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Wiles’ proof of Fermat’s Last Theorem puts to rest one of the most famous
unsolved problems in mathematics, a question that has been a wellspring for
much of modern algebraic number theory. While celebrating Wiles’ achieve-
ment, one also feels a twinge of regret at Fermat’s demise. Is the Holy Grail
of number theorists to become a mere footnote in the history books?

Hoping to keep some of the spirit of Fermat alive, I would like to discuss
the generalized Fermat equation

xp + yq = zr, (1)

where p, q and r are fixed exponents. As in the case of Fermat’s Last The-
orem, one is interested in integer solutions (x, y, z), which are non-trivial in
the sense that xyz 6= 0.

One might expect the equation above to have no such solutions if the
exponents p, q, and r are large enough. But observe that, if p = q is odd, and
r = 2, then any solution to ap+bp = c (of which there is an abundant supply!)

yields the solution (ac, bc, c
p+1
2 ) to the equation xp + yp = z2. A similar

construction works whenever the exponents p, q, and r are pairwise coprime.
However, the solutions produced in this way are not very interesting: the
integers x, y and z have a large common factor.

∗This is a transcription of the author’s Aisenstadt prize lecture given at the CRM in
March 1997. It is a pleasure to thank Andrew Granville and Löıc Merel for stimulating
collaborations related to the topics of this essay, as well as Dan Abramovich for many
helpful conversations over the years. This research was supported by CICMA and by
grants from the Sloan Foundation, NSERC and FCAR.
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Accordingly, one calls a solution (x, y, z) to the generalized Fermat equa-
tion primitive if gcd(x, y, z) = 1.

Main Question: What are the non-trivial primitive solutions to the gener-
alized Fermat equation?

In [DG], Andrew Granville and I made the following conjecture:

Generalized Fermat Conjecture: If 1
p

+ 1
q

+ 1
r

< 1, then the generalized
Fermat equation has no non-trivial primitive solutions except the following:

1n +23 = 32, 25 +72 = 34, 73 +132 = 29, 27 +173 = 712, 35 +114 = 1222,

177+762713 = 210639282, 14143+22134592 = 657, 92623+153122832 = 1137,

438 + 962223 = 300429072, 338 + 15490342 = 156133.

This conjecture is really more of a “provocation”, to borrow a term from
Barry Mazur. (The five larger solutions were found by a computer search by
Beukers and Zagier, after I had conjectured that they did not exist!) But as
a measure of the stock I now place in the conjecture, I will offer a reward of

300

 1
1
p

+ 1
q

+ 1
r

− 1


(Canadian) dollars for a non-trivial primitive solution to xp + yq = zr which
does not appear in the above list.

M-curves: The solutions of the Fermat equation xn +yn = zn correspond to
rational points on an algebraic curve of genus (n−1)(n−2)/2. Because equa-
tion (1) is not homogeneous in general, its non-trivial solutions correspond to
integer points on an affine surface, which is frequently rational (whenever p,
q and r are pairwise coprime, for example) and has a complicated singularity
at the origin – the primitive solutions corresponding to points which are also
integral relative to this singular point.

The multiplicative group also acts on the surface given by equation (1),
by

λ(x, y, z) = (λqrx, λpry, λpqz),
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and so it is tempting to view the surface (1) as a curve in some kind of
“weighted projective space”. This can be done, but this curve is frequently
rational, and the primitive solutions do not have a very natural interpreta-
tion. Nonetheless, in this diophantine study one is reluctant to abandon the
well-tended landscape of curves for the untamed wilds of (singular) algebraic
surfaces.

As it turns out, a better framework for discussing primitive solutions of
the generalized Fermat equation is supplied by the notion of a curve with
multiplicities, or an M -curve, which is defined as follows:

Definition An M-curve over a field K is a smooth projective curve X/K,
together with the assignment, for each point P ∈ X(K), of a multiplicity
mP ∈ {1, 2, 3, . . .} ∪ {∞}, such that mP = 1 for all but finitely many P .

