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Thanks to the work of Wiles [?], completed by Taylor–Wiles [?] and
extended by Diamond [?], we now know that all elliptic curves over the
rationals (having good or semi-stable reduction at 3 and 5) are modular.
This breakthrough has far-reaching consequences for the arithmetic of elliptic
curves. As Mazur wrote in [?], “It has been abundantly clear for years that
one has a much more tenacious hold on the arithmetic of an elliptic curve
E/Q if one supposes that it is [. . .] parametrized [by a modular curve].”
This expository article explores some of the implications of Wiles’ theorem
for the theory of elliptic curves, with particular emphasis on the Birch and
Swinnerton-Dyer conjecture, now the main outstanding problem in the field.

1 Prelude: plane conics, Fermat and Gauss

In a volume devoted to Wiles’ proof of Fermat’s Last Theorem, what better
place to begin this discussion than the Diophantine equation

C : x2 + y2 = 1, (1)

which also figured prominently in Diophantus’ treatise, and prompted Fer-
mat’s famous marginal comment, more than 350 years ago?

The set C(Q) of rational solutions to equation (1) is well understood,
thanks to the parametrization

(x, y) =

(
t2 − 1

t2 + 1
,

2t

t2 + 1

)
, (2)

giving the classification of Pythagorean triples well-known to the ancient
Babylonians. The integer solutions are even simpler: there are NZ = 4
integer lattice points (±1, 0) and (0,±1) on the circle of radius 1.

It has become a dominant theme in number theory that curves such as C
ought to be studied over various fields, such as the real or complex numbers,
the finite fields Fp, and the p-adic fields Qp, for each prime p.

The solutions to (1) in R2 describe the locus of points on the circle of
radius 1. A natural measure of the size of this solution set is the circumference
of the circle: NR = 2π.

The set of Fp-valued solutions C(Fp) is finite, of cardinality Np. Let
ap = p − Np. Is there a convenient formula for Np, or equivalently, for
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ap? Letting t run over the values t = 0, 1, 2, . . . , p − 1,∞ ∈ P1(Fp) in the
parametrization (2) gives p + 1 distinct points in C(Fp), with one important
caveat: if t2 + 1 = 0 has a solution t0 ∈ Fp, then the values t = ±t0 do not
give rise to points over Fp. Hence, if p is odd:

ap =

{
+1 if −1 is a square mod p;
−1 if −1 is not a square mod p.

The condition which determines the value of ap might seem subtle to the
uninitiated. But much the opposite is true, thanks to the following result
which is due to Fermat himself:

Theorem 1.1 (Fermat) If p is an odd prime,

ap =

{
+1 if p ≡ 1 (mod 4)
−1 if p ≡ 3 (mod 4),

and a2 = 0.

(The computational advantage of this formula is obvious. It now suffices to
glance at the last two decimal digits of p to determine whether Np is equal
to p− 1 or p + 1.)

Let
L(C/Q, s) =

∏
p

(1− app
−s)−1

be the “Hasse-Weil zeta-function” associated to C. Thanks to Fermat’s the-
orem 1.1, one has:

Corollary 1.2 The Hasse-Weil L-function L(C/Q, s) is equal to a Dirich-
let L-series L(s, χ), where χ : (Z/4Z)× −→ ±1 is the unique non-trivial
quadratic Dirichlet character of conductor 4. In particular, L(C/Q, s) has a
functional equation and an analytic continuation to the entire complex plane.

More precisely (cf. [?]. ch. 4), setting

Λ(C/Q, s) =
(

4

π

)s/2

Γ
(

s + 1

2

)
L(C/Q, s),

we have:
Λ(C/Q, s) = Λ(C/Q, 1− s). (3)
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The special value L(C/Q, 1) is given by:

L(C/Q, 1) = L(1, χ) = 1− 1

3
+

1

5
− · · · = π

4
. (4)

Noting the formal equality L(C/Q, 1)“ = ”
∏

p
p

Np
, equation (4) can be rewrit-

ten in the suggestive form:

∏
p

Np

p
·NR = 2NZ, (5)

a formula which suggests a mysterious link between the solutions to C over
the reals, the finite fields Fp, and the integers. The proof that we have
sketched, although quite simple, does little to dispell the mystery.

Another example which was also at the center of Fermat’s preoccupations
is the Fermat-Pell equation

H : x2 −Dy2 = 1, (6)

where D is a positive square free integer. Assume for simplicity that D is
congruent to 1 mod 4.

Defining the integers Np and ap = p − Np as before, one finds that for
p 6 |2D,

ap =

{
+1 if D is a square mod p;
−1 if D is not a square mod p.

Extend the definition of ap by setting ap = 0 if p|2D. By Gauss’s theorem of
quadratic reciprocity:

Theorem 1.3 (Gauss) Let

χD : (Z/DZ)× −→ ±1

be the even (non-primitive) Dirichlet character of conductor 2D defined by

χD(n) =
(

n
D

)
. Then ap = χD(p).

