorithms for calculating the points
ϕ(∆ι), and uses them to gather numerical evidence for the conjectures
of [Da1], while [BD] provides some theoretical evidence.
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2. The article [Tr] formulates and tests numerically a Stark–Heegner con-
struction that leads to conjectural systems of algebraic points on elliptic
curves defined over a quadratic imaginary base field. The details of the
construction of [Tr] are explained in the article [Gre2] by Matt Green-
berg in this proceedings volume. We remark that there is not a single
example of an elliptic curve E genuinely defined over such a field (i.e.,
which is not isogenous to its Galois conjugate) for which Theorem 5.3
(or even just the Shafarevich–Tate conjecture) has been proved.
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Bourbaki no. 694 (1987-88). Astérisque 161-162, 165-186 (1988)

68



[Pa1] Parshin, A.N., Algebraic curves over function fields I, Izv. Akad.
Nauk. SSSR Ser. Math. 32 (1968), 1191-1219; english transl. in Math.
USSR. Izv. 2 (1968)

[Reb] Rebolledo, M., Merel’s Theorem on the boundedness of the torsion of
elliptic curves, in this proceedings volume.

[Rib1] Ribet, K., On modular representations of Gal(Q̄/Q) arising from
modular forms, Invent. Math. 100, 431-476 (1990).

[Se1] Serre, J-P., Propriétés galoisiennes des points d’ordre fini des courbes
elliptiques. Invent. Math. 15 (1972), no. 4, 259–331.

[Se2] Serre, J.-P., Sur les représentations modulaires de degré 2 de
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