Notation: We denote by

X = (X; P1, m1; P2, m2; . . . ; Pr, mr)

the M -curve whose underlying projective curve is X, and such that mPi
= mi,

and mQ = 1 if Q /∈ {P1, . . . , Pr}.

Remark: Our primary interest being Diophantine, we will mainly consider
the case where K is a number field. In this case, we extend X to a smooth
proper model X over OK,S, the ring of S-integers of K, where S is a finite
set of primes containing the primes of bad reduction for X. For example,
one could work with a minimal model for X, but this is not necessary: the
statements that will be made later will be true for any choice of X . Having
fixed such a model X allows us to talk about X(A) := X (A) for any OK,S-
algebra A. Note that since X is proper, X(OK,S) = X(K).

Intersection numbers: If P and Q are distinct K-rational points of X (giving
rise to sections on X over Spec(OK,S)) and v /∈ S is a place of K with
associated prime ideal pv, define the arithmetic intersection number (P ·Q)v

as follows: it is the largest positive integer m such that P and Q have the
same image in X (OK,S/pm

v ). Of course, this arithmetic intersection number
depends on the model X for X chosen above. But given any two models X
and X ′, the arithmetic intersection numbers (P ·Q)v agree for all but finitely
many places v.
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Definition: An S-integral point on X is a point Q ∈ X(K) satisfying:

(Q · P )v ≡ 0 (mod mP ), ∀ P ∈ X(K), v /∈ S.

The set of S-integral points on X is denoted X(OK,S).

This definition is completed by the following remarks:

1. We adopt the convention that a congruence modulo ∞ is an equality.
In this way, the S-integral points on X = (X; P1,∞; P2,∞; . . . ; Pr,∞)
are just the S-integral points on X , relative to the effective divisor
P1 + · · ·+ Pr.

2. A smooth projective curve is a special case of an M -curve (where one
assigns a multiplicity of 1 to every K-rational point). In that case, the
set X(OK,S) of S-integral points is equal to the set X(K) of K-rational
(or, equivalently, integral) points on the underlying projective curve.

3. A caveat: Note that the definition of X(OK,S) depends on the choice of
model X of X over OK,S. So one must take this model as part of the
defining data for the M -curve X. In what follows, we will often abuse
notations and speak of the S-integral points on X.

The motivating example: If X = P1, with its usual model over Z, then the
rational points on X are identified with the set Q∪{∞}. If t ∈ X(Q)−{∞},
then, writing t = a

b
as a fraction in lowest terms, we have

(t · 0)v = ordv(a); (t · 1)v = ordv(a− b); (t · ∞)v = ordv(b). (2)

Let P1
p,q,r denote the M -curve (P1; 0, p; 1, q;∞, r). Then an integral point on

P1
p,q,r corresponds to a rational number t = a

b
in lowest terms such that, for

all rational primes v:

ordv(a) ≡ 0 (mod p); ordv(a−b) ≡ 0 (mod q); ordv(b) ≡ 0 (mod r).

By the unique factorization in Z, it follows that

a = ±xp, a− b = ±yq, b = ±zr,

so that (x, y, z) is a primitive solution to the equation

±xp ± yq = ±zr.
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Hence, the integral points on the M -curve P1
p,q,r correspond to primitive

solutions of the generalized Fermat equation (up to a small sloppiness in
signs, which matters only when more than two of p, q and r are even).

Another example: Let f(x, y) = (x − α1y) · · · (x − αry) be a square-free
homogeneous polynomial of degree r with coefficients in Z. Let K be the
extension of Q generated by the αi, and let S be the set of primes of K
dividing Disc(f(x, 1)). Then a solution of the equation zm = f(x, y) studied
in [DG] gives rise to an S-integral point t = x

y
on the M -curve over K

(P1; α1, m; α2, m; . . . ; αr, m;∞, m/ gcd(m, r)).

Maps between M-curves: The M -curves form a category, which ought
to be thought of as a natural “enlargement” of the category of curves. We
describe now what are the morphisms in this category.