Define the Hasse-Weil L-function L(H/Q, s) =
∏

p(1− app
−s)−1 as before.

Corollary 1.4 The function L(H/Q, s) is equal to the Dirichlet L-series
L(s, χD), so that it has a functional equation and an analytic continuation
to the entire complex plane.
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The precise functional equation, similar to equation (3), can be found in [?],
ch. 4.

As before the value L(H/Q, 1) can be evaluated in closed form (cf. [?],
thm. 4.9):

L(H/Q, 1) = L(1, χD) =
∞∑

n=1

χD(n)

n
=

3

2
√

D

D−1∑
a=1

χD(a) log |1− ζa
D|, (7)

where ζD = e2πi/D is a primitive D-th root of unity.
To gain further insight into the arithmetic significance of this special

value, one uses the following result of Gauss, which is a primary ingredient in
one of his proofs of quadratic reciprocity, and is in fact essentially equivalent
to it.

Theorem 1.5 Every quadratic field is contained in a cyclotomic field gener-
ated by roots of unity. More precisely, the quadratic field Q(

√
D) is contained

in Q(ζD), and the homomorphism of Galois theory

Gal(Q(ζD)/Q) = (Z/DZ)× −→ Gal(Q(
√

D)/Q) = ±1

is identified with the Dirichlet character χD.

One of the applications of theorem 1.5 is that it gives a natural way of finding
units in Q(

√
D), and thereby solving Pell’s equation. Indeed, the cyclotomic

field Q(ζ) is equipped with certain natural units, the so-called circular units.
These are algebraic integers of the form (1 − ζa

D) if D is not prime, and of

the form
1−ζa

D

1−ζD
if D is prime, with a ∈ (Z/DZ)×. In particular, theorem 1.5

implies that the expression

uD =
D∏

a=1

(1− ζa
D)3χD(a)

is an element of norm 1 in the quadratic field Q(
√

D), and in fact, in the
ring Z[

√
D]. Hence, formula (7) can be rewritten:

L(H/Q, 1) =
1√
4D

log |x0 + y0

√
D|, (8)
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where (x0, y0) is an integer solution to equation (6). The non-vanishing of
L(1, χD), (or, equivalently, by the functional equation, of L′(0, χD)) implies
that this solution is non-trivial.

Remark: A natural generalization of theorem 1.5, the Kronecker-Weber the-
orem, states that every abelian extension of the rationals is contained in a
cyclotomic field. The norms of circular units always give a subgroup of finite
index in the group of units of L.

2 Elliptic curves and Wiles’ theorem

Let E/Q be an elliptic curve over the rationals of conductor N , given by the
projective equation

y2z + a1xyz + a3yz2 = x3 + a2x
2z + a4xz2 + a6z

3. (9)

By the Mordell-Weil theorem, the Mordell-Weil group E(Q) is a finitely
generated abelian group,

E(Q) ' Zr ⊕ T,

where T is the finite torsion subgroup of E(Q). Paraphrasing a remark of
Mazur ([?], p. 186), there are resonances between the problem of studying
integer points on plane conics and rational points on elliptic curves. In the
basic trichotomy governing the study of curves over Q, these Diophantine
problems correspond to the only classes of curves having Euler characteristic
equal to 0. (The Euler characteristic χ(X) depends only on the Riemann
surface X(C) which is topologically equivalent to a compact surface of genus
g with s points removed; it is defined by

χ(X) = (2− 2g)− s.)

2.1 Wiles’ theorem and L(E/Q, s)

If p is a prime of good reduction for E, let Np be the number of distinct
solutions to equation (9) in P2(Fp), and set

ap = p + 1−Np.
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Further, set ap = 1 if E/Qp has split multiplicative reduction, ap = −1 if
E/Qp has non-split multiplicative reduction, and ap = 0 otherwise. Define
the Hasse-Weil L-function L(E/Q, s) by the formula

L(E/Q, s) =
∏
p6|N

(1− app
−s + p1−2s)−1

∏
p|N

(1− app
−s)−1.

To study the elliptic curve E along the lines of section 1, one needs a better
understanding of the coefficients ap, allowing an analysis of the L-function
L(E/Q, s). This is precisely the content of Wiles’ theorem, stated here in a
form which is analogous to theorems 1.1 and 1.3.

Theorem 2.1 ([?],[?], [?]) Assume that E has good or semi-stable reduc-
tion at 3 and 5. Then the coefficients ap are the Fourier coefficients of a
modular form f of weight 2 and level N which is an eigenform for all the
Hecke operators Tp.

This result gives has the following elliptic curve analogue of corollary 1.4.

Corollary 2.2 (Hecke) The L-function L(E/Q, s) is equal to the L func-
tion L(f, s) attached to the eigenform f . In particular, it has an analytic
continuation and a functional equation.

More precisely, setting

Λ(E/Q, s) = N s/2(2π)−sΓ(s)L(E/Q, s),

we have

Λ(E/Q, s) =
∫ ∞
0

f

(
iy√
N

)
ys dy

y
, (10)

and
Λ(E/Q, s) = wΛ(E/Q, 2− s), (11)

where w = ±1 can be computed as a product of local signs. For example:

Proposition 2.3 If E/Q is a semistable curve, then w is equal to (−1)s+1,
where s is the number of primes of split multiplicative reduction for E/Q.
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Remark: The statements of Wiles’ theorem given in theorem 2.1 and corollary
2.2 bear a strong ressemblance to theorem 1.3 and corollary 1.4 respectively.
This is only fitting, as Wiles’ theorem is a manifestation of a non-abelian
reciprocity law for GL2, having its roots ultimately in the fundamental qua-
dratic reciprocity law of Gauss.

More germane to the discussion of section 1, Wiles’ achievement allows
one to make sense of the special values L(E/Q, s) = L(f, s) even when s
is outside the domain {Real(s) > 3

2
} of absolute convergence of the infinite

product used to define L(E/Q, s). This is of particular interest for the point
s = 1, which is related conjecturally to the arithmetic of E/Q by the Birch
and Swinnerton-Dyer conjecture.

Conjecture 2.4 The Hasse-Weil L-function L(E/Q, s) vanishes to order r
(=rank(E/Q)) at s = 1, and

L(r)(E/Q, s) = #III(E/Q)
(
det (〈Pi, Pj〉)1≤i,j≤r

)
#T−2

(∫
E(R)

ω

)∏
p

mp,

where III(E/Q) is the (conjecturally finite) Shafarevich-Tate group of E/Q,
the points P1, . . . , Pr are a basis for E(Q) modulo torsion, 〈 , 〉 is the Néron-
Tate canonical height, ω is the Néron differential on E, and mp is the number
of connected components in the Néron model of E/Qp.

Motivated by this conjecture, one calls the order of vanishing of L(E/Q, s)
at s = 1 the analytic rank of E/Q, and denotes it ran.

If E is a semistable elliptic curve, then the formula for w given in propo-
sition 2.3 implies that t + ran is always even, where t denotes the number of
analytic uniformizations (complex and p-adic) with which E/Q is endowed.
Hence, a corollary of conjecture 2.4 is the following parity conjecture for the
rank:

Conjecture 2.5 If E/Q is semistable, then the integer r + t is even.

A great deal of theoretical evidence is available for conjecture 2.4 when
the analytic rank ran is equal to 0 or 1. By contrast, very little is known
when ords=1L(E/Q, s) > 1, and so conjecture 2.4, and even conjecture 2.5,
remain very mysterious. (Some numerical evidence has been gathered for
certain specific elliptic curves, such as the curve of rank 3 and conductor
5077, cf. [?].)
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2.2 Geometric versions of Wiles’ theorem

To tackle conjecture 2.4 requires an explicit formula for the leading term of
L(E/Q, s) at s = 1. There are such formulae where the analytic rank is 0 or
1. In deriving them, essential use is made of the following geometric version
of Wiles’ theorem, which may be seen as a direct analogue of theorem 1.5:

Theorem 2.6 Suppose that E has good or semistable reduction at 3 and 5.
Then the elliptic curve E is uniformized by the modular curve X0(N), i.e.,
there is a non-constant algebraic map defined over Q:

φ : X0(N) −→ E.

Here X0(N) is the usual modular curve which is a (coarse) moduli space clas-
sifying elliptic curves together with a cyclic subgroup of order N . Its complex
points can be decribed analytically as a compactification of thequotient

Y0(N)/C = H/Γ0(N),

where Γ0(N) is the usual congruence subgroup of level N of SL2(Z), and H
is the complex upper half plane of complex numbers τ with Im(τ) > 0.

The pull-back of the Néron differential ω on E is an integer multiple of
the differential 2πif(τ)dτ = f(q)dq

q
, where f is the modular form given in

theorem 2.1 and q = e2πiτ :

φ∗ω = cf(q)
dq

q
. (12)

The integer c is called the Manin constant associated to φ. When the degree
of φ is minimal (among all possible maps X0(N) −→ E ′ with E ′ isogenous
to E) it is conjectured that c = 1.

When theorem 2.6 is satisfied, the elliptic curve E is also uniformized by
other arithmetic curves, the Shimura curves associated to indefinite quate-
rion algebras. Although somewhat less studied than classical modular curves,
they are endowed with a similarly rich arithmetic structure. They play an
important role in Ribet’s fundamental “lowering the level” results (cf. the
article of Edixhoven in this volume). It is also likely that a deeper under-
standing of the arithmetic of elliptic curves might be achieved by considering
the collection of all modular and Shimura curve parametrizations simultane-
ously. (See for example the remarks in [?].)