Let X and Y be M -curves over K, and let X and Y be the underlying
smooth projective curves. If π is any morphism (defined over K) from X to
Y , and P is a closed point of X, we denote by eπ(P ) the ramification index
of π at the point P .

Definition A morphism π : X −→ Y is a smooth proper morphism π :
X −→ Y with the property that, for all closed points P ∈ X,

mπ(P ) divides eπ(P )mP .

The ratio eπ(P )mP /mπ(P ) is called the ramification index of π at P , and is
denoted eπ(P ).

The morphism π is called unramified if eπ(P ) = 1 for all closed points P .
The degree of π is simply defined to be the degree of the underlying curve
morphism π.

By enlarging the set S if necessary, we can assume (and always will, from
now on) that π extends to a smooth proper morphism over OK,S between
our chosen S-integral models for X and Y . Once this is done, we have the
following statement which justifies our definition of morphisms:

Proposition: Let π : X −→ Y be a morphism of M-curves over K. Then

π(X(OK,S)) ⊂ Y (OK,S).
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The fact that the morphism π : X −→ Y sends S-integral points to S-integral
points follows directly from the behaviour of the intersection number under
smooth proper morphisms.

The Chevalley-Weil theorem: If π : X −→ Y is a morphism of M -curves,
and P is an S-integral point on Y , denote by K(π−1(P )) the smallest field
extension of K over which the points in the inverse image of P by π are
defined. The “‘lifting problem”, broadly stated, is the question of controlling
the field K(π−1(P )) - say, by bounding a priori its degree, ramification, or
discriminant. For example, when does an S-integral point of Y necessarily
lift to an S-integral point on X, by π? The following is the classical theorem
of Chevalley-Weil (cf. [La], ch. 2, §8) for M -curves:

Chevalley-Weil theorem: If π is unramified, then K(π−1(P )) is unrami-
fied outside of S for all P ∈ Y (OK,S).

This theorem is quite familiar in the case of curves:

1. If π : E −→ E is an isogeny of elliptic curves over K, then π is unram-
ified. If S is a set of places containing the bad reduction primes for E
and those dividing the degree of π, and P is any point in E(K), then
π−1(P ) is an extension of K which is unramified outside S. This theo-
rem plays a key role in the proof of the (weak) Mordell-Weil theorem.

2. The group of S-units in a number field K give rise to S-integral points
on the M -curve Gm := (P1; 0,∞;∞,∞). The morphism Gm −→ Gm

which sends x to xm is unramified, and indeed the field obtained by
adjoining to K an m-th root of an S-unit is unramified outside the
places in S and those dividing m. (For which the morphism has “bad
reduction”.)

For further discussion, and a proof of the Chevalley-Weil theorem for M -
curves when the underlying curve is P1, see [Be].

Orbifolds, and the topology of M-curves: If X is a projective curve,
its complex points X(C) form a compact Riemann surface in a natural way.
For each P ∈ X(C), let tP denote a uniformizing element for the local ring
of X(C) at P .
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One can associate to the data X an orbifold, denoted X(C). Its under-
lying set is the same as that of the Riemann surface X(C), but its sheaf of
analytic functions is defined differently: a function is now said to be locally
analytic at P on the orbifold X(C) if its image in the local ring C[[tP ]] be-
longs to the subring C[[tmP

P ]]. One denotes by OX,P = C[[tmP
P ]] the ring of

locally analytic functions on X at P .
A morphism π : X(C) −→ Y (C) of orbifolds is simply an analytic mor-

phism π : X(C) −→ Y (C) of the underlying Riemann surfaces with the
property that π∗(OY ,π(P )) ⊂ OX,P , where π∗(f) := fπ is the pullback of f
by π.

With these definitions, the reader will check that the assignment X 7→
X(C) defines a functor from the category of M -curves to the category of
orbifolds which extends the usual functor sending a curve X to its underlying
Riemann surface X(C).