9



Let N = N+N− be a factorization of N such that N− is square-free, is the
product of an even number of primes, and satisfies gcd(N+, N−) = 1. Let B
be the indefinite quaternion algebra which is ramified exactly at the primes
dividing N−, and let R be a maximal order in B. The algebra B is unique
up to isomorphism, and any two maximal orders in B are conjugate. (For
more on the arithmetic of quaternion algebras over Q, see [?].) The Shimura
curve X1,N− is defined as a (coarse) moduli space for abelian surfaces with
quaternionic multiplication by R, i.e., abelian surfaces A equipped with a
map

R −→ end(A).

The curve XN+,N− is a (coarse) moduli space for abelian surfaces with quater-
nionic multiplication by R, together with a subgroup scheme generically iso-
morphic to Z/N+Z × Z/N+Z and stable under the action of R. Shimura
showed that the curves X1,N− and XN+,N− have canonical models over Q.
Let JN+,N− be the Jacobian of XN+,N− . By a theorem of Jacquet-Langlands
[?], it is isogenous to a factor of the Jacobian J0(N) corresponding to the
forms of level N which are new at the primes dividing N−, and hence we
have:

Theorem 2.7 Suppose that E has good or semistable reduction at 3 and
5. Then E is a factor of the Jacobian JN+,N−, i.e., there is a non-constant
algebraic map φN+,N− defined over Q:

φN+,N− : JN+,N− −→ E.

A nice account of the theory of Shimura curves can be found in [?] and [?].

Remark: The case where N− = 1 corresponds to the case of the usual modu-
lar curves. In this case, the algebra B is the matrix algebra M2(Q), the order
R can be chosen to be M2(Z), and an abelian surface with endomorphisms
by R is isomorphic to a product A = E × E, where E is an elliptic curve.
The level N structure on A corresponds to a usual level N structure on E,
so that the curve XN,1 is isomorphic to X0(N).

In general, there is considerable freedom in choosing the map φN+,N− .
One rigidifies the situation by requiring that φN+,N− be optimal, i.e., that
its kernel be a (connected) abelian subvariety of JN+,N− . This can always
be accomplished, if necessary by replacing E by another elliptic curve in the
same isogeny class.
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Likewise, we will always assume in the next section that the morphism
φ of theorem 2.6 sends the cusp i∞ to the identity of E, and that the map
induced by φ on Jacobians is optimal.

3 The special values of L(E/Q, s) at s = 1

We now review some of the information on the leading term of L(E/Q, s) at
s = 1 which can be extracted from the knowledge that E is modular.

3.1 Analytic rank 0

Theorem 3.1 There is a rational number M such that

L(E/Q, 1) = M
∫

E(R)
ω,

where ω is a Néron differential on E.

Proof: Let 0, i∞ be the usual cusps in the extended upper half-plane, and let
φ be the modular parametrization of theorem 2.6. The theorem of Manin-
Drinfeld says that the divisor (i∞) − (0) is torsion in J0(N), and hence,
if φ sends i∞ to the point at infinity on E, then φ(0) is a torsion point
in E. By composing φ with an isogeny, assume without loss of generality
that φ(0) = φ(i∞) is the identity element in E(Q). Then the modular
parametrization φ induces a map from the interval [0, i∞] (with the points
0 and i∞ identified) to the connected component E0(R) of E(R). Let M0

be the winding number of this map between two circles. By the formula for
L(E/Q, 1) of equation (10),

L(E/Q, 1) = 2πi
∫ i∞

0
f(τ)dτ =

1

c

∫ i∞

0
φ∗ω =

M0

c

∫
E0(R)

ω = M
∫

E(R)
ω,

where M = M0

c
[E(R) : E0(R)]−1.

The reader should compare theorem 3.1 with equation (4), which also
expresses the special value L(C/Q, 1) as a rational multiple of the period 2π.

While theorem 3.1 gives some evidence for the Birch and Swinnerton-
Dyer conjecture, proving that the value of L(E/Q, 1) is the correct one “up
to rational multiples”, it does not shed much light on the relation between
M and arithmetic quantities associated to E such as the rank of E/Q and
the order of III(E/Q).
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3.2 Analytic rank 1: the Gross-Zagier formula

Assume now that the sign w in the functional equation (11) for L(E/Q, s)
is −1, so that the L-function of E/Q vanishes to odd order. The L-function
L(E/Q, s) now has an “automatic zero” at s = 1, and one might hope for a
natural closed form expression for the special value L′(E/Q, 1).

Rather surprisingly, no really “natural” closed form expression is known.
Instead, a formula can only be written down after choosing an auxiliary
quadratic imaginary field K. Let K be such a field, D its discriminant, and
let χ be the associated odd Dirichlet character. Let E(D) be the quadratic
twist of E, relative to the character χ. Consider the L-series

L(E/K, s) := L(E/Q, s)L(E(D)/Q, s).