The Euler characteristic of a Riemann surface is defined for orbifolds by
the more general formula:

χ(X(C)) = 2− 2g(X(C))−
∑
P

(
1− 1

mP

)
,

where g(X(C)) is the genus of the Riemann surface X(C), and the sum is
taken over all points of X(C), with the obvious convention that 1

∞ = 0. Note
that almost all the terms in the sum are equal to 0. If X is a projective curve,
then this is the usual Euler characteristic; in general, it is a rational number.

Riemann-Hurwitz theorem: If π : X −→ Y is a degree d morphism of
M-curves, then

χ(X(C)) = dχ(Y (C))−
∑
P

(eπ(P )− 1),

where the sum is taken over the points of X(C).

For Riemann surfaces, this is the usual Riemann-Hurwitz formula. The proof
in the case of orbifolds proceeds by a direct reduction to the case of Riemann
surfaces.

A covering lemma: The following lemma allows us to reduce diophantine
questions about M -curves to similar questions about curves, for which they
have been more studied.
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Covering lemma: If X is an M-curve over K with χ(X) < 0, then there
exists a curve X̃ defined over some number field M , and an unramified mor-
phism of M-curves π : X̃ −→ X defined over M .

Proof: This result follows directly from Riemann’s existence theorem: the
issue is to produce a covering of the curve X, with “‘prescribed ramification
data”. See for example [Se1].

Faltings plus epsilon: We remind the reader of Faltings’ theorem for
curves, formerly known as the Mordell conjecture:

Faltings’ theorem: If X is a projective curve over K with χ(X) < 0, then
X(K) is finite.

The theorem “Faltings plus epsilon” alluded to in the title is simply the
Mordell conjecture for M -curves.

Theorem (Faltings plus epsilon): If X is an M-curve over K with
χ(X) < 0, then X(OK,S) is finite.

Proof: (Cf. [DG], sec. 3.)
1. By Riemann’s existence theorem, there is an unramified morphism

π : X̃ −→ X,

where X̃ is a curve defined over some number field M ⊃ K. We extend this
morphism to a smooth proper morphism over OM,S′ , where S ′ is some finite
set of places of M containing all the places above those in S.

2. If P is a point of X(OM,S′), then P lifts to a point in X̃(MP ), where MP

is an extension of M of degree at most d, which is unramified outside S ′, by
the Chevalley-Weil theorem. By a theorem of Minkowski, there are finitely
many such fields MP . Let L be the compositum of all of them. It is of finite
degree over K, and

π(X̃(L)) ⊃ X(OM,S′) ⊃ X(OK,S). (3)

3. By the Riemann-Hurwitz formula,

χ(X̃) = dχ(X) < 0.

Therefore X̃(L) is finite by Faltings’ theorem. Hence so is X(OK,S), by (3).
The theorem follows.
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Remarks:
1. Note that Faltings plus epsilon, applied to the M -curve

(P1; 0,∞; 1,∞;∞,∞)

gives Siegel’s theorem on the finiteness of S-integral points on P1−{0, 1,∞}.
Siegel’s proof is more difficult than the one given above, because Siegel did
not have the luxury of invoking Faltings’ theorem. But unramified coverings
of P1 − {0, 1,∞} also play an important role in Siegel’s original proof.

2. Of course, the deepest ingredient in the proof of “Faltings plus epsilon”
is Faltings’ theorem invoked in step 3. The reduction to Faltings’ theorem
in the case of curves exploits the Chevalley-Weil theorem and the finiteness
theorem of Minkowski in much the same way that it is used by Weil in
his proof of the weak Mordell-Weil theorem for elliptic curves and abelian
varieties. Weil’s proof has its roots directly in Fermat’s method of descent.
Another connection between Fermat and “Faltings plus epsilon” is given by
the following corollary:

Corollary: If 1
p
+ 1

q
+ 1

r
< 1, then the generalized Fermat equation xp+yq = zr

has only finitely many primitive integer solutions.