It can be shown that this L-series has an analytic continuation and a func-
tional equation relating its value at s and 2 − s, in (at least) two different
ways. Since E and E(D) are both modular, each of the two factors on the
right has a functional equation and analytic continuation. Alternately, the
functional equation for L(E/K, s) can be obtained by expressing L(E/K, s)
as the Rankin convolution of the L-series L(f, s) with the L-series of a theta-
function of weight 1 associated to the imaginary quadratic field K, and ap-
plying Rankin’s method. (Cf. [?], ch. IV). If K is an arbitrary quadratic field
(not necessarily quadratic imaginary) one has

Proposition 3.2 The sign wK in the functional equation for L(E/K, s) can
be expressed as a product of local signs

wK =
∏
v

wv,

where wv = ±1 depends only on the behaviour of E over the completion Kv.
In particular,

1. If E has good reduction at v, then wv = 1;

2. If v is archimedean, then wv = −1;

3. If E/Kv has split (resp. non-split) multiplicative reduction at v then
wv = −1 (resp. wv = 1).
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Heegner Points:
Just as cyclotomic fields are equipped with certain canonical units (the circu-
lar units) whose logarithms express the special values of Dirichlet L-series, so
modular curves and Shimura curves are equipped with a certain natural set
of algebraic points, the Heegner points associated to the imaginary quadratic
field K, whose heights express first derivatives of the L-functions attached
to cusp forms.

Let A be any elliptic curve which has complex multiplication by the max-
imal order OK of K. There are exactly h such curves, where h is the class
number of K. They are all defined over the Hilbert class field H of K and
are conjugate to each other under the action of Gal(H/K).

Assume further that all the primes dividing the conductor N are split in
the imaginary quadratic field K. By prop. 3.2, this implies that wK = −1,
so that the analytic rank of E(K) is odd.

Under this hypothesis the complex multiplication curve A has a rational
subgroup of order N which is defined over H. This subgroup is not unique,
and choosing one amounts to choosing an integral ideal of norm N in the
quadratic field K. Choose such a subgroup C of A. The pair (A, C) gives
rise to a point α on X0(N) which is defined over H. It is called a Heegner
point on X0(N) (associated to the maximal order OK). Let PH = φ(α) be
the image of α on E(H) by the modular parametrization φ of theorem 2.6,
and let PK = traceH/KPH be its trace to E(K). The point PK (up to sign)
depends only on the quadratic imaginary field K, not on the choice of A and
C. Hence, its Néron-Tate height is canonical.

The fundamental theorem of Gross and Zagier expresses the special value
of L′(E/K, 1) in terms of the height of PK .

Theorem 3.3 L′(E/K, 1) =
(∫ ∫

E(C)ω ∧ iω̄
)
〈PK , PK〉/c2u2

K |D|
1
2 .

The proof of this beautiful theorem, which is quite involved, is given in [?].

Remarks:
1. Theorem 3.3 gives a formula for L′(E/Q, 1)L(E(D)/Q, 1), and in this sense
does not give a “natural” formula for L′(E/Q, 1) alone.
2. Theorem 3.3 is also true when w = 1. In this case, the twisted L-
function L(E(D)/Q, s) vanishes at s = 1, and theorem 3.3 gives a formula for
L(E/Q, 1)L′(E(D)/Q, 1).
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3.3 Some variants of the Gross-Zagier formula

The fundamental formula of Gross and Zagier has been extended and gen-
eralized in various directions in the last years. Let us mention very briefly a
few of these variants:

A. Shimura curve analogues: Assume here for simplicity that E is semistable
so that N is square-free, and that K is a quadratic imaginary field of dis-
criminant D with gcd(N, D) = 1. Let N = N+N− be the factorization of N
such that N+ is the product of all primes which are split in K, and N− is
the product of the primes which are inert in K. By prop. 3.2, the integer N−

is a product of an even number of prime factors if and only if the sign wK

in the functional equation for L(E/K, s) is −1. Assume that wK = −1. The
Gross-Zagier formula given in theorem 3.3 corresponds to the case where
N+ = N, N− = 1. Assume now that N− 6= 1. One can then define the
Shimura curve XN+,N− as in section 2.2.

The curve XN+,N− is equipped with Heegner points defined over the
Hilbert class field H of K, which correspond to moduli of quaternionic
surfaces with level N+ structure having complex multiplication by OK , i.e,
quaternionic surfaces A endowed with a map

OK −→ end(A),

where end(A) denotes the algebraic endomorphisms of A which commute
with the quaternionic multiplications. By considering the image in the
Mordell Weil group E(H) of certain degree zero divisors supported on Heeg-
ner points in JN+,N−(H) by φN+,N− , one obtains a Heegner point PK in
E(K), which cannot be obtained from the modular curve parametrization
φ. One expects that that the height of PK can be expressed in terms of the
derivative L′(E/K, 1), in a manner analogous to theorem 3.3. In particular,
one expects that PK is of infinite order in E(K) if and only if L′(E/K, 1) 6= 0.
Nothing as precise has yet been established, but some work in progress of
Keating and Kudla supports this expectation.