Proof: The primitive solutions to the generalized Fermat equation give rise
to integral points on the M -curve P1

p,q,r. But

χ(P1
p,q,r) =

1

p
+

1

q
+

1

r
− 1 < 0,

so that P1
p,q,r(Z) is finite, by “Faltings plus epsilon”.

Beyond Faltings? Admittedly, mere finiteness of the solution set for a given
(p, q, r) is not all that is wanted. But the proof of “Faltings plus epsilon”
suggests a general program for studying the generalized Fermat equation
xp + yq = zr.

1. The geometric step: Find an “explicit” unramified covering

π : X −→ P1
p,q,r,

where X is a projective curve. By explicit, we mean one whose field of
definition, and set of primes of bad reduction, can be controlled, and are not
too large.
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2. The arithmetic step: Understand the lifting problem, i.e, show that a
point in P1

p,q,r(Z) necessarily lifts to a point in X(Q), or in X(K) where K
is a specific extension of the rationals which is not too large.

3. The diophantine step: Analyze carefully, and bound, the rational points
on X, or those defined over the field K obtained in step 2.

The Fermat equation: To apply this general program to the study of
the usual Fermat equation xp + yp = zp, (where p is, say, an odd prime)
one needs to start with an unramified covering of the M -curve P1

p,p,p, i.e., a
covering X −→ P1 which is unramified over P1 − {0, 1,∞} and such that
the ramification indices of all the points lying above 0, 1 and ∞ are equal to
p.

The first example of such a covering that comes to mind is, of course, the
Fermat curve itself. If F is the curve defined by the equation xp + yp = 1,
then the map π : F −→ P1

p,p,p which sends (x, y, z) to t = xp

zp is an unramified
morphism of degree p2. It has good reduction outside p, and it even becomes
a Galois covering over the field Q(ζp) of pth roots of unity, with Galois
group Z/pZ×Z/pZ. The lifting problem in this case is tautological: a point
on P1

p,p,p(Z) lifts to a rational point on the Fermat curve. This leads (in
a roundabout way) to the traditional geometric approach to Fermat’s Last
Theorem.

One can also consider the curve X whose function field is the fraction
field of

Q[X,Y, (X + ζj
pY )

1
p ]/(Xp + Y p − 1),

where ζp is a primitive p-th root of unity. It is an extension of Q(ζp, X
p/Y p)

of degree pp+1 which has a solvable Galois group. A point in P1
p,p,p(Z) lifts to

a point on this curve defined over a field K which is an abelian extension of
Q(ζp) unramified outside of p. A more careful analysis allows one to analyze
the ramification at p precisely, and in understanding the possible fields K
that could arise in the lifting problem one is led to questions about the p-part
of the ideal class group of the cyclotomic fields Q(ζp). This is the basis for
the attack on Fermat’s Last theorem initiated by Kummer via the theory of
cyclotomic fields. To this day, a proof of Fermat’s Last Theorem based on
the covering X −→ P1

p,p,p remains elusive, although a number of deep results
in this direction have been obtained. The proof of Fermat’s Last Theorem
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completed by Andrew Wiles had to rely on a completely different covering
arising from modular curves. Here are the main lines of the proof of Fermat’s
last theorem, following the 3-step program described above.

1. The geometric step: modular curves, and the Hellegouarch-Frey
trick: Explicit unramified covering of P1

p,p,p can be obtained from modular
curves. More precisely, the modular curve X(2) which classifies elliptic curves
together with a basis of points of order 2 is isomorphic to P1, and is given
by the classical λ-line of Legendre, the universal elliptic curve over it being
described by the equation

y2 = x(x− 1)(x− λ).

The curve X(2) has three cusps associated to elliptic curves with degenerate
reduction, which are given by the values λ = 0, 1,∞. Let X(2)p,p,p denote the
M -curve whose underlying curve is X(2), with a multiplicity of p attached
to each of the three cusps. Let X(2p) be the usual modular curve which
classifies elliptic curves with a basis of 2p-division points. Then the natural
projection

πFrey : X(2p) −→ X(2)p,p,p

is unramified, and has good reduction outside of 2p.
The M -curve X(2)p,p,p is a model for P1

p,p,p, and its integral points cor-
respond to Frey curves via the moduli interpretation. More precisely, the
point λ = −ap/bp of X(2)p,p,p (where ap + bp = cp) corresponds to the curve
y2 = x(x− 1)(x + ap

bp ), which is a twist of the Frey curve

y2 = x(x− ap)(x + bp).