B. Perrin Riou’s p-adic analogue: In [?], a formula is obtained (when all
primes dividing N are split in K) relating the first derivative of the two-
variable p-adic L-function of E/K to the p-adic height of the Heegner point
PK . The calculations of [?] are also quite involved, but on a conceptual level
they follow those of Gross and Zagier quite closely.
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C. Rubin’s p-adic formula: Let E be an elliptic curve with complex multipli-
cation by OK . In [?], Rubin obtains a formula expressing the derivative of
the two-variable p-adic L-function of E/K at a point which lies outside the
range of classical interpolation, to the p-adic logarithm in the formal group
attached to E over K ⊗Qp of a Heegner point in E(K). The proof of this
formula uses the theory of elliptic units, as well as the formula of Gross Zagier
and Perrin-Riou’s p-adic analogue, in an essential way. A striking feature of
Rubin’s formula is that it allows one to recover a rational point in E(K) as
the formal group exponential evaluated on an expression involving the first
derivative of a p-adic L-function, in much the same way that, if χ is an even
Dirichlet character, exponentiating L′(0, χ) yields a unit in the real quadratic
field cut out by χ.

D. Formulae for L(E/K, 1) when E is a Tate curve: Suppose that E has
a prime p of multiplicative reduction which is inert in K, and suppose that
all other primes dividing N are split in K. Then the sign in the functional
equation for L(E/K, s) is 1 by prop. 3.2, and one expects no Heegner point
construction yielding a point on E(K). However, there are Heegner points
Pn ∈ E(Hn), where Hn is the ring class field of H of conductor pn, constructed
from elliptic curves with level N structure having complex multiplication by
the orders of conductor pn in OK . The precise construction is explained
in [?], where it is shown that these points are trace-compatible, and that
traceH1/H(P1) = 0. Assume to simplify the exposition that K has unit group
O×K = ±1 and class number 1, so that H = K, and that the group of
connected components of the Néron model of E/K at the prime p is trivial.
The prime p is totally ramified in Hn/K; let pn be the unique prime of Hn

over p, and let Φn be the group of connected components of E/Kn at the
prime pn; one has

Φn = Z/(p + 1)Z× Z/pn−1Z, Φ∞ := lim
←

Φn = Z/(p + 1)Z× Zp,

where the inverse limit is taken with respect to the norm maps.
The main formula of [?] relates the image P̄n of Pn in the group Φn to the

special value L(E/K, 1). The norm-compatible system of points Pn gives rise
to a canonical Heegner element P∞ ∈ lim←E(Hn), and hence to an element
P̄∞ in Φ∞. As a corollary to the main result of [?] one obtains:

Theorem 3.4 The element P̄∞ is non-torsion if and only if L(E/K, 1) 6= 0.

15



The calculations involved in the proof of theorem 3.4 are considerably sim-
pler than those of [?] needed to prove theorem 3.3. The main ingredients
in this proof are a formula of Gross for the special value L(E/K, 1) (gener-
alized somewhat in [?]) and a moduli description due to Edixhoven for the
specialization map to the group of connected components of J0(N). For more
details, see [?].

A precursor of theorem 3.4 for Eisenstein quotients can be found in
Mazur’s article [?].

E. p-adic analytic construction of Heegner points from derivatives of p-adic
L-functions: Assume for simplicity that E is semi-stable, and that, as before,
E/Q has a prime p of multiplicative reduction which is inert in K, so that
it is equipped with the analytic Tate parametrization

ΦTate : K×p −→ E(Kp),

where Kp := K ⊗ Qp. Assume now that L(E/K, s) has sign −1 in its
functional equation. Let H∞ be the compositum of all the ring class fields
of K of conductor pn, whose Galois group G∞ = Gal(H∞/K) is canonically
isomorphic to an extension of the class group ∆ = Gal(H/K) by the group
(K×p )1 of elements in Kp of norm 1. By a generalization of the work of Gross
[?] explained in [?], there exists an element L in the completed integral group
ring Z[[G∞]] := lim← Z[Gn] such that

|χ(L)|2 = L(E/K,χ, 1)/
∫ ∫

E(C)
ω ∧ ω̄

∏
`|N−

m`

√
D, (13)

for all finite order characters χ : G∞ −→ C×. The element L plays the role of
the p-adic L-function associated to the anti-cyclotomic Zp-extension in this
setting. (It really might be more accurate to view it as asquare root of the
p-adic L-function.)

Note that if χtriv denotes the trivial character, then χtriv(L) = 0, since
L(E/K, 1) = 0. Hence L belongs to the augmentation ideal I in the com-
pleted group ring Z[[G∞]]. Let L′ be the natural projection of L in I/I2 = G∞.
One shows (cf. [?]) that L′ belongs to (K×p )1 ⊂ G∞. The element L′ in K×p
should be viewed as the first derivative of the p-adic L-function of E/K (in
the anticyclotomic direction, at the trivial character).

Let PK be the Heegner point on E(K) coming from the Shimura curve
parametrization φN+,N− that was introduced in paragraph A of this section,
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and let P̄K be its Galois conjugate. The following theorem is the main result
of [?]:

Theorem 3.5 Let wp be a local sign which is −1 is E/Qp has split mul-
tiplicative reduction, and 1 is E/Qp has non-split multiplicative reduction.
Then

ΦTate(L′) = ±(PK + wpP̄K).

Note that, since p|N−, the curve XN+,N− is never a classical modular curve.
Like the formula of Rubin described in paragraph C, theorem 3.5 allows
one to recover a global point in E(K) from the first derivative of a p-adic
L-function.

The main ingredients in the proof of theorem 3.5 are the explicit con-
struction of L given in [?] and [?] and the Cerednik-Drinfeld theory of p-adic
uniformization of the Shimura curve XN+,N− [?], [?], [?]. The details of the
proof are given in [?].

Remarks:
1. The formulas described in paragraphs D and E were inspired by some
fundamental ideas of Mazur, Tate, and Teitelbaum on p-adic analogues of
the Birch and Swinnerton-Dyer conjecture. The connection with this circle
of ideas is explained in [?].
2. There are many other generalizations of the Gross-Zagier formula which
were not mentionned here because they are not directly relevant to modular
elliptic curves: for example, the work of Nekovar [?] and Zhang [?] extending
the work of Gross-Zagier and Kolyvagin to modular forms of higher weight,
replacing Heegner points by higher-dimensional cycles on Kuga-Sato vari-
eties.
3. In connection with the results described in paragraphs C and E, one
should also mention an intriguing result of D. Ulmer [?] which constructs
global points on certain universal elliptic curves over the function fields of
modular curves in characteristic p. Some of the results described above (and,
in particular, the formula of paragraph E) should extend to the function field
setting; this extension has some tantalizing similarities, as well as differences,
with Ulmer’s constructions.
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4 The Birch and Swinnerton-Dyer conjecture

4.1 Analytic rank 0

For modular elliptic curves of analytic rank 0, one has the following theorem.

Theorem 4.1 If L(E/Q, 1) 6= 0, then E(Q) is finite, and so is III(E/Q).

There are now several ways of proving this theorem. We will review the
different strategies, giving only the briefest indication of the details of the
proofs.

4.1.1 Kolyvagin’s proof

It can be divided into three steps.

Step 1 (Non-vanishing lemma): Choose an auxiliary imaginary quadratic
field K/Q such that

1. All primes dividing N are split in K.

2. Under assumption 1, the sign wK is −1 and the L-function L(E/K, s)
necessarily vanishes at s = 1. One requires in addition that the L-
function L(E/K, s) has only a simple zero, i.e., that L′(E(D)/Q, 1) 6= 0.

The existence of such a quadratic field K follows from the theorems of Bump-
Friedberg-Hoffstein [?] and Murty-Murty [?] on non-vanishing of first deriva-
tives of twists of automorphic L-series.

Step 2 (Gross-Zagier formula): Invoking the Gross-Zagier formula (theorem
3.3) one concludes that the Heegner point PK ∈ E(K) is of infinite order. In
particular the rank of E(K) is at least 1.

Step 3 (Kolyvagin’s descent): In [?], Kolyvagin proves the following theorem:

Theorem 4.2 If the Heegner point PK is of infinite order, then E(K) has
rank 1 and III(E/K) is finite.

Crucial to the proof of theorem 4.2 is the fact that the Heegner point PK does
not come alone. Namely, for each abelian extension L/K such that the Galois
group Gal(L/Q) is dihedral, satisfying gcd(Disc(L/K), ND) = 1, there is a
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Heegner point PL in E(L) and this system of points is norm-compatible in
the sense that, if L1 ⊂ L2, then

traceL2/L1PL2 = `(L2/L1)PL1 ,

where `(L2/L1) ∈ Z[Gal(L1/K)] is an element whose definition involves
the local Euler factors in L(E/K, s) at the primes dividing Disc(L2/L1).
Kummer theory allows one to construct Galois cohomology classes cL ∈
H1(L, Tp(E)) from the points PL, where Tp(E) is the p-adic Tate module
of E. These classes satisfy the same trace-compatibility properties as the
PL. Kolyvagin calls such a system of cohomology classes an Euler System
[?], and shows that if the “initial” class cK is non-zero, the rank of E(K) is
less than or equal to 1 and III(E/K) is finite.

We will not go into the details of Kolyvagin’s ingenious argument, refer-
ring the reader instead to [?] and [?] for more details.

4.1.2 A variant

The following variant of Kolyvagin’s basic strategy avoids the non-vanishing
result of Bump-Friedberg-Hoffstein and Murty-Murty, as well as the formula
of Gross and Zagier. It only works, however, for elliptic curves having a prime
p of multiplicative reduction, and does not prove the finiteness of III(E/Q),
but only of the p-primary part of III(E/Q).