The field K = π−1
Frey(λ) is closely related to the field of definition of the p-

division points of this Frey curve. One is thus led to consider the p-division
field of the Frey curve. (In fact, it is better to rigidify the situation somewhat,
and consider the mod p Galois representation attached to the p-torsion points
of the Frey curve, instead of merely the field cut out by this representation.)

2. The arithmetic step: the Ribet-Wiles theorem: Because the cov-
ering π : X(2p) −→ X(2)p,p,p is unramified and has good reduction outside
of 2p, the field π−1(λ) is unramified1 outside of 2p, for all λ ∈ X(2)p,p,p.

1This can also be seen by analyzing directly the field of p-division points of the Frey
curve, using Tate’s analytic theory.
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The work of Frey, Mazur, Serre, Ribet, and finally Wiles was directly con-
cerned with the lifting problem associated to this covering. Let X0(2, p) be
the modular curve which classifies elliptic curves with full level 2 structure
and a rational subgroup of order p. This curve has 6 cusps, of which 3 are
unramified for the natural projection X0(2, p) −→ X(2). Let X0(2, p)p,p,p be
the M -curve obtained from X0(2, p) by assigning a multiplicity of p to each of
these three cusps. Then the covering X0(2, p)p,p,p −→ X(2)p,p,p is unramified.

Ribet-Wiles theorem A point in X(2)p,p,p(Z) lifts to an integral point on
X0(2, p)p,p,p(Z).

It seems tempting to tackle this statement head on, and try to supply a
direct proof. Yet a staggering amount of difficult mathematics is involved in
Ribet and Wiles’ argument, which rests on the deep interplay between Galois
representations and modular forms. We will not even begin to scratch the
surface here! An expository account of parts of their proof (described along
more conventional lines) can be found in [DDT], [Se2], [Ri1] and [Wi].

3. The diophantine step: Mazur’s theorem: It turns out that the Dio-
phantine step (step 3) had been handled earlier by Mazur in his fundamental
papers [Ma1] and [Ma2] on the Eisenstein ideal. In particular, it follows from
Mazur’s results that

Theorem (Mazur): A point in X(2)p,p,p(Z) does not lift to an integral point
on X0(2, p)p,p,p(Z).

Proof: The Frey curve associated to λ = −ap/bp is a twist of a semistable
elliptic curve. Mazur shows that such a curve cannot have a rational subgroup
of order p for p ≥ 5. The result follows.

Combining the theorems of Ribet-Wiles and Mazur gives a contradiction,
and Fermat’s Last Theorem follows.

Modular curves and the generalized Fermat equation: Since coverings
coming from modular curves have been so effective in proving Fermat’s Last
Theorem, it is natural to ask the following question:

Question: What are the unramified coverings of P1
p,q,r arising from modular

curves?

The modular curve X0(2) has two cusps, and a special point P1728 corre-
sponding to an elliptic curve with invariant j = 1728, at which the natural
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map to the j-line is unramified. Let X0(2)2,p,p be the M -curve whose under-
lying curve is X0(2) ' P1, and where a multiplicity of 2 has been assigned
to P1728, and a multiplicity of p to each of the two cusps. There is an isomor-
phism of X0(2)2,p,p with P1

2,p,p defined over Z[1
2
]. If X(2, p) is the curve which

classifies elliptic curves with a point of order 2 and full level p structure, then
the natural projection