Step 1 (Non-vanishing lemma): Choose now an auxiliary imaginary qua-
dratic field K/Q such that

1. The prime p is inert in K, and all the other primes dividing N are split
in K.

2. By proposition 3.2, the L-function L(E/K, s) has sign wK = 1 in its
functional equation. One requires also that L(E(D)/Q, 1) 6= 0, so that
L(E/K, 1) 6= 0.

The existence of such a quadratic field K follows a theorem of Waldspurger
[?] on non-vanishing of the values of twists of automorphic L-series.

Step 2 (A variant of the Gross-Zagier formula): Invoking theorem 3.4, one
finds that the element P∞ has non-trivial image in Φ∞.
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Step 3 (A variant of Kolyvagin’s descent): In [?], the following theorem is
proved:

Theorem 4.3 If the image P̄∞ of P∞ in Φ∞ is non-torsion, then E(K) has
rank 0 and III(E/K)⊗ Zp is finite.

This theorem is proved by a minor adaptation of Kolyvagin’s argument.
The entire system of points Pn is now used to construct a cohomology class
cK ∈ H1(K, Tp(E)), which is part of an Euler system. The non-vanishing
of P̄∞ translates into the non-triviality of the class cK , and in fact of its
image in a certain quotient (the “singular part”) of the local cohomology
group H1(Kp, Tp(E)). Such a non-triviality is used to uniformly bound the
pn Selmer group of E/K, following the ideas of Kolyvagin.

The details of the argument are explained in [?].

4.1.3 Kato’s proof

Recently Kato [?] has discovered a wholly original proof of theorem 4.1 which
does not require the choice of an auxiliary imaginary quadratic field and does
not use Heegner points.

Kato’s argument constructs cohomology classes cL ∈ H1(L, Tp(E)), where
L is a cyclotomic extensions of the rationals with discriminant prime to N .
These classes are constructed from certain elements introduced by Beilinson,
belonging to the K2 of modular function fields. Defined via explicit modular
units (Siegel units), these classes yield elements in H1(L, Tp(J0(N))) which
are mapped to H1(L, Tp(E)) via the map φ of theorem 2.6. (In particular,
theorem 2.6 is also crucial to Kato’s construction.)

Kato’s classes cL obey norm-compatibility properties similar to those of
Kolyvagin, and hence deserve to be viewed as an Euler system [?]. The
most difficult part of Kato’s argument, given in [?], is to relate the basic
class cQ ∈ H1(Q, Tp(E)) (or rather, its localization in a certain quotient –
the “singular part” – of the local cohomology group H1(Qp, Tp(E))) to the
special value L(E/Q, 1).

4.2 Analytic rank 1

In the case of analytic rank 1, there is:
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Theorem 4.4 Suppose that L(E/Q, 1) = 0 but that L′(E/Q, 1) 6= 0. Then
E(Q) has rank 1, and III(E/Q) is finite.

This theorem lies somewhat deeper than theorem 4.1. To prove it, one dis-
poses only at present of the basic strategy of Kolyvagin based on the Gross-
Zagier formula.

Step 1 (Non-vanishing lemma): Choose an auxiliary imaginary quadratic
field K/Q such that

1. All primes dividing N are split in K.

2. The Hasse-Weil L-function L(E/K, s) has a simple zero at s = 1, so
that L(E(D)/Q, 1) 6= 0.

The existence of such a quadratic field K follows from the same theorem of
Waldspurger [?] on non-vanishing of values of twists of automorphic L-series
used in step 1 of section 4.1.2.

Step 2 (Gross-Zagier formula): Invoking the Gross-Zagier formula (theorem
3.3) one finds that the Heegner point PK ∈ E(K) is of infinite order. In
particular the rank of E(K) is at least 1. More precisely, by analyzing the
action of complex conjugation on PK , one finds that PK (up to torsion)
actually belongs to E(Q) in this case, so that the rank of E(Q) is at least 1.

Step 3 (Kolyvagin’s descent): By theorem 4.2, one concludes that E(K)
has rank 1 and finite Shafarevich-Tate group. Hence the rank of E(Q) is
exactly 1, its Shafarevich-tate group III(E/Q) is finite, and, as a by-product,
E(D)(Q) and III(E(D)/Q) are also finite.

Remark: When the sign in the functional equation for L(E/Q, s) is −1, the
class cQ constructed by Kato gives rise to a natural element in the pro-p
Selmer group of E/Q, defined as the inverse limit lim← Sel(Q, Epn). One
might expect that this class is non-zero if and only if L′(E/Q, 1) 6= 0. A
proof of this would show that

L′(E/Q, 1) 6= 0 ⇒ rank(E(Q)) ≤ 1,

which represents a part of theorem 4.4. The reverse inequality seems harder
to obtain with Kato’s methods.
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