X(2, p) −→ X0(2)2,p,p

is unramified and has good reduction outside of 2p.
Likewise, the modular curve X0(3) has two cusps, and a special point P0

corresponding to an eliptic curve with invariant j = 0, at which the natural
map to the j-line is unramified. We define the M -curve X0(3)3,p,p by assigning
a multiplicity of 3 to P0, and p to each of the cusps; using the same notation
as before, we find that the covering

X(3, p) −→ X0(3)3,p,p

is unramified and has good reduction outside of 3p.
By exploiting these two coverings, and following the Mazur-Ribet-Wiles

approach, Löıc Merel and I proved the following theorem [DM] towards the
generalized Fermat conjecture, which is the theorem“Wiles plus epsilon” re-
ferrred to in the title:

Theorem (Wiles plus epsilon):
1. The equation xn +yn = z2 has no non-trivial primitive solution for n ≥ 4.
2. If the Shimura-Taniyama conjecture is true, then the equation xn+yn = z3

has no non-trivial primitive solution for n ≥ 3.

The Shimura-Taniyama conjecture needs to be assumed for part 2 because
the elliptic curves that arise in the proof are not known to be modular, in
spite of the recent work of Conrad, Diamond and Taylor: their conductor is
frequently divisible by 27.

Can one go further than this? Here is a table listing the exponents (p, q, r)
for which one might tackle the generalized Fermat equation by exploiting a
“Frey curve” construction.
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(p, q, r) Frey curve for ap + bq = cr ∆
(2, 3, p) y2 = x3 + 3bx + 2a −2633cp

(3, 3, p) y2 = x3 + 3(a− b)x2 + 3(a2 − ab + b2)x −2433c2p

(4, p, 4) y2 = x3 + 4acx2 − (a2 − c2)2x 26(a2 − c2)2b2p

(5, 5, p) y2 = x3 − 5(a2 + b2)x2 + 5a5+b5

a+b
x 2453(a + b)2c2p

y2 = x3 + (a2 + ab + b2)x2

(7, 7, p) − (2a4 − 3a3b + 6a2b2 − 3ab3 + 2b4)x 2472(a7+b7

a+b
)2

− (a6 − 4a5b + 6a4b2 − 7a3b3 + 6a2b4 − 4ab5 + b6)
(p, p, 2) y2 = x3 + 2cx2 + apx 26(a2b)p

(p, p, 3) y2 + cxy = x3 − c2x2 − 3
2
cbpx + bp(ap + 5

4
bp) 33(a3b)p

(p, p, p) y2 = x(x− ap)(x + bp) 24(abc)2p

The cases of exponents (p, p, 2) and (p, p, 3) are disposed of in [DM], and the
results proved there also imply that the equation with exponents (4, p, 4) has
no non-trivial primitive solution for p > 2. (Cf. [Da].) But the methods used
by Frey, Serre, Mazur, Ribet and Wiles to eventually resolve Fermat’s Last
Theorem are extremely delicate, particularly as concerns the Ribet-Wiles
lifting theorem. For the other triples of exponents, one seems to run into
difficulties caused by the presence of modular forms. In spite of this, A.
Kraus [Kr] has obtained some partial results in the case of exponent (3, 3, p),
which imply in particular that the associated generalized Fermat equation
has no non-trivial primitive solution when 17 ≤ p ≤ 10000.

In conclusion, here are two questions:

1. Can one refine the existing techniques based on elliptic curves, modu-
lar forms, and Galois representations to prove the generalized Fermat
conjecture for all the exponent listed in the above table?

2. Can one find other examples of unramified coverings X −→ P1
p,q,r (ad-

mitting, perhaps, a nice moduli-theoretic interpretation) for which a
program of attack similar to the one of Mazur, Ribet and Wiles can be
carried out?

These questions may appear ambitious, especially the second. Of course, the
generalized Fermat equation fits right into the body of questions adressed
by the famous abc conjecture, which has received much recent attention
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although a proof seems nowhere in sight. Thus we can hope that the Queen of
Mathematics will hold on to the mystery of the generalized Fermat equation
for at least a few more decades, to the bafflement (and delight) of number
theorists, amateur and professional alike.